Search results for: bacteria sensor
602 Contrast-to-Noise Ratio Comparison of Different Calcification Types in Dual Energy Breast Imaging
Authors: Vaia N. Koukou, Niki D. Martini, George P. Fountos, Christos M. Michail, Athanasios Bakas, Ioannis S. Kandarakis, George C. Nikiforidis
Abstract:
Various substitute materials of calcifications are used in phantom measurements and simulation studies in mammography. These include calcium carbonate, calcium oxalate, hydroxyapatite and aluminum. The aim of this study is to compare the contrast-to-noise ratio (CNR) values of the different calcification types using the dual energy method. The constructed calcification phantom consisted of three different calcification types and thicknesses: hydroxyapatite, calcite and calcium oxalate of 100, 200, 300 thicknesses. The breast tissue equivalent materials were polyethylene and polymethyl methacrylate slabs simulating adipose tissue and glandular tissue, respectively. The total thickness was 4.2 cm with 50% fixed glandularity. The low- (LE) and high-energy (HE) images were obtained from a tungsten anode using 40 kV filtered with 0.1 mm cadmium and 70 kV filtered with 1 mm copper, respectively. A high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. The total mean glandular dose (MGD) and entrance surface dose (ESD) from the LE and HE images were constrained to typical levels (MGD=1.62 mGy and ESD=1.92 mGy). On average, the CNR of hydroxyapatite calcifications was 1.4 times that of calcite calcifications and 2.5 times that of calcium oxalate calcifications. The higher CNR values of hydroxyapatite are attributed to its attenuation properties compared to the other calcification materials, leading to higher contrast in the dual energy image. This work was supported by Grant Ε.040 from the Research Committee of the University of Patras (Programme K. Karatheodori).Keywords: calcification materials, CNR, dual energy, X-rays
Procedia PDF Downloads 358601 Antimutagenic Activity of a Protein, Lectin Fraction from Urtica Dioica L.
Authors: Nijole Savickiene, Antonella Di Sotto, Gabriela Mazzanti, Rasa Starselskyte, Silvia Di Giacomo, Annabella Vitalone
Abstract:
Plant lectins are non-enzymic and non-immune origin proteins that specifically recognize and bind to various sugar structures and possess the activity to agglutinate cells and/or precipitate polysaccharides and glycoconjugates. The emerging evidences showed that plant lectins contribute not only to tumour cell recognition but also to cell adhesion and localization, to signal transduction, to mitogenic cytotoxicity and apoptosis. Among chitin-binding lectins, the Urtica dioica agglutinin (UDA), which is a complex of different isoforms, has been poorly studied for its biological activity. In this context and according to the increasing interest for lectins as novel antitumor drugs, present paper aimed at evaluating the potential antimutagenic activity of a lectin-like glycoprotein-enriched fraction from aerial part of Urtica dioica L. Aim: to evaluate the potential chemopreventive properties of a protein - lectin fraction from the aerial part of Urtica dioica. Materials and methods: Protein – lectin fraction has been tested for the antimutagenic activity in bacteria (50–800 mg/plate; Ames test by the preincubation method) and for the cytotoxicity on human hepatoma HepG2 cells (0.06–2 mg/mL; 24 and 48 h incubation). Results: Protein – lectin fraction from stinging nettle was not cytotoxic on HepG2 cells up to 2 mg/mL; conversely, it exhibited a strong antimutagenic activity against the mutagen 2-aminoanthracene (2AA) in all strains tested (maximum inhibition of 56.78 and 61% in TA98, TA100, and WP2uvrA strains, respectively, at 800 mg/plate). Discussion and conclusions: Protein – lectin fraction from Urtica dioica L. possesses antimutagenic and radical scavenging properties. Being 2AA a pro-carcinogenic agent, we hypothesize that the antimutagenicity of it can be due to the inhibition of CYP450-isoenzymes, involved in the mutagen bioactivation.Keywords: lectins, antimutagenicity, chemoprevention, Urtica dioica
Procedia PDF Downloads 428600 Phytochemical Screening, Antioxidant and Antibacterial Activity of Annona cherimola Mill
Authors: Arun Jyothi Bheemagani, Chakrapani Pullagummi, Anupalli Roja Rani
Abstract:
Exploration of the chemical constituents of the plants and pharmacological screening may provide us the basis for the development of novel agents. Plants have provided us some of the very important life saving drugs used in the modern medicine. The aim of our work was to screen the phytochemical constituents and antimicrobial and antioxidant activities of methanol extract of leaves of Annona cherimola Mill plant from Tirumala forest, Tirupathi. It was originally called Chirimuya by the Inca people who lived where it was growing in the Andes of South America, is an edible fruit-bearing species of the genus Annona from the family Annonaceae. Annona cherimola Mill is a multipurpose tree with edible fruits and is one of the sources of the medicinal products. The antibacterial activity was measured by agar well diffusion method; the diameter of the zone of bacterial growth inhibition was measured after incubation of plates. The inhibitory effect was studied against the pathogenic bacteria (Klebsiella pneumonia, Bacillus subtilis, Staphylococcus aureus and Escherichia coli (E. coli). Antioxidant assays were also performed for the same extracts by spectrophotometric methods using known standard antioxidants as reference. The studied plant extracts were found to be very effective against the pathogenic microorganisms tested. The methanolic extract of Annona cherimola Mill from showed maximum activity against Escherichia coli and Staphylococcus aureus and the least concentration required showing the activity was 0.5mg/ml. Phytochemical screening of the plants revealed the presence of flavonoids, alkaloids, steroids and carbohydrates. Good presence of antioxidants was also found in the methanolic extracts.Keywords: annona cherimola, phytochemicals, antioxidant and antibacterial activity, methanol extract
Procedia PDF Downloads 453599 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories
Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian
Abstract:
In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.Keywords: feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis
Procedia PDF Downloads 137598 Early Evaluation of Long-Span Suspension Bridges Using Smartphone Accelerometers
Authors: Ekin Ozer, Maria Q. Feng, Rupa Purasinghe
Abstract:
Structural deterioration of bridge systems possesses an ongoing threat to the transportation networks. Besides, landmark bridges’ integrity and safety are more than sole functionality, since they provide a strong presence for the society and nations. Therefore, an innovative and sustainable method to inspect landmark bridges is essential to ensure their resiliency in the long run. In this paper, a recently introduced concept, smartphone-based modal frequency estimation is addressed, and this paper targets to authenticate the fidelity of smartphone-based vibration measurements gathered from three landmark suspension bridges. Firstly, smartphones located at the bridge mid-span are adopted as portable and standalone vibration measurement devices. Then, their embedded accelerometers are utilized to gather vibration response under operational loads, and eventually frequency domain characteristics are deduced. The preliminary analysis results are compared with the reference publications and high-quality monitoring data to validate the usability of smartphones on long-span landmark suspension bridges. If the technical challenges such as high period of vibration, low amplitude excitation, embedded smartphone sensor features, sampling, and citizen engagement are tackled, smartphones can provide a novel and cost-free crowdsourcing tool for maintenance of these landmark structures. This study presents the early phase findings from three signature structures located in the United States.Keywords: smart and mobile sensing, structural health monitoring, suspension bridges, vibration analysis
Procedia PDF Downloads 294597 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV
Authors: Maria Pavlova
Abstract:
In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.Keywords: camera, object recognition, OpenCV, Raspberry
Procedia PDF Downloads 220596 Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation
Authors: Monika Sogani, Zainab Syed, Adrian C. Fisher
Abstract:
Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy.Keywords: endocrine disrupting compounds, ethinylestradiol, microbial electrochemical remediation systems, wastewater treatment
Procedia PDF Downloads 121595 AgriInnoConnect Pro System Using Iot and Firebase Console
Authors: Amit Barde, Dipali Khatave, Vaishali Savale, Atharva Chavan, Sapna Wagaj, Aditya Jilla
Abstract:
AgriInnoConnect Pro is an advanced agricultural automation system designed to enhance irrigation efficiency and overall farm management through IoT technology. Using MIT App Inventor, Telegram, Arduino IDE, and Firebase Console, it provides a user-friendly interface for farmers. Key hardware includes soil moisture sensors, DHT11 sensors, a 12V motor, a solenoid valve, a stepdown transformer, Smart Fencing, and AC switches. The system operates in automatic and manual modes. In automatic mode, the ESP32 microcontroller monitors soil moisture and autonomously controls irrigation to optimize water usage. In manual mode, users can control the irrigation motor via a mobile app. Telegram bots enable remote operation of the solenoid valve and electric fencing, enhancing farm security. Additionally, the system upgrades conventional devices to smart ones using AC switches, broadening automation capabilities. AgriInnoConnect Pro aims to improve farm productivity and resource management, addressing the critical need for sustainable water conservation and providing a comprehensive solution for modern farm management. The integration of smart technologies in AgriInnoConnect Pro ensures precision farming practices, promoting efficient resource allocation and sustainable agricultural development.Keywords: agricultural automation, IoT, soil moisture sensor, ESP32, MIT app inventor, telegram bot, smart farming, remote control, firebase console
Procedia PDF Downloads 48594 Characterization, Antibacterial and Cytotoxicity Evaluation of Silver Nanoparticles Synthesised Using Grewia lasiocarpa E. Mey. Ex Harv. Plant Extracts
Authors: Nneka Augustina Akwu, Yougasphree Naidoo
Abstract:
Molecular advancement in technology has created a means whereby the atoms and molecules (solid forms) of certain materials such as plants, can now be reduced to a range of 1-100 nanometres. Green synthesis of silver nanoparticles (AgNPs) was carried out at room temperature (RT) 25 ± 2°C and 80°C, using the metabolites in the aqueous extracts of the leaves and stem bark of Grewia lasiocarpa as reductants and stabilizing agents. The biosynthesized AgNPs were characterized by UV-Vis spectrophotometry, attenuated total reflectance - Fourier transforms infrared (ATR-FTIR) spectroscopy, nanoparticle tracking analysis (NTA), Energy Dispersive X-ray fluorescence scanning electron microscope (SEM-EDXRF) and high-resolution transmission electron microscopy (HRTEM). The AgNPs were biologically evaluated for antioxidant, antibacterial and cytotoxicity activities. The phytochemical and FTIR analyses revealed the presence of metabolites that act as reducing and capping agents, while the UV-Vis spectroscopy of the biosynthesized NPs showed absorption between 380-460 nm, confirming AgNP synthesis. The Zeta potential values were between -9.1 and -20.6 mV with a hydrodynamics diameter ranging from 38.3 to 46.7 nm. SEM and HRTEM analyses revealed that AgNPs were predominately spherical with an average particle size of 2- 31 nm for the leaves and 5-27 nm for the stem bark. The cytotoxicity IC50 values of the AgNPs against HeLa, Caco-2 and MCF-7 were >1 mg/mL. The AgNPs were sensitive to all strains of bacteria used, with methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) being more sensitive to the AgNPs. Our findings propose that antibacterial and anticancer agents could be derived from these AgNPs of G. lasiocarpa, and warrant their further investigation.Keywords: antioxidant, cytotoxicity, Grewia lasiocarpa, silver nanoparticles, Zeta potentials
Procedia PDF Downloads 144593 Phytochemicals, Antimicrobial and Antioxidant Screening of Marine Microalgal Strain, Amphora Sp.
Authors: S. Beekrum, B. Odhav, R. Lalloo, E. A. Amonsou
Abstract:
Marine microalgae are rich sources of novel and biologically active metabolites; therefore they may be used in the food industry as natural food ingredients and functional foods. They have several biological applications related to health benefits, among others. The aim of the study focused on the screening of phytochemicals from Amphora sp. biomass extracts, and to examine the in vitro antioxidant and antimicrobial potential. Amphora sp. biomass was obtained from CSIR (South Africa) and methanol, hexane and water extracts were prepared. The in vitro antimicrobial effect of extracts were tested against some pathogens (Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis, Salmonella enteritidis, Escherichia coli, Pseudomonas aeruginosa and Candida albicans), using the disc diffusion assay. Qualitative analyses of phytochemicals were conducted by chemical tests. The present investigation revealed that all extracts showed relatively strong antibacterial activity against most of the tested bacteria. The highest phenolic content was found in the methanolic extract. Results of the DPPH assay showed that the biomass contained strong antioxidant capacity, 79% in the methanolic extract and 85% in the hexane extract. Extracts have displayed effectively reducing power and superoxide anion radical scavenging activity. Results of this study have highlighted potential antioxidant activity in the methanol and hexane extracts. The results of the phytochemical screening showed the presence of terpenoids and sterols with potential applications as food flavorants and functional foods, respectively. The use of Amphora sp. as a natural antioxidant source and a potential source of antibacterial compounds and phytochemicals in the food industry appears promising and should be investigated further.Keywords: antioxidants, antimicrobial, microalgae, phytochemicals, cymbella
Procedia PDF Downloads 266592 A Case Report on Neonatal Conjunctivitis in Pugs
Authors: Maria L. G. Lourenco, Viviane Y. Hibaru, Keylla H. N. P. Pereira, Fabiana F. Souza, Joao C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado
Abstract:
Neonatal conjunctivitis, or ophthalmia, is an infection of the conjunctiva or cornea before opening the eyelids. It is believed that immunodeficiency contributes to the development of the condition. This study aims at reporting a case of ophthalmia neonatorum in a dog, in addition to its diagnosis and treatment. A litter of five pug neonates was admitted to the Sao Paulo State University (UNESP) Veterinary Hospital, Botucatu, Sao Paulo, Brazil, with complaints of ocular secretion. The neonates were five days old. The clinical examination revealed that three newborns presented swelling in the ocular region and a purulent secretion in the medial corner of the eye that was exerting pressure on the ocular globes, which are compatible with the description of this disease. The diagnosis was made based on the clinical signs and bacterial culture of the secretion, which revealed the presence of bacteria belonging to the genus Staphylococcus sp. The laboratory assays did not reveal any alterations. The treatment was instituted gently, opening the eyelids early and cleaning the purulent ocular secretion with saline solution. An ophthalmic ointment with retinol, amino acids, methionine, and chloramphenicol (Epitezan®) was prescribed four times a day for seven days. Blood plasma (2 mL/100 g) was administered subcutaneously because bacterial infections in neonates may represent a failure in the transference of passive immunity. A more thorough cleaning of the environment was also recommended. Neonatal conjunctivitis has a simple diagnosis and treatment. If not treated early, it can evolve to adherence of the eyelids to the cornea, ulceration, and perforation of the cornea. Therefore, the prognosis is favorable as long as the condition is diagnosed early, and the treatment is instituted quickly.Keywords: ophthalmia neonatorum, neonatal infection, puppy, newborn
Procedia PDF Downloads 142591 The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer
Authors: Supannika Klangphukhiew, Roongnapa Srichana, Rina Patramanon
Abstract:
Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care.Keywords: stress biomarker, cortisol, molecular imprinted polymer, screen-printed carbon electrode
Procedia PDF Downloads 274590 Surface Thermodynamics Approach to Mycobacterium tuberculosis (M-TB) – Human Sputum Interactions
Authors: J. L. Chukwuneke, C. H. Achebe, S. N. Omenyi
Abstract:
This research work presents the surface thermodynamics approach to M-TB/HIV-Human sputum interactions. This involved the use of the Hamaker coefficient concept as a surface energetics tool in determining the interaction processes, with the surface interfacial energies explained using van der Waals concept of particle interactions. The Lifshitz derivation for van der Waals forces was applied as an alternative to the contact angle approach which has been widely used in other biological systems. The methodology involved taking sputum samples from twenty infected persons and from twenty uninfected persons for absorbance measurement using a digital Ultraviolet visible Spectrophotometer. The variables required for the computations with the Lifshitz formula were derived from the absorbance data. The Matlab software tools were used in the mathematical analysis of the data produced from the experiments (absorbance values). The Hamaker constants and the combined Hamaker coefficients were obtained using the values of the dielectric constant together with the Lifshitz equation. The absolute combined Hamaker coefficients A132abs and A131abs on both infected and uninfected sputum samples gave the values of A132abs = 0.21631x10-21Joule for M-TB infected sputum and Ã132abs = 0.18825x10-21Joule for M-TB/HIV infected sputum. The significance of this result is the positive value of the absolute combined Hamaker coefficient which suggests the existence of net positive van der waals forces demonstrating an attraction between the bacteria and the macrophage. This however, implies that infection can occur. It was also shown that in the presence of HIV, the interaction energy is reduced by 13% conforming adverse effects observed in HIV patients suffering from tuberculosis.Keywords: absorbance, dielectric constant, hamaker coefficient, lifshitz formula, macrophage, mycobacterium tuberculosis, van der waals forces
Procedia PDF Downloads 280589 The Role of the STAT3 Signaling for Melatonergic Synthetic Pathway in the Rat Pineal Gland
Authors: Simona Moravcova, Jiri Novotny, Zdenka Bendova
Abstract:
The pineal gland of the vertebrate brain is a circumventricular organ which serves as a major neuroendocrine gland with the primary function of rhythmic secretion of neurohormone melatonin under the control of the hypothalamic suprachiasmatic nucleus (SCN). Soon after the onset of the darkness, the activity of the key rate-limiting enzyme for melatonin synthesis, arylalkylamine N-acetyltransferase (AANAT), raises due to the increased release of norepinephrine from sympathetic neurons terminating on the parenchymal cells where it binds to β-adrenergic receptors. Melatonin codes the length of the night, and it is well recognized for its anti-inflammatory effects. However, to our knowledge, less is known about the effect of the immune system on the melatonin biosynthesis and the precise role of the STAT3 in the signaling pathway leading to the expression of AANAT. Lipopolysaccharide (LPS) is the essential component in the outer surface membrane of gram-negative bacteria and acts as a strong stimulator of natural and innate immunity. STAT3 acts as an important factor in immune response. Here we investigated the effect of LPS on the components of the melatonergic synthetic pathway in the pineal gland. The experiments were performed both in vivo and in vitro. The changes in AANAT activity were determined by radioenzymatic assay. PCR analyses were carried out to detect aa-nat, icer, spi-3 and stat3 gene expression. From our results, it is apparent that the high basal level of phosphorylated forms of STAT3 can be elevated after systemic as well as in vitro administration of LPS. Our experiments have shown that LPS reduces melatonin synthesis, nevertheless, the activity of AANAT was increased. Moreover, the basal level of phosphorylated STAT3 counteracts β-adrenergic receptor-mediated aa-nat gene expression and sustains its own and spi-3 gene expression. In conclusion, LPS can affect immunomodulators such as melatonin in the pineal gland.Keywords: AANAT, lipopolysaccharide, pineal gland, rat, STAT3
Procedia PDF Downloads 170588 Isolation and Characterisation of Novel Environmental Bacteriophages Which Target the Escherichia coli Lamb Outer Membrane Protein
Authors: Ziyue Zeng
Abstract:
Bacteriophages are viruses which infect bacteria specifically. Over the past decades, phage λ has been extensively studied, especially its interaction with the Escherichia coli LamB (EcLamB) protein receptor. Nonetheless, despite the enormous numbers and near-ubiquity of environmental phages, aside from phage λ, there is a paucity of information on other phages which target EcLamB as a receptor. In this study, to answer the question of whether there are other EcLamB-targeting phages in the natural environment, a simple and convenient method was developed and used for isolating environmental phages which target a particular surface structure of a particular bacterium; in this case, the EcLamB outer membrane protein. From the enrichments with the engineered bacterial hosts, a collection of EcLamB-targeting phages (ΦZZ phages) were easily isolated. Intriguingly, unlike phage λ, an obligate EcLamB-dependent phage in the Siphoviridae family, the newly isolated ΦZZ phages alternatively recognised EcLamB or E. coli OmpC (EcOmpC) as a receptor when infecting E. coli. Furthermore, ΦZZ phages were suggested to represent new species in the Tequatrovirus genus in the Myoviridae family, based on phage morphology and genomic sequences. Most phages are thought to have a narrow host range due to their exquisite specificity in receptor recognition. With the ability to optionally recognise two receptors, ΦZZ phages were considered relatively promiscuous. Via the heterologous expression of EcLamB on the bacterial cell surface, the host range of ΦZZ phages was further extended to three different enterobacterial genera. Besides, an interesting selection of evolved phage mutants with a broader host range was isolated, and the key mutations involved in their evolution to adapt to new hosts were investigated by genomic analysis. Finally, and importantly, two ΦZZ phages were found to be putative generalised transducers, which could be exploited as tools for DNA manipulations.Keywords: environmental microbiology, phage, microbe-host interactions, microbial ecology
Procedia PDF Downloads 102587 Infection Profile of Patients Undergoing Autologous Bone Marrow Transplantation in Tabriz, Iran
Authors: Naser Shagerdi Esmaeli, Mohsen Hamidpour
Abstract:
Background and Objective: Hematopoietic stem cell transplantation (HSCT) has been widely used for treating oncological and hematological diseases. Although HSCT has helped to improve patient survival, the risk of developing an infection during hospitalization is an important cause of morbidity and mortality. This study aimed to analyze the infection profile during hospitalization and the associated risk factors among patients undergoing autologous HSCT at the University Hospital, Shahid Ghazi Tabatabaei Hospital, Tabriz, Iran. Subjects and Methods: This was a cross-sectional study on patients undergoing autologous HSCT at a public university hospital. Methods: Patients with febrile neutropenia between 2015 and 2018 were retrospectively evaluated regarding their infection profile and associated risk factors. This survey included: bacterial culture and blood culture on specific media. Results: Infection occurred in 57.2% of 56 patients with febrile neutropenia. The main source of infection was the central venous catheter (25.9%). Infection was chiefly due to Gram-positive bacteria, although Gram-negative-related infections were more severe and caused a higher death rate. Sex, age, skin color, nutritional status, and underlying disease were not associated with the development of infection. Patients with severe mucositis (Grades III and IV) had a higher infection rate (P < 0.001). Patients who developed pulmonary complications during hospitalization had higher infection rates (P = 0.002). Infection was the main cause of death (57.1%) in the study sample. Conclusion: Strategies aimed at reducing infection-related mortality rates among patients undergoing autologous HSCT are necessary.Keywords: hematopoietic stem cell, autologous bone marrow transplantation, infection profile, tabriz, Iran
Procedia PDF Downloads 120586 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards
Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia
Abstract:
Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.Keywords: aquaponics, deep learning, internet of things, vermiponics
Procedia PDF Downloads 74585 Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes
Authors: Shekher Kummari, V. Sunil Kumar, K. Vengatajalabathy Gobi
Abstract:
A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits.Keywords: amperometry, electrochemical detection, human blood serum, methotrexate, MWCNT, SWV
Procedia PDF Downloads 312584 Application of Customized Bioaugmentation Inocula to Alleviate Ammonia Toxicity in CSTR Anaerobic Digesters
Authors: Yixin Yan, Miao Yan, Irini Angelidaki, Ioannis Fotidis
Abstract:
Ammonia, which derives from the degradation of urea and protein-substrates, is the major toxicant of the commercial anaerobic digestion reactors causing loses of up to 1/3 of their practical biogas production, which reflects directly on the overall revenue of the plants. The current experimental work is aiming to alleviate the ammonia inhibition in anaerobic digestion (AD) process by developing an innovative bioaugmentation method of ammonia tolerant methanogenic consortia. The ammonia tolerant consortia were cultured in batch reactors and immobilized together with biochar in agar (customized inocula). Three continuous stirred-tank reactors (CSTR), fed with the organic fraction of municipal solid waste at a hydraulic retention time of 15 days and operated at thermophilic (55°C) conditions were assessed. After an ammonia shock of 4 g NH4+-N L-1, the customized inocula were bioaugmented into the CSTR reactors to alleviate ammonia toxicity effect on AD process. Recovery rate of methane production and methanogenic activity will be assessed to evaluate the bioaugmentation performance, while 16s rRNA gene sequence will be used to reveal the difference of microbial community changes through bioaugmentation. At the microbial level, the microbial community structures of the four reactors will be analysed to find the mechanism of bioaugmentation. Changes in hydrogen formation potential will be used to predict direct interspecies electron transfer (DIET) between ammonia tolerant methanogens and syntrophic bacteria. This experimental work is expected to create bioaugmentation inocula that will be easy to obtain, transport, handled and bioaugment in AD reactors to efficiently alleviate the ammonia toxicity, without alternating any of the other operational parameters including the ammonia-rich feedstocks.Keywords: artisanal fishing waste, acidogenesis, volatile fatty acids, pH, inoculum/substrate ratio
Procedia PDF Downloads 130583 Performance Comparison of Microcontroller-Based Optimum Controller for Fruit Drying System
Authors: Umar Salisu
Abstract:
This research presents the development of a hot air tomatoes drying system. To provide a more efficient and continuous temperature control, microcontroller-based optimal controller was developed. The system is based on a power control principle to achieve smooth power variations depending on a feedback temperature signal of the process. An LM35 temperature sensor and LM399 differential comparator were used to measure the temperature. The mathematical model of the system was developed and the optimal controller was designed and simulated and compared with the PID controller transient response. A controlled environment suitable for fruit drying is developed within a closed chamber and is a three step process. First, the infrared light is used internally to preheated the fruit to speedily remove the water content inside the fruit for fast drying. Second, hot air of a specified temperature is blown inside the chamber to maintain the humidity below a specified level and exhaust the humid air of the chamber. Third, the microcontroller disconnects the power to the chamber after the moisture content of the fruits is removed to minimal. Experiments were conducted with 1kg of fresh tomatoes at three different temperatures (40, 50 and 60 °C) at constant relative humidity of 30%RH. The results obtained indicate that the system is significantly reducing the drying time without affecting the quality of the fruits. In the context of temperature control, the results obtained showed that the response of the optimal controller has zero overshoot whereas the PID controller response overshoots to about 30% of the set-point. Another performance metric used is the rising time; the optimal controller rose without any delay while the PID controller delayed for more than 50s. It can be argued that the optimal controller performance is preferable than that of the PID controller since it does not overshoot and it starts in good time.Keywords: drying, microcontroller, optimum controller, PID controller
Procedia PDF Downloads 304582 Cotton Treated with Spent Coffee Extract for Realizing Functional Textiles
Authors: Kyung Hwa Hong
Abstract:
The objective of this study was to evaluate the ability of spent coffee extract to enhance the antioxidant and antimicrobial properties of cotton fabrics. The emergence and spread of infectious diseases has raised a global interest in the antimicrobial substances. The safety of chemical agents, such as antimicrobials and dyes, which may irritate the skin, cause cellular and organ damage, and have adverse environmental impacts during their manufacturing, in relation to the human body has not been established. Nevertheless, there is a growing interest in natural antimicrobials that kill microorganisms or stop their growth without dangerous effects on human health. Spent coffee is the by-product of coffee brewing and amounted to 96,000 tons worldwide in 2015. Coffee components such as caffeine, melanoidins, and chlorogenic acid have been reported to possess multifunctional properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Therefore, the current study examined the possibility of applying spent coffee in functional textile finishing. Spent coffee was extracted with 60% methanol solution, and the major components of the extract were quantified. In addition, cotton fabrics treated with spent coffee extract through a pad-dry-cure process were investigated for antioxidant and antimicrobial activities. The cotton fabrics finished with the spent coffee extract showed an increase in yellowness, which is an unfavorable outcome from the fabric finishing process. However, the cotton fabrics finished with the spent coffee extract exhibited considerable antioxidant activity. In particular, the antioxidant ability significantly increased with increasing concentrations of the spent coffee extract. The finished cotton fabrics showed antimicrobial ability against S. aureus but relatively low antimicrobial ability against K. pneumoniae. Therefore, further investigations are needed to determine the appropriate concentration of spent coffee extract to inhibit the growth of various pathogenic bacteria.Keywords: spent coffee grounds, cotton, natural finishing agent, antioxidant activity, antimicrobial activity
Procedia PDF Downloads 170581 Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for Treatment of Real Textile Effluent: An in situ Treatment, Anatomical Studies and Toxicity Evaluation
Authors: Suhas Kadam, Vishal Chandanshive, Niraj Rane, Sanjay Govindwar
Abstract:
Fimbristylis dichotoma, Ammannia baccifera, and their co-plantation consortium FA were found to degrade methyl orange, simulated dye mixture, and real textile effluent. Wild plants of Fimbristylis dichotoma and Ammannia baccifera with equal biomass showed 91 and 89% decolorization of methyl orange within 60 h at a concentration of 50 ppm, while 95% dye removal was achieved by consortium FA within 48 h. Floating phyto-beds with co-plantation (Fimbristylis dichotoma and Ammannia baccifera) for the treatment of real textile effluent in a constructed wetland was observed to be more efficient and achieved 79, 72, 77, 66 and 56% reductions in ADMI color value, chemical oxygen demand, biological oxygen demand, total dissolve solid and total suspended solid of textile effluent, respectively. High performance thin layer chromatography, gas chromatography-mass spectroscopy, Fourier transform infrared spectroscopy, Ultra violet-Visible spectroscopy and enzymatic assays confirmed the phytotransformation of parent dye in the new metabolites. T-RFLP analysis of rhizospheric bacteria of Fimbristylis dichotoma, Ammannia baccifera, and consortium FA revealed the presence of 88, 98 and 223 genera which could have been involved in dye removal. Toxicity evaluation of products formed after phytotransformation of methyl orange by consortium FA on bivalves Lamellidens marginalis revealed less damage in the gills architecture when analyzed histologically. Toxicity measurement by Random Amplification of Polymorphic DNA (RAPD) technique revealed normal banding pattern in treated methyl orange sample suggesting less toxic nature of phytotransformed dye products.Keywords: constructed wetland, phyto-bed, textile effluent, phytoremediation
Procedia PDF Downloads 487580 Dairy Wastewater Treatment by Electrochemical and Catalytic Method
Authors: Basanti Ekka, Talis Juhna
Abstract:
Dairy industrial effluents originated by the typical processing activities are composed of various organic and inorganic constituents, and these include proteins, fats, inorganic salts, antibiotics, detergents, sanitizers, pathogenic viruses, bacteria, etc. These contaminants are harmful to not only human beings but also aquatic flora and fauna. Because consisting of large classes of contaminants, the specific targeted removal methods available in the literature are not viable solutions on the industrial scale. Therefore, in this on-going research, a series of coagulation, electrochemical, and catalytic methods will be employed. The bulk coagulation and electrochemical methods can wash off most of the contaminants, but some of the harmful chemicals may slip in; therefore, specific catalysts designed and synthesized will be employed for the removal of targeted chemicals. In the context of Latvian dairy industries, presently, work is under progress on the characterization of dairy effluents by total organic carbon (TOC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS)/ Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectrometry. After careful evaluation of the dairy effluents, a cost-effective natural coagulant will be employed prior to advanced electrochemical technology such as electrocoagulation and electro-oxidation as a secondary treatment process. Finally, graphene oxide (GO) based hybrid materials will be used for post-treatment of dairy wastewater as graphene oxide has been widely applied in various fields such as environmental remediation and energy production due to the presence of various oxygen-containing groups. Modified GO will be used as a catalyst for the removal of remaining contaminants after the electrochemical process.Keywords: catalysis, dairy wastewater, electrochemical method, graphene oxide
Procedia PDF Downloads 146579 A Vehicle Monitoring System Based on the LoRa Technique
Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang
Abstract:
Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.Keywords: LoRa, monitoring system, smart city, vehicle
Procedia PDF Downloads 420578 Development of a Direct Immunoassay for Human Ferritin Using Diffraction-Based Sensing Method
Authors: Joel Ballesteros, Harriet Jane Caleja, Florian Del Mundo, Cherrie Pascual
Abstract:
Diffraction-based sensing was utilized in the quantification of human ferritin in blood serum to provide an alternative to label-based immunoassays currently used in clinical diagnostics and researches. The diffraction intensity was measured by the diffractive optics technology or dotLab™ system. Two methods were evaluated in this study: direct immunoassay and direct sandwich immunoassay. In the direct immunoassay, human ferritin was captured by human ferritin antibodies immobilized on an avidin-coated sensor while the direct sandwich immunoassay had an additional step for the binding of a detector human ferritin antibody on the analyte complex. Both methods were repeatable with coefficient of variation values below 15%. The direct sandwich immunoassay had a linear response from 10 to 500 ng/mL which is wider than the 100-500 ng/mL of the direct immunoassay. The direct sandwich immunoassay also has a higher calibration sensitivity with value 0.002 Diffractive Intensity (ng mL-1)-1) compared to the 0.004 Diffractive Intensity (ng mL-1)-1 of the direct immunoassay. The limit of detection and limit of quantification values of the direct immunoassay were found to be 29 ng/mL and 98 ng/mL, respectively, while the direct sandwich immunoassay has a limit of detection (LOD) of 2.5 ng/mL and a limit of quantification (LOQ) of 8.2 ng/mL. In terms of accuracy, the direct immunoassay had a percent recovery of 88.8-93.0% in PBS while the direct sandwich immunoassay had 94.1 to 97.2%. Based on the results, the direct sandwich immunoassay is a better diffraction-based immunoassay in terms of accuracy, LOD, LOQ, linear range, and sensitivity. The direct sandwich immunoassay was utilized in the determination of human ferritin in blood serum and the results are validated by Chemiluminescent Magnetic Immunoassay (CMIA). The calculated Pearson correlation coefficient was 0.995 and the p-values of the paired-sample t-test were less than 0.5 which show that the results of the direct sandwich immunoassay was comparable to that of CMIA and could be utilized as an alternative analytical method.Keywords: biosensor, diffraction, ferritin, immunoassay
Procedia PDF Downloads 355577 Escherichia Coli Producing Extended-spectrum Beta-lactamase (ESBL) at the Tambacounda Regional Hospital Center (CHRT), Senegal
Authors: Assane Dieng, Abass Sarr, Gora Lo, Awa Ba, Halimatou Diop Ndiaye, Makhtar Camara
Abstract:
Introduction: Escherchia coli is one of the main beta-lactamase-producing bacteria. In Senegal, we are witnessing a weakness in the technical platform and a deficit in qualified personnel in laboratories, especially in rural areas. This is why there is little updated data on antibiotic bacterial resistance in rural areas. The objective is to study infections with Escherichia coli producing extended-spectrum beta-lactamase (ESBL) at the Tambacounda Regional Hospital Center (CHRT), Senegal. Methodology: Samples were taken from patients consulted at the Tambacounda Regional Hospital Center (CHRT) from January to October 2024. The search for Escherichia coli was carried out by determining morphological, biochemical and cultural characteristics. The antibiogram was performed using the Mueller-Hinton (MH) agar diffusion method following the recommendations of the Antibiogram Committee of the French Society of Microbiology (CA SFM). ESBL production was detected using the double synergy method Results: A total of 287 germs were isolated during the study period, including 96 strains of Escherichia coli, 47 of which produced a broad-spectrum beta-lactamase. ESBL-producing E. coli strains were more common in men (61.2%). The most affected age groups were [60-79 years] and [20-39 years] with respective rates of 36.7% and 27%. ESBL-producing E. coli strains were isolated mainly in non-hospitalized patients (79%). Beta-lactamase-producing E. coli strains were mainly resistant to tetracycline (95.7%), norfloxacin (91.5%) and ciprofloxacin (87.2%).Conclusion: ESBL-producing E. coli strains are also present in rural areas Thus, to have more comprehensive data, qualified personnel as well as a high-level technical platform should be available in these laboratories.Keywords: E. coli, beta-lactamase, rural area, non hospitalized
Procedia PDF Downloads 10576 Nano-Filled Matrix Reinforced by Woven Carbon Fibers Used as a Sensor
Authors: K. Hamdi, Z. Aboura, W. Harizi, K. Khellil
Abstract:
Improving the electrical properties of organic matrix composites has been investigated in several studies. Thus, to extend the use of composites in more varied application, one of the actual barrier is their poor electrical conductivities. In the case of carbon fiber composites, organic matrix are in charge of the insulating properties of the resulting composite. However, studying the properties of continuous carbon fiber nano-filled composites is less investigated. This work tends to characterize the effect of carbon black nano-fillers on the properties of the woven carbon fiber composites. First of all, SEM observations were performed to localize the nano-particles. It showed that particles penetrated on the fiber zone (figure1). In fact, by reaching the fiber zone, the carbon black nano-fillers created network connectivity between fibers which means an easy pathway for the current. It explains the noticed improvement of the electrical conductivity of the composites by adding carbon black. This test was performed with the four points electrical circuit. It shows that electrical conductivity of 'neat' matrix composite passed from 80S/cm to 150S/cm by adding 9wt% of carbon black and to 250S/cm by adding 17wt% of the same nano-filler. Thanks to these results, the use of this composite as a strain gauge might be possible. By the way, the study of the influence of a mechanical excitation (flexion, tensile) on the electrical properties of the composite by recording the variance of an electrical current passing through the material during the mechanical testing is possible. Three different configuration were performed depending on the rate of carbon black used as nano-filler. These investigation could lead to develop an auto-instrumented material.Keywords: carbon fibers composites, nano-fillers, strain-sensors, auto-instrumented
Procedia PDF Downloads 413575 Effect of Chemical Mutagen on Seeds Germination of Lima Bean
Authors: G. Ultanbekova, Zh. Suleimenova, Zh. Rakhmetova, G. Mombekova, S. Mantieva
Abstract:
Plant Growth Promoting Rhizobacteria (PGPR) are a group of free-living bacteria that colonize the rhizosphere, enhance plant growth of many cereals and other important agricultural crops and protect plants from disease and abiotic stresses through a wide variety of mechanisms. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth. In the present study, strain improvement of PGPR isolates were carried out by chemical mutagenesis for the improvement of growth and yield of lima bean. Induced mutagenesis is widely used for the selection of microorganisms producing biologically active substances and further improving their activities. Strain improvement is usually done by classical mutagenesis which involves exposing the microbes to chemical or physical mutagens. The strains of Pseudomonas putida 4/1, Azotobacter chroococcum Р-29 and Bacillus subtilis were subjected to mutation process for strain improvement by treatment with a chemical agent (sodium nitrite) to cause mutation and were observed for its consequent action on the seeds germination and plant growth of lima bean (Phaseolus lunatus). Bacterial mutant strains of Pseudomonas putida M-1, Azotobacter chroococcum M-1 and Bacillus subtilis M-1, treated with sodium nitrite in the concentration of 5 mg/ml for 120 min, were found effective to enhance the germination of lima bean seeds compared to parent strains. Moreover, treatment of the lima bean seeds with a mutant strain of Bacillus subtilis M-1 had a significant stimulation effect on plant growth. The length of the stems and roots of lima bean treated with Bacillus subtilis M-1 increased significantly in comparison with parent strain in 1.6 and 1.3 times, respectively.Keywords: chemical mutagenesis, germination, kidney bean, plant growth promoting rhizobacteria (PGPR)
Procedia PDF Downloads 201574 Colorimetric Measurement of Dipeptidyl Peptidase IV (DPP IV) Activity via Peptide Capped Gold Nanoparticles
Authors: H. Aldewachi, M. Hines, M. McCulloch, N. Woodroofe, P. Gardiner
Abstract:
DPP-IV is an enzyme whose expression is affected in a variety of diseases, therefore, has been identified as possible diagnostic or prognostic marker for various tumours, immunological, inflammatory, neuroendocrine, and viral diseases. Recently, DPP-IV enzyme has been identified as a novel target for type II diabetes treatment where the enzyme is involved. There is, therefore, a need to develop sensitive and specific methods that can be easily deployed for the screening of the enzyme either as a tool for drug screening or disease marker in biological samples. A variety of assays have been introduced for the determination of DPP-IV enzyme activity using chromogenic and fluorogenic substrates, nevertheless these assays either lack the required sensitivity especially in inhibited enzyme samples or displays low water solubility implying difficulty for use in vivo samples in addition to labour and time-consuming sample preparation. In this study, novel strategies based on exploiting the high extinction coefficient of gold nanoparticles (GNPs) are investigated in order to develop fast, specific and reliable enzymatic assay by investigating synthetic peptide sequences containing a DPP IV cleavage site and coupling them to GNPs. The DPP IV could be detected by colorimetric response of peptide capped GNPs (P-GNPS) that could be monitored by a UV-visible spectrophotometer or even naked eyes, and the detection limit could reach 0.01 unit/ml. The P-GNPs, when subjected to DPP IV, showed excellent selectivity compared to other proteins (thrombin and human serum albumin) , which led to prominent colour change. This provided a simple and effective colorimetric sensor for on-site and real-time detection of DPP IV.Keywords: gold nanoparticles, synthetic peptides, colorimetric detection, DPP-IV enzyme
Procedia PDF Downloads 305573 Integration of GIS with Remote Sensing and GPS for Disaster Mitigation
Authors: Sikander Nawaz Khan
Abstract:
Natural disasters like flood, earthquake, cyclone, volcanic eruption and others are causing immense losses to the property and lives every year. Current status and actual loss information of natural hazards can be determined and also prediction for next probable disasters can be made using different remote sensing and mapping technologies. Global Positioning System (GPS) calculates the exact position of damage. It can also communicate with wireless sensor nodes embedded in potentially dangerous places. GPS provide precise and accurate locations and other related information like speed, track, direction and distance of target object to emergency responders. Remote Sensing facilitates to map damages without having physical contact with target area. Now with the addition of more remote sensing satellites and other advancements, early warning system is used very efficiently. Remote sensing is being used both at local and global scale. High Resolution Satellite Imagery (HRSI), airborne remote sensing and space-borne remote sensing is playing vital role in disaster management. Early on Geographic Information System (GIS) was used to collect, arrange, and map the spatial information but now it has capability to analyze spatial data. This analytical ability of GIS is the main cause of its adaption by different emergency services providers like police and ambulance service. Full potential of these so called 3S technologies cannot be used in alone. Integration of GPS and other remote sensing techniques with GIS has pointed new horizons in modeling of earth science activities. Many remote sensing cases including Asian Ocean Tsunami in 2004, Mount Mangart landslides and Pakistan-India earthquake in 2005 are described in this paper.Keywords: disaster mitigation, GIS, GPS, remote sensing
Procedia PDF Downloads 483