Search results for: Sugeno fuzzy classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2840

Search results for: Sugeno fuzzy classification

530 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 134
529 Decision Support System Based On GIS and MCDM to Identify Land Suitability for Agriculture

Authors: Abdelkader Mendas

Abstract:

The integration of MultiCriteria Decision Making (MCDM) approaches in a Geographical Information System (GIS) provides a powerful spatial decision support system which offers the opportunity to efficiently produce the land suitability maps for agriculture. Indeed, GIS is a powerful tool for analyzing spatial data and establishing a process for decision support. Because of their spatial aggregation functions, MCDM methods can facilitate decision making in situations where several solutions are available, various criteria have to be taken into account and decision-makers are in conflict. The parameters and the classification system used in this work are inspired from the FAO (Food and Agriculture Organization) approach dedicated to a sustainable agriculture. A spatial decision support system has been developed for establishing the land suitability map for agriculture. It incorporates the multicriteria analysis method ELECTRE Tri (ELimitation Et Choix Traduisant la REalité) in a GIS within the GIS program package environment. The main purpose of this research is to propose a conceptual and methodological framework for the combination of GIS and multicriteria methods in a single coherent system that takes into account the whole process from the acquisition of spatially referenced data to decision-making. In this context, a spatial decision support system for developing land suitability maps for agriculture has been developed. The algorithm of ELECTRE Tri is incorporated into a GIS environment and added to the other analysis functions of GIS. This approach has been tested on an area in Algeria. A land suitability map for durum wheat has been produced. Through the obtained results, it appears that ELECTRE Tri method, integrated into a GIS, is better suited to the problem of land suitability for agriculture. The coherence of the obtained maps confirms the system effectiveness.

Keywords: multicriteria decision analysis, decision support system, geographical information system, land suitability for agriculture

Procedia PDF Downloads 644
528 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 137
527 Flexible Furniture in Urban Open Spaces: A Tool to Achieve Social Sustainability

Authors: Mahsa Ghafouri, Guita Farivarsadri

Abstract:

In urban open spaces, furniture plays a crucial role in meeting various needs of the users over time. Furniture consists of elements that not only can facilitate physical needs individually but also fulfill social, psychological, and cultural demands on an urban scale. Creating adjustable urban spaces and using flexible furniture can provide the possibility of using urban spaces for a wide range of uses and activities and allow the engagement of users with distinct abilities and limitations in these activities. Flexibility in urban furniture can be seen as designing a number of modular components that are movable, expandable, adjustable, and changeable to accommodate various functions. Although there is a great amount of research related to flexibility and its distinct insights into achieving spaces that can cope with changing demands, this fundamental issue is often neglected in the design of urban furniture. However, in the long term, to address changing public needs over time, it can be logical to bring this quality into the design process to make spaces that can be sustained for a long time. This study aims to first introduce diverse kinds of flexible furniture that can be designed for urban public spaces and then to realize how this flexible furniture can improve the quality of public open spaces and social interaction and make them more adaptable over time and, as a result, achieve social sustainability. This research is descriptive and is mainly based on an extensive literature review and the analysis and classification of existing examples around the world. This research tends to illustrate various kinds of approaches that can help designers create flexible furniture to enhance the sustainability and quality of urban open spaces and, in this way, act as a guide for urban designers in this respect.

Keywords: flexible furniture, flexible design, urban open spaces, adaptability, moveability, social sustainability

Procedia PDF Downloads 64
526 Causes of Blindness and Low Vision among Visually Impaired Population Supported by Welfare Organization in Ardabil Province in Iran

Authors: Mohammad Maeiyat, Ali Maeiyat Ivatlou, Rasul Fani Khiavi, Abouzar Maeiyat Ivatlou, Parya Maeiyat

Abstract:

Purpose: Considering the fact that visual impairment is still one of the countries health problem, this study was conducted to determine the causes of blindness and low vision in visually impaired membership of Ardabil Province welfare organization. Methods: The present study which was based on descriptive and national-census, that carried out in visually impaired population supported by welfare organization in all urban and rural areas of Ardabil Province in 2013 and Collection of samples lasted for 7 months. The subjects were inspected by optometrist to determine their visual status (blindness or low vision) and then referred to ophthalmologist in order to discover the main causes of visual impairment based on the international classification of diseases version 10. Statistical analysis of collected data was performed using SPSS software version 18. Results: Overall, 403 subjects with mean age of years participated in this study. 73.2% were blind, 26.8 % were low vision and according gender grouping 60.50 % of them were male, 39.50 % were female that divided into three groups with the age level of lower than 15 (11.2%) 15 to 49 (76.7%), and 50 and higher (12.1%). The age range was 1 to 78 years. The causes of blindness and low vision were in descending order: optic atrophy (18.4%), retinitis pigmentosa (16.8%), corneal diseases (12.4%), chorioretinal diseases (9.4%), cataract (8.9%), glaucoma (8.2%), phthisis bulbi (7.2%), degenerative myopia (6.9%), microphtalmos ( 4%), amblyopia (3.2%), albinism (2.5%) and nistagmus (2%). Conclusion: in this study the main causes of visual impairments were optic atrophy and retinitis pigmentosa, thus specific prevention plans can be effective in reducing the incidence of visual disabilities.

Keywords: blindness, low vision, welfare, ardabil

Procedia PDF Downloads 442
525 Lateritic Soils from Ceara, Brazil: Sustainable Use in Constructive Blocks for Social Housing

Authors: Ivelise M. Strozberg, Juliana Sales Frota, Lucas de Oliveira Vale

Abstract:

The state of Ceara, located in the northeast region of Brazil, is abundant in lateritic soil which has been usually discarded due to its lack of agricultural potential while materials of similar nature have been used as constituents of housing constructive elements in many parts of the world, such as India and Portugal, for decades. Since many of the semi-arid housing conditions in the state of Ceara fail to meet the minimum criteria regarding comfort and safety requirements, this research proposed to study the Ceara lateritic soil and the possibility of its use as a sustainable building block constituent for social housings, collaborating to the improvement of the region living conditions. In order to achieve this objective, soil samples were collected from five different locations within the specific region, three of which presented lateritic nature, being characterized according to the Unified Soil Classification System and the MCT methodology, which is a Brazilian methodology developed during the 80’s that aimed to better describe and approach tropical soils, its characterization and behavior. Two of these samples were used to build two different miniature block prototypes, which were manually molded, heated at low temperatures -( < 300 ºC) in order to save energy and lessen the CO₂ high emission rate common in traditional burning methods- and then submitted to load tests. Among the soils tested, the one with the highest degree of laterization and greater presence of fines constituted the block with the best performance in terms of flexural strength tensions, presenting resistance gains when heated at increasing temperatures, which can indicate that this type of soil has potential towards being used as constructing material.

Keywords: constructive blocks, lateritic soil, MCT methodology, sustainability

Procedia PDF Downloads 130
524 Utilising Indigenous Knowledge to Design Dykes in Malawi

Authors: Martin Kleynhans, Margot Soler, Gavin Quibell

Abstract:

Malawi is one of the world’s poorest nations and consequently, the design of flood risk management infrastructure comes with a different set of challenges. There is a lack of good quality hydromet data, both in spatial terms and in the quality thereof and the challenge in the design of flood risk management infrastructure is compounded by the fact that maintenance is almost completely non-existent and that solutions have to be simple to be effective. Solutions should not require any further resources to remain functional after completion, and they should be resilient. They also have to be cost effective. The Lower Shire Valley of Malawi suffers from frequent flood events. Various flood risk management interventions have been designed across the valley during the course of the Shire River Basin Management Project – Phase I, and due to the data poor environment, indigenous knowledge was relied upon to a great extent for hydrological and hydraulic model calibration and verification. However, indigenous knowledge comes with the caveat that it is ‘fuzzy’ and that it can be manipulated for political reasons. The experience in the Lower Shire valley suggests that indigenous knowledge is unlikely to invent a problem where none exists, but that flood depths and extents may be exaggerated to secure prioritization of the intervention. Indigenous knowledge relies on the memory of a community and cannot foresee events that exceed past experience, that could occur differently to those that have occurred in the past, or where flood management interventions change the flow regime. This complicates communication of planned interventions to local inhabitants. Indigenous knowledge is, for the most part, intuitive, but flooding can sometimes be counter intuitive, and the rural poor may have a lower trust of technology. Due to a near complete lack of maintenance of infrastructure, infrastructure has to be designed with no moving parts and no requirement for energy inputs. This precludes pumps, valves, flap gates and sophisticated warning systems. Designs of dykes during this project included ‘flood warning spillways’, that double up as pedestrian and animal crossing points, which provide warning of impending dangerous water levels behind dykes to residents before water levels that could cause a possible dyke failure are reached. Locally available materials and erosion protection using vegetation were used wherever possible to keep costs down.

Keywords: design of dykes in low-income countries, flood warning spillways, indigenous knowledge, Malawi

Procedia PDF Downloads 288
523 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 25
522 Anemia Among Pregnant Women in Kuwait: Findings from Kuwait Birth Cohort Study

Authors: Majeda Hammoud

Abstract:

Background: Anemia during pregnancy increases the risk of delivery by cesarean section, low birth weight, preterm birth, perinatal mortality, stillbirth, and maternal mortality. In this study, we aimed to assess the prevalence of anemia in pregnant women and its associated factors in the Kuwait birth cohort study. Methods: The Kuwait birth cohort (N=1108) was a prospective cohort study in which pregnant women were recruited in the third trimester. Data were collected through personal interviews with mothers who attend antenatal care visits, including data on socio-economic status and lifestyle factors. Blood samples were taken after the recruitment to measure multiple laboratory indicators. Clinical data were extracted from the medical records by a clinician including data on comorbidities. Anemia was defined as having Hemoglobin (Hb) <110 g/L with further classification as mild (100-109 g/L), moderate (70-99 g/L), or severe (<70 g/L). Predictors of anemia were classified as underlying or direct factors, and logistic regression was used to investigate their association with anemia. Results: The mean Hb level in the study group was 115.21 g/L (95%CI: 114.56- 115.87 g/L), with significant differences between age groups (p=0.034). The prevalence of anemia was 28.16% (95%CI: 25.53-30.91%), with no significant difference by age group (p=0.164). Of all 1108 pregnant women, 8.75% had moderate anemia, and 19.40% had mild anemia, but no pregnant women had severe anemia. In multivariable analysis, getting pregnant while using contraception, adjusted odds ratio (AOR) 1.73(95%CI:1.01-2.96); p=0.046 and current use of supplements, AOR 0.50 (95%CI: 0.26-0.95); p=0.035 were significantly associated with anemia (underlying factors). From the direct factors group, only iron and ferritin levels were significantly associated with anemia (P<0.001). Conclusion: Although the severe form of anemia is low among pregnant women in Kuwait, mild and moderate anemia remains a significant health problem despite free access to antenatal care.

Keywords: anemia, pregnancy, hemoglobin, ferritin

Procedia PDF Downloads 55
521 Effect of Ecologic Fertilizers on Productivity and Yield Quality of Common and Spelt Wheat

Authors: Danutė Jablonskytė-Raščė, Audronė MankevičIenė, Laura Masilionytė

Abstract:

During the period 2009–2015, in Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry, the effect of ecologic fertilizers Ekoplant, bio-activators Biokal 01 and Terra Sorb Foliar and their combinations on the formation of the productivity elements, grain yield and quality of winter wheat, spelt (Triticum spelta L.), and common wheat (Triticum aestivum L.) was analysed in ecological agro-system. The soil under FAO classification – Endocalcari-Endo-hypogleyic-Cambisol. In a clay loam soil, ecological fertilizer produced from sunflower hull ash and this fertilizer in combination with plant extracts and bio-humus exerted an influence on the grain yield of spelt and common wheat and their mixture (increased the grain yield by 10.0%, compared with the unfertilized crops). Spelt grain yield was by on average 16.9% lower than that of common wheat and by 11.7% lower than that of the mixture, but the role of spelt in organic production systems is important because with no mineral fertilization it produced grains with a higher (by 4%) gluten content and exhibited a greater ability to suppress weeds (by on average 61.9% lower weed weight) compared with the grain yield and weed suppressive ability of common wheat and mixture. Spelt cultivation in a mixture with common wheat significantly improved quality indicators of the mixture (its grain contained by 2.0% higher protein content and by 4.0% higher gluten content than common wheat grain), reduced disease incidence (by 2-8%), and weed infestation level (by 34-81%).

Keywords: common and spelt-wheat, ecological fertilizers, bio-activators, productivity elements, yield, quality

Procedia PDF Downloads 302
520 Obesity and Bone Mineral Density in Patients with Large Joint Osteoarthritis

Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Zaverukha, Roksolana Povoroznyuk

Abstract:

Along with the global aging of population, the number of people with somatic diseases is increasing, including such interrelated pathologies as obesity, osteoarthritis (OA) and osteoporosis (OP). The objective of the study is to examine the connection between body mass index (BMI), OA and bone mineral density (BMD) of lumbar spine, femoral neck and trabecular bone score (TBS) in postmenopausal women with OA. We have observed 359 postmenopausal women (50-89 years old) and divided them into four groups by age: 50-59 yrs, 60-69 yrs, 70-79 yrs and over 80 years old. In addition, according to the American College of Rheumatology (ACR) Clinical classification criteria for knee and hip OA, we divided them into 2 groups: group I – 117 females with symptomatic OA (including 89 patients with knee OA, 28 patients with hip OA) and group II –242 women with a normal functional activity of large joints. Analysis of data was performed taking into account their BMI, classified by World Health Organization (WHO). Diagnosis of obesity was established when BMI was above 30 kg/m2. In woman with obesity, a symptomatic OA was detected in 44 postmenopausal women (41.1%), a normal functional activity of large joints - in 63 women (58.9%). However, in women with normal BMI – 73 women, who account for 29.0% of cases, a symptomatic OA was detected. According to a chi-squared (χ2) test, a significantly higher level of BMI was detected in postmenopausal women with OA (χ2 = 5.05, p = 0.02). Women with a symptomatic OA had a significantly higher BMD of lumbar spine compared with women who had a normal functional activity of large joints. No significant differences of BMD of femoral necks or TBS were detected in either the group with OA or with a normal functional activity of large joints.

Keywords: bone mineral density, body mass index, obesity, overweight, postmenopausal women, osteoarthritis

Procedia PDF Downloads 128
519 Modeling Loads Applied to Main and Crank Bearings in the Compression-Ignition Two-Stroke Engine

Authors: Marcin Szlachetka, Mateusz Paszko, Grzegorz Baranski

Abstract:

This paper discusses the AVL EXCITE Designer simulation research into loads applied to main and crank bearings in the compression-ignition two-stroke engine. There was created a model of engine lubrication system which covers the part of this system related to particular nodes of a bearing system, i.e. a connection of main bearings in an engine block with a crankshaft, a connection of crank pins with a connecting rod. The analysis focused on the load given as a distribution of hydrodynamic oil film pressure corresponding different values of radial internal clearance. There was also studied the impact of gas force on minimal oil film thickness in main and crank bearings versus crankshaft rotational speed. Our model calculates oil film parameters, an oil film pressure distribution, an oil temperature change and dimensions of bearings as well as an oil temperature distribution on surfaces of bearing seats. Accordingly, it was possible to select, for example, a correct clearance for each of the node bearings. The research was performed for several values of engine crankshaft speed ranging from 800 RPM to 4000 RPM. Bearing oil pressure was changed according to engine speed ranging between 1 bar and 5 bar and an oil temperature of 90°C. The main bearing clearances made initially for the calculation and research were: 0.015 mm, 0.025 mm, 0.035 mm, 0.05 mm, 0.1 mm. The oil used for the research corresponded the SAE 5W-40 classification. The paper presents the selected research results referring to certain specific operating points and bearing radial internal clearances. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: crank bearings, diesel engine, oil film, two-stroke engine

Procedia PDF Downloads 218
518 Structuring Highly Iterative Product Development Projects by Using Agile-Indicators

Authors: Guenther Schuh, Michael Riesener, Frederic Diels

Abstract:

Nowadays, manufacturing companies are faced with the challenge of meeting heterogeneous customer requirements in short product life cycles with a variety of product functions. So far, some of the functional requirements remain unknown until late stages of the product development. A way to handle these uncertainties is the highly iterative product development (HIP) approach. By structuring the development project as a highly iterative process, this method provides customer oriented and marketable products. There are first approaches for combined, hybrid models comprising deterministic-normative methods like the Stage-Gate process and empirical-adaptive development methods like SCRUM on a project management level. However, almost unconsidered is the question, which development scopes can preferably be realized with either empirical-adaptive or deterministic-normative approaches. In this context, a development scope constitutes a self-contained section of the overall development objective. Therefore, this paper focuses on a methodology that deals with the uncertainty of requirements within the early development stages and the corresponding selection of the most appropriate development approach. For this purpose, internal influencing factors like a company’s technology ability, the prototype manufacturability and the potential solution space as well as external factors like the market accuracy, relevance and volatility will be analyzed and combined into an Agile-Indicator. The Agile-Indicator is derived in three steps. First of all, it is necessary to rate each internal and external factor in terms of the importance for the overall development task. Secondly, each requirement has to be evaluated for every single internal and external factor appropriate to their suitability for empirical-adaptive development. Finally, the total sums of internal and external side are composed in the Agile-Indicator. Thus, the Agile-Indicator constitutes a company-specific and application-related criterion, on which the allocation of empirical-adaptive and deterministic-normative development scopes can be made. In a last step, this indicator will be used for a specific clustering of development scopes by application of the fuzzy c-means (FCM) clustering algorithm. The FCM-method determines sub-clusters within functional clusters based on the empirical-adaptive environmental impact of the Agile-Indicator. By means of the methodology presented in this paper, it is possible to classify requirements, which are uncertainly carried out by the market, into empirical-adaptive or deterministic-normative development scopes.

Keywords: agile, highly iterative development, agile-indicator, product development

Procedia PDF Downloads 249
517 Development of Liquefaction-Induced Ground Damage Maps for the Wairau Plains, New Zealand

Authors: Omer Altaf, Liam Wotherspoon, Rolando Orense

Abstract:

The Wairau Plains are located in the north-east of the South Island of New Zealand in the region of Marlborough. The region is cut by many active crustal faults such as the Wairau, Awatere, and Clarence faults, which give rise to frequent seismic events. This paper presents the preliminary results of the overall project in which liquefaction-induced ground damage maps are developed in the Wairau Plains based on the Ministry of Business, Innovation and Employment NZ guidance. A suite of maps has been developed in relation to the level of details that was available to inform the liquefaction hazard mapping. Maps at the coarsest level of detail make use of regional geologic information, applying semi-quantitative criteria based on geological age, design peak ground accelerations and depth to the water table. The next level of detail incorporates higher resolution surface geomorphologic characteristics to better delineate potentially liquefiable and non-liquefiable deposits across the region. The most detailed assessment utilised CPT sounding data to develop ground damage response curves for areas across the region and provide a finer level of categorisation of liquefaction vulnerability. Linking these with design level earthquakes defined through NZGS guidelines will enable detailed classification to be carried out at CPT investigation locations, from very low through to high liquefaction vulnerability. To update classifications to these detailed levels, CPT investigations in geomorphic regions are grouped together to provide an indication of the representative performance of the soils in these areas making use of the geomorphic mapping outlined above.

Keywords: hazard, liquefaction, mapping, seismicity

Procedia PDF Downloads 142
516 A Study of Binding Methods and Techniques in Safavid Era Emphasizing on Iran Shahnamehs (16-18th Century AD/10-12th Century AH)

Authors: Ashrafosadat Mousavi Laer, Elaheh Moravej

Abstract:

The art of binding was simple and elementary at the beginning of Islam. This art thrived gradually and continued its development as an independent art. Identification of the binding techniques and used materials in covers and investigation of the arrays give us indexes for the better identification of different doctrines and methods of that time. The catalogers of the manuscripts usually pay attention to four items: gender, color, art elegances, injury, and exquisiteness of the cover. The criterion for classification of the covers is their art nature and gender. 15th century AD (9th century AH) was the period of the binding art development in which the most beautiful covers were produced by the so-called method of ‘burning’. At 16th century AD (10th century AH), in Safavid era, art changed completely and a fundamental evolution occurred in the technique and method of binding. The greatest change in this art was the extensive use of stamp that was made mostly of steel and copper. Theses stamps were presses against leather. These covers were called ‘beat’. In this paper, writing and bookbinding of about 32 Shahnamehs of Safavid era available in the Iranian libraries and museums are studied. An analytical-statistical study shows that four methods have been used including beat, burning, mosaic, and oily. 69 percent of the covers of these copies are cardboards with a leathery coating (goatskin) and have been produced by burning and beat methods. Its reasons are that these two methods have been common methods in Safavid era and performing them was only feasible on leather and the most desirable and commonly used leather of that time was goatskin which was the best option for cover legend durability and preserving the book and it was more durable because it had been made of goat skin. In addition, it had prepared a suitable opportunity for the binding artist’s creativity and innovation.

Keywords: Shahnameh, Safavid era, bookbinding, beat cover, burning cover

Procedia PDF Downloads 239
515 Using Visualization Techniques to Support Common Clinical Tasks in Clinical Documentation

Authors: Jonah Kenei, Elisha Opiyo

Abstract:

Electronic health records, as a repository of patient information, is nowadays the most commonly used technology to record, store and review patient clinical records and perform other clinical tasks. However, the accurate identification and retrieval of relevant information from clinical records is a difficult task due to the unstructured nature of clinical documents, characterized in particular by a lack of clear structure. Therefore, medical practice is facing a challenge thanks to the rapid growth of health information in electronic health records (EHRs), mostly in narrative text form. As a result, it's becoming important to effectively manage the growing amount of data for a single patient. As a result, there is currently a requirement to visualize electronic health records (EHRs) in a way that aids physicians in clinical tasks and medical decision-making. Leveraging text visualization techniques to unstructured clinical narrative texts is a new area of research that aims to provide better information extraction and retrieval to support clinical decision support in scenarios where data generated continues to grow. Clinical datasets in electronic health records (EHR) offer a lot of potential for training accurate statistical models to classify facets of information which can then be used to improve patient care and outcomes. However, in many clinical note datasets, the unstructured nature of clinical texts is a common problem. This paper examines the very issue of getting raw clinical texts and mapping them into meaningful structures that can support healthcare professionals utilizing narrative texts. Our work is the result of a collaborative design process that was aided by empirical data collected through formal usability testing.

Keywords: classification, electronic health records, narrative texts, visualization

Procedia PDF Downloads 122
514 Assessment of the Impacts of Climate Change on Climatic Zones over the Korean Peninsula for Natural Disaster Management Information

Authors: Sejin Jung, Dongho Kang, Byungsik Kim

Abstract:

Assessing the impact of climate change requires the use of a multi-model ensemble (MME) to quantify uncertainties between scenarios and produce downscaled outlines for simulation of climate under the influence of different factors, including topography. This study decreases climate change scenarios from the 13 global climate models (GCMs) to assess the impacts of future climate change. Unlike South Korea, North Korea lacks in studies using climate change scenarios of the CoupledModelIntercomparisonProject (CMIP5), and only recently did the country start the projection of extreme precipitation episodes. One of the main purposes of this study is to predict changes in the average climatic conditions of North Korea in the future. The result of comparing downscaled climate change scenarios with observation data for a reference period indicates high applicability of the Multi-Model Ensemble (MME). Furthermore, the study classifies climatic zones by applying the Köppen-Geiger climate classification system to the MME, which is validated for future precipitation and temperature. The result suggests that the continental climate (D) that covers the inland area for the reference climate is expected to shift into the temperate climate (C). The coefficient of variation (CVs) in the temperature ensemble is particularly low for the southern coast of the Korean peninsula, and accordingly, a high possibility of the shifting climatic zone of the coast is predicted. This research was supported by a grant (MOIS-DP-2015-05) of Disaster Prediction and Mitigation Technology Development Program funded by Ministry of Interior and Safety (MOIS, Korea).

Keywords: MME, North Korea, Koppen–Geiger, climatic zones, coefficient of variation, CV

Procedia PDF Downloads 115
513 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis

Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic

Abstract:

What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.

Keywords: political tendency, prediction, sentiment analysis, Twitter

Procedia PDF Downloads 243
512 Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example

Authors: Hong Geng, Zaiyu Fan

Abstract:

With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization.

Keywords: micro-transformation, residential traffic, residents demand, traffic microcirculation

Procedia PDF Downloads 119
511 Milk Protein Genetic Variation and Haplotype Structure in Sudanse Indigenous Dairy Zebu Cattle

Authors: Ammar Said Ahmed, M. Reissmann, R. Bortfeldt, G. A. Brockmann

Abstract:

Milk protein genetic variants are of interest for characterizing domesticated mammalian species and breeds, and for studying associations with economic traits. The aim of this work was to analyze milk protein genetic variation in the Sudanese native cattle breeds, which have been gradually declining in numbers over the last years due to the breed substitution, and indiscriminate crossbreeding. The genetic variation at three milk protein genes αS1-casein (CSN1S1), αS2-casein (CSN1S2) and ƙ-casein (CSN3) was investigated in 250 animals belonging to five Bos indicus cattle breeds of Sudan (Butana, Kenana, White-nile, Erashy and Elgash). Allele specific primers were designed for five SNPs determine the CSN1S1 variants B and C, the CSN1S2 variants A and B, the CSN3 variants A, B and H. Allele, haplotype frequencies and genetic distances (D) were calculated and the phylogenetic tree was constructed. All breeds were found to be polymorphic for the studied genes. The CSN1S1*C variant was found very frequently (>0.63) in all analyzed breeds with highest frequency (0.82) in White-nile cattle. The CSN1S2*A variant (0.77) and CSN3*A variant (0.79) had highest frequency in Kenana cattle. Eleven haplotypes in casein gene cluster were inferred. Six of all haplotypes occurred in all breeds with remarkably deferent frequencies. The estimated D ranged from 0.004 to 0.049. The most distant breeds were White-nile and Kenana (D 0.0479). The results presented contribute to the genetic knowledge of indigenous cattle and can be used for proper definition and classification of the Sudanese cattle breeds as well as breeding, utilization, and potential development of conservation strategies for local breeds.

Keywords: milk protein, genetic variation, casein haplotype, Bos indicus

Procedia PDF Downloads 440
510 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data

Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao

Abstract:

Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.

Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing

Procedia PDF Downloads 442
509 Performance Evaluation of Routing Protocol in Cognitive Radio with Multi Technological Environment

Authors: M. Yosra, A. Mohamed, T. Sami

Abstract:

Over the past few years, mobile communication technologies have seen significant evolution. This fact promoted the implementation of many systems in a multi-technological setting. From one system to another, the Quality of Service (QoS) provided to mobile consumers gets better. The growing number of normalized standards extends the available services for each consumer, moreover, most of the available radio frequencies have already been allocated, such as 3G, Wifi, Wimax, and LTE. A study by the Federal Communications Commission (FCC) found that certain frequency bands are partially occupied in particular locations and times. So, the idea of Cognitive Radio (CR) is to share the spectrum between a primary user (PU) and a secondary user (SU). The main objective of this spectrum management is to achieve a maximum rate of exploitation of the radio spectrum. In general, the CR can greatly improve the quality of service (QoS) and improve the reliability of the link. The problem will reside in the possibility of proposing a technique to improve the reliability of the wireless link by using the CR with some routing protocols. However, users declared that the links were unreliable and that it was an incompatibility with QoS. In our case, we choose the QoS parameter "bandwidth" to perform a supervised classification. In this paper, we propose a comparative study between some routing protocols, taking into account the variation of different technologies on the existing spectral bandwidth like 3G, WIFI, WIMAX, and LTE. Due to the simulation results, we observe that LTE has significantly higher availability bandwidth compared with other technologies. The performance of the OLSR protocol is better than other on-demand routing protocols (DSR, AODV and DSDV), in LTE technology because of the proper receiving of packets, less packet drop and the throughput. Numerous simulations of routing protocols have been made using simulators such as NS3.

Keywords: cognitive radio, multi technology, network simulator (NS3), routing protocol

Procedia PDF Downloads 66
508 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: deep learning, data mining, gender predication, MOOCs

Procedia PDF Downloads 151
507 Further Evidence for the Existence of Broiler Chicken PFN (Pale, Firm and Non-Exudative Meat) and PSE (Pale, Soft and Exudative) in Brazilian Commercial Flocks

Authors: Leila M. Carvalho, Maria Erica S. Oliveira, Arnoud C. Neto, Elza I. Ida, Massami Shimokomaki, Marta S. Madruga

Abstract:

The quality of broiler breast meat is changing as a result of the continuing emphasis on genetic selection for a more efficient meat production. Breast meat has been classified as PSE (pale, soft, exudative), DFD (dark, firm, dry) and normal color meat, and recently a third group has emerged: the so-called PFN (pale, firm, non-exudative) meat. This classification was based on pH, color and functional properties. The aim of this work was to confirm the existence of PFN and PSE meat by biochemical characterization and functional properties. Twenty four hours of refrigerated fillet, Pectoralis major, m. samples (n= 838) were taken from Cobb flocks 42-48 days old, obtained in Northeastern Brazil tropical region, the Northeastern, considered to have only dry and wet seasons. Color (L*), pH, water holding capacity (WHC), values were evaluated and compared with PSE group samples. These samples were classified as Normal (465.8), PSE meat (L*≥53; pH<5.8) and PFN (L*≥53; pH>5.8). The occurrence of control meat, PSE and PFN was 69.09%, 11.10% and 19.81%, respectively. Samples from PFN presented 4.0-5.0% higher WHC in relation to PSE meat and similar to control group. These results are explained by the fact that PSE meat syndrome occurs because of higher protein denaturation as the consequence of a simultaneous lower pH values under warm carcass sooner after slaughtering impairing the myofibril proteins functional properties. Conversely, PFN samples follow normal glycolysis rate maintaining the normal proteins activities. In conclusion, the results reported herein confirm the existence of this emerging broiler meat group with similar properties as control group and it should be considered as normal breast meat group.

Keywords: broiler breast meat, funcional properties, PFN, PSE

Procedia PDF Downloads 251
506 Differential Response of Cellular Antioxidants and Proteome Expression to Salt, Cadmium and Their Combination in Spinach (Spinacia oleracea)

Authors: Rita Bagheri, Javed Ahmed, Humayra Bashir, M. Irfan Qureshi

Abstract:

Agriculture lands suffer from a combination of stresses such as salinity and metal contamination including cadmium at the same time. Under such condition of multiple stresses, plant may exhibit unique responses different from the stress occurring individually. Thus, it would be interesting to investigate that how plant respond to combined stress at level of antioxidants and proteome expression, and identifying the proteins which are involved in imparting stress tolerance. With an approach of comparative proteomics and antioxidant analysis, present study investigates the response of Spinacia oleracea to salt (NaCl), cadmium (Cd), and their combination (NaCl+Cd) stress. Two-dimensional gel electrophoresis was used for resolving leaf proteome, and proteins of interest were identified using PDQuest software. A number of proteins expressed differentially, those indicated towards their roles in imparting stress tolerance, were digested by trypsin and analyzed on mass spectrometer for peptide mass fingerprinting (PMF). Data signals were then matched with protein databases using MASCOT. Results show that NaCl, Cd and both together (NaCl+Cd) induce oxidative stress which was highest in combined stress of Cd+NaCl. Correspondingly, the activities of enzymatic antioxidants viz., SOD, APX, GR and CAT, and non-enzymatic antioxidants had highest changes under combined stress compares to single stress over their respective controls. Among the identified proteins, several interesting proteins were identified that may be have role in Spinacia oleracia tolerance in individual and combinatorial stress of salt and cadmium. The functional classification of identified proteins indicates the importance and necessity of keeping higher ratio of defence and disease responsive proteins.

Keywords: Spinacia oleracea, Cd, salinity, proteomics, antioxidants, combinatorial stress

Procedia PDF Downloads 386
505 Study of Parking Demand for Offices – Case Study: Kolkata

Authors: Sanghamitra Roy

Abstract:

In recent times, India has experienced the phenomenal rise in the number of registered vehicles and vehicular trips, particularly intra-city trips in most of its urban areas. The increase in vehicle ownership and use have increased parking demand immensely and accommodating the same is now a matter of big concern. Most cities do not have adequate off-street parking facilities thus forcing people to park on the streets. This has resulted in decreased carrying capacity, decreased traffic speed, increased congestion, and increased environmental problems. While integrated multi-modal transportation system is the answer to such problems, parking issues will continue to exist. In Kolkata, only 6.4% land is devoted for roads. The consequences of this huge crunch in road spaces coupled with increased parking demand are severe particularly in the CBD and major commercial areas, making the role of off-street parking facilities in Kolkata even more critical. To meaningfully address parking issues, it is important to identify the factors that influence parking demand so that it can be assessed and comprehensive parking policies and plans for the city can be formulated. This paper aims at identifying the factors that contribute towards parking demand for offices in Kolkata and their degree of correlation with parking demand. The study is limited to home-to-work trips located within Kolkata Municipal Corporation (KMC) where parking related issues are most pronounced. The data for the study is collected through personal interviews, questionnaires and direct observations from offices across the wards of KMC. SPSS is used for classification of the data and analyses of the same. The findings of this study will help in re-assessment of the parking requirements specified in The Kolkata Municipal Corporation Building Rules as a step towards alleviating parking related issues in the city.

Keywords: building rules, office spaces, parking demand, urbanization

Procedia PDF Downloads 318
504 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 156
503 Layer-Level Feature Aggregation Network for Effective Semantic Segmentation of Fine-Resolution Remote Sensing Images

Authors: Wambugu Naftaly, Ruisheng Wang, Zhijun Wang

Abstract:

Models based on convolutional neural networks (CNNs), in conjunction with Transformer, have excelled in semantic segmentation, a fundamental task for intelligent Earth observation using remote sensing (RS) imagery. Nonetheless, tokenization in the Transformer model undermines object structures and neglects inner-patch local information, whereas CNNs are unable to simulate global semantics due to limitations inherent in their convolutional local properties. The integration of the two methodologies facilitates effective global-local feature aggregation and interactions, potentially enhancing segmentation results. Inspired by the merits of CNNs and Transformers, we introduce a layer-level feature aggregation network (LLFA-Net) to address semantic segmentation of fine-resolution remote sensing (FRRS) images for land cover classification. The simple yet efficient system employs a transposed unit that hierarchically utilizes dense high-level semantics and sufficient spatial information from various encoder layers through a layer-level feature aggregation module (LLFAM) and models global contexts using structured Transformer blocks. Furthermore, the decoder aggregates resultant features to generate rich semantic representation. Extensive experiments on two public land cover datasets demonstrate that our proposed framework exhibits competitive performance relative to the most recent frameworks in semantic segmentation.

Keywords: land cover mapping, semantic segmentation, remote sensing, vision transformer networks, deep learning

Procedia PDF Downloads 15
502 C-eXpress: A Web-Based Analysis Platform for Comparative Functional Genomics and Proteomics in Human Cancer Cell Line, NCI-60 as an Example

Authors: Chi-Ching Lee, Po-Jung Huang, Kuo-Yang Huang, Petrus Tang

Abstract:

Background: Recent advances in high-throughput research technologies such as new-generation sequencing and multi-dimensional liquid chromatography makes it possible to dissect the complete transcriptome and proteome in a single run for the first time. However, it is almost impossible for many laboratories to handle and analysis these “BIG” data without the support from a bioinformatics team. We aimed to provide a web-based analysis platform for users with only limited knowledge on bio-computing to study the functional genomics and proteomics. Method: We use NCI-60 as an example dataset to demonstrate the power of the web-based analysis platform and data delivering system: C-eXpress takes a simple text file that contain the standard NCBI gene or protein ID and expression levels (rpkm or fold) as input file to generate a distribution map of gene/protein expression levels in a heatmap diagram organized by color gradients. The diagram is hyper-linked to a dynamic html table that allows the users to filter the datasets based on various gene features. A dynamic summary chart is generated automatically after each filtering process. Results: We implemented an integrated database that contain pre-defined annotations such as gene/protein properties (ID, name, length, MW, pI); pathways based on KEGG and GO biological process; subcellular localization based on GO cellular component; functional classification based on GO molecular function, kinase, peptidase and transporter. Multiple ways of sorting of column and rows is also provided for comparative analysis and visualization of multiple samples.

Keywords: cancer, visualization, database, functional annotation

Procedia PDF Downloads 623
501 Managing Pseudoangiomatous Stromal Hyperplasia Appropriately and Safely: A Retrospective Case Series Review

Authors: C. M. Williams, R. English, P. King, I. M. Brown

Abstract:

Introduction: Pseudoangiomatous Stromal Hyperplasia (PASH) is a benign fibrous proliferation of breast stroma affecting predominantly premenopausal women with no significant increased risk of breast cancer. Informal recommendations for management have continued to evolve over recent years from surgical excision to observation, although there are no specific national guidelines. This study assesses the safety of a non-surgical approach to PASH management by review of cases at a single centre. Methods: Retrospective case series review (January 2011 – August 2016) was conducted on consecutive PASH cases. Diagnostic classification (clinical, radiological and histological), management outcomes, and breast cancer incidence were recorded. Results: 43 patients were followed up for median of 25 months (3-64) with 75% symptomatic at presentation. 12% of cases (n=5) had a radiological score (BIRADS MMG or US) ≥ 4 of which 3 were confirmed malignant. One further malignancy was detected and proven radiologically occult and contralateral. No patients were diagnosed with a malignancy during follow-up. Treatment evolved from 67% surgical in 2011 to 33% in 2016. Conclusions: The management of PASH has transitioned in line with other published experience. The preliminary findings suggest this appears safe with no evidence of missed malignancies; however, longer follow up is required to confirm long-term safety. Recommendations: PASH with suspicious radiological findings ( ≥ U4/R4) warrants multidisciplinary discussion for excision. In the absence of histological or radiological suspicion of malignancy, PASH can be safely managed without surgery.

Keywords: benign breast disease, conservative management, malignancy, pseudoangiomatous stromal hyperplasia, surgical excision

Procedia PDF Downloads 137