Search results for: travel time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18602

Search results for: travel time

16322 Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies

Authors: Mohammed Farag, Mina Attari, S. Andrew Gadsden, Saeid R. Habibi

Abstract:

Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared.

Keywords: state of charge estimation, battery modeling, one-state hysteresis, filtering and estimation

Procedia PDF Downloads 444
16321 Annexing the Strength of Information and Communication Technology (ICT) for Real-time TB Reporting Using TB Situation Room (TSR) in Nigeria: Kano State Experience

Authors: Ibrahim Umar, Ashiru Rajab, Sumayya Chindo, Emmanuel Olashore

Abstract:

INTRODUCTION: Kano is the most populous state in Nigeria and one of the two states with the highest TB burden in the country. The state notifies an average of 8,000+ TB cases quarterly and has the highest yearly notification of all the states in Nigeria from 2020 to 2022. The contribution of the state TB program to the National TB notification varies from 9% to 10% quarterly between the first quarter of 2022 and second quarter of 2023. The Kano State TB Situation Room is an innovative platform for timely data collection, collation and analysis for informed decision in health system. During the 2023 second National TB Testing week (NTBTW) Kano TB program aimed at early TB detection, prevention and treatment. The state TB Situation room provided avenue to the state for coordination and surveillance through real time data reporting, review, analysis and use during the NTBTW. OBJECTIVES: To assess the role of innovative information and communication technology platform for real-time TB reporting during second National TB Testing week in Nigeria 2023. To showcase the NTBTW data cascade analysis using TSR as innovative ICT platform. METHODOLOGY: The State TB deployed a real-time virtual dashboard for NTBTW reporting, analysis and feedback. A data room team was set up who received realtime data using google link. Data received was analyzed using power BI analytic tool with statistical alpha level of significance of <0.05. RESULTS: At the end of the week-long activity and using the real-time dashboard with onsite mentorship of the field workers, the state TB program was able to screen a total of 52,054 people were screened for TB from 72,112 individuals eligible for screening (72% screening rate). A total of 9,910 presumptive TB clients were identified and evaluated for TB leading to diagnosis of 445 TB patients with TB (5% yield from presumptives) and placement of 435 TB patients on treatment (98% percentage enrolment). CONCLUSION: The TB Situation Room (TBSR) has been a great asset to Kano State TB Control Program in meeting up with the growing demand for timely data reporting in TB and other global health responses. The use of real time surveillance data during the 2023 NTBTW has in no small measure improved the TB response and feedback in Kano State. Scaling up this intervention to other disease areas, states and nations is a positive step in the right direction towards global TB eradication.

Keywords: tuberculosis (tb), national tb testing week (ntbtw), tb situation rom (tsr), information communication technology (ict)

Procedia PDF Downloads 71
16320 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, we have applied neural networks method MLP type to a database from an array of six sensors for the detection of three toxic gases. As the choice of the number of hidden layers and the weight values has a great influence on the convergence of the learning algorithm, we proposed, in this article, a mathematical formulation to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases on the one hand, and optimize the computation time on the other hand, the comparison to other results achieved in this case.

Keywords: MLP Neural Network, back-propagation, number of neurons in the hidden layer, identification, computing time

Procedia PDF Downloads 347
16319 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 72
16318 Investigation the Photocatalytic Properties of Fe3O4-ZnO Nanocomposites Prepared by Sonochemical Method

Authors: Atena Naeimi, Mehri-Sadat Ekrami-Kakhki

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 have received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials. Fe3O4–ZnO nanostructures were synthesized via a surfactant-free ultrasonic reaction at room temperatures. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite 1 g of Fe3O4 nanostructures were dispersed in 100 mL of distilled water. 0.25 g of Zn (NO3)2 and 20 mL of NH3 solution 1 M were then slowly added to the solution under ultrasonic irradiation. The product was centrifuged, washed with distilled water and dried in the air. The photocatalytic behaviour of Fe3O4–ZnO nanoparticles was evaluated using the degradation of a methyl orange aqueous solution under ultraviolet light irradiation. As time increased, more and more methyl orange was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The methyl orange concentration decreased rapidly with increasing UV-irradiation time.

Keywords: nanocomposite, ultrasonic, paramagnetic, photocatalytic

Procedia PDF Downloads 302
16317 Modeling the Time Dependent Biodistribution of a 177Lu Labeled Somatostatin Analogues for Targeted Radiotherapy of Neuroendocrine Tumors Using Compartmental Analysis

Authors: Mahdieh Jajroudi

Abstract:

Developing a pharmacokinetic model for the neuroendocrine tumors therapy agent 177Lu-DOTATATE in nude mice bearing AR42J rat pancreatic tumor to investigate and evaluate the behavior of the complex was the main purpose of this study. The utilization of compartmental analysis permits the mathematical differencing of tissues and organs to become acquainted with the concentration of activity in each fraction of interest. Biodistribution studies are onerous and troublesome to perform in humans, but such data can be obtained facilely in rodents. A physiologically based pharmacokinetic model for scaling up activity concentration in particular organs versus time was developed. The mathematical model exerts physiological parameters including organ volumes, blood flow rates, and vascular permabilities; the compartments (organs) are connected anatomically. This allows the use of scale-up techniques to forecast new complex distribution in humans' each organ. The concentration of the radiopharmaceutical in various organs was measured at different times. The temporal behavior of biodistribution of 177Lu labeled somatostatin analogues was modeled and drawn as function of time. Conclusion: The variation of pharmaceutical concentration in all organs is characterized with summation of six to nine exponential terms and it approximates our experimental data with precision better than 1%.

Keywords: biodistribution modeling, compartmental analysis, 177Lu labeled somatostatin analogues, neuroendocrine tumors

Procedia PDF Downloads 368
16316 Real-Time Water Quality Monitoring and Control System for Fish Farms Based on IoT

Authors: Nadia Yaghoobi, Seyed Majid Esmaeilzadeh

Abstract:

Due to advancements in wireless communication, new sensor capabilities have been created. In addition to the automation industry, the Internet of Things (IoT) has been used in environmental issues and has provided the possibility of communication between different devices for data collection and exchange. Water quality depends on many factors which are essential for maintaining the minimum sustainability of water. Regarding the great dependence of fishes on the quality of the aquatic environment, water quality can directly affect their activity. Therefore, monitoring water quality is an important issue to consider, especially in the fish farming industry. The conventional method of water quality testing is to collect water samples manually and send them to a laboratory for testing and analysis. This time-consuming method is a waste of manpower and is not cost-effective. The water quality measurement system implemented in this project monitors water quality in real-time through various sensors (parameters: water temperature, water level, dissolved oxygen, humidity and ambient temperature, water turbidity, PH). The Wi-Fi module, ESP8266, transmits data collected by sensors wirelessly to ThingSpeak and the smartphone app. Also, with the help of these instantaneous data, water temperature and water level can be controlled by using a heater and a water pump, respectively. This system can have a detailed study of the pollution and condition of water resources and can provide an environment for safe fish farming.

Keywords: dissolved oxygen, IoT, monitoring, ThingSpeak, water level, water quality, WiFi module

Procedia PDF Downloads 194
16315 Impact of the Simplification of Licensing Procedures for Industrial Complexes on Supply of Industrial Complexes and Regional Policies

Authors: Seung-Seok Bak, Chang-Mu Jung

Abstract:

An enough amount supply of industrial complexes is an important national policy in South Korea, which is highly dependent on foreign trade. A development process of the industrial complex can distinguish between the planning stage and the construction stage. The planning stage consists of the process of consulting with many stakeholders on the contents of the development of industrial complex, feasibility study, compliance with the Regional policies, and so on. The industrial complex planning stage, including licensing procedure, usually takes about three years in South Korea. The government determined that the appropriate supply of industrial complexes have been delayed, due to the long licensing period and drafted a law to shorten the license period in 2008. The law was expected to shorten the period of licensing, which was about three years, to six months. This paper attempts to show that the shortening of the licensing period does not positively affect the appropriate supply of industrial complexes. To do this, we used Interrupted Time Series Designs. As a result, it was found that the supply of industrial complexes was influenced more by other factors such as actual industrial complex demand of private sector and macro-level economic variables. In addition, the specific provisions of the law conflict with local policy and cause some problems such as damage to nature and agricultural land, traffic congestion.

Keywords: development of industrial complexes, industrial complexes, interrupted time series designs, simplification of licensing procedures for industrial complexes, time series regression

Procedia PDF Downloads 295
16314 The Reduction of Post-Blast Fumes to Improve Productivity and Safety: A Review Paper

Authors: Nhleko Monique Chiloane

Abstract:

The gold mining industry has predominantly used ammonium nitrate fuel oil (ANFO) explosives for decades, although these are known to be “gassier” and their detonation results in toxic fumes, for example, carbon monoxide (CO), nitrogen oxides (NOx) and ammonia. Re-entry into underground workings too soon after blasting can lead to fatal exposure to toxic fumes. It is, therefore, required that the polluted air be removed from the affected areas within a reasonable period before employees' re-entry into the working area. Post-blast re-entry times have therefore been described as a productivity bottleneck. The known causes of post-blast fumes are water ingress, incorrect fuel to oxygen ratio, confinement, explosive additives etc. To prevent or minimize post-blast fumes, some researchers have used neutralization, re-burning technique and non-explosive products or different oxidizing agents. The use of commercial explosives without nitrate oxidizing agents can also minimize the production of blasting fumes and thereby reduce the time needed for the clearance of these fumes to allow workers to re-enter the underground workings safely. The reduction in non-production time directly contributes to an increase in the available time per shift for productive work, thus leading to continuous mining. However, owing to its low cost and ease of use, ANFO is still widely used in South African underground blasting operations.

Keywords: post-blast fumes, continuous mining, ammonium nitrate explosive, non-explosive blasting, re-entry period

Procedia PDF Downloads 183
16313 Modelling of Passengers Exchange between Trains and Platforms

Authors: Guillaume Craveur

Abstract:

The evaluation of the passenger exchange time is necessary for railway operators in order to optimize and dimension rail traffic. Several influential parameters are identified and studied. Each parameter leads to a modeling completed with the buildingEXODUS software. The objective is the modelling of passenger exchanges measured by passenger counting. Population size is dimensioned using passenger counting files which are a report of the train service and contain following useful informations: number of passengers who get on and leave the train, exchange time. These information are collected by sensors placed at the top of each train door. With passenger counting files it is possible to know how many people are engaged in the exchange and how long is the exchange, but it is not possible to know passenger flow of the door. All the information about observed exchanges are thus not available. For this reason and in order to minimize inaccuracies, only short exchanges (less than 30 seconds) with a maximum of people are performed.

Keywords: passengers exchange, numerical tools, rolling stock, platforms

Procedia PDF Downloads 228
16312 Rescue Emergency Drone for Fast Response to Medical Emergencies Due to Traffic Accidents

Authors: Anders S. Kristensen, Dewan Ahsan, Saqib Mehmood, Shakeel Ahmed

Abstract:

Traffic accidents are a result of the convergence of hazards, malfunctioning of vehicles and human negligence that have adverse economic and health impacts and effects. Unfortunately, avoiding them completely is very difficult, but with quick response to rescue and first aid, the mortality rate of inflicted persons can be reduced significantly. Smart and innovative technologies can play a pivotal role to respond faster to traffic crash emergencies comparing conventional means of transportation. For instance, Rescue Emergency Drone (RED) can provide faster and real-time crash site risk assessment to emergency medical services, thereby helping them to quickly and accurately assess a situation, dispatch the right equipment and assist bystanders to treat inflicted person properly. To conduct a research in this regard, the case of a traffic roundabout that is prone to frequent traffic accidents on the outskirts of Esbjerg, a town located on western coast of Denmark is hypothetically considered. Along with manual calculations, Emergency Disaster Management Simulation (EDMSIM) has been used to verify the response time of RED from a fire station of the town to the presumed crash site. The results of the study demonstrate the robustness of RED into emergency services to help save lives. 

Keywords: automated external defibrillator, medical emergency, response time, unmanned aerial system

Procedia PDF Downloads 228
16311 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system

Procedia PDF Downloads 154
16310 A New Family of Integration Methods for Nonlinear Dynamic Analysis

Authors: Shuenn-Yih Chang, Chiu-LI Huang, Ngoc-Cuong Tran

Abstract:

A new family of structure-dependent integration methods, whose coefficients of the difference equation for displacement increment are functions of the initial structural properties and the step size for time integration, is proposed in this work. This family method can simultaneously integrate the controllable numerical dissipation, explicit formulation and unconditional stability together. In general, its numerical dissipation can be continuously controlled by a parameter and it is possible to achieve zero damping. In addition, it can have high-frequency damping to suppress or even remove the spurious oscillations high frequency modes. Whereas, the low frequency modes can be very accurately integrated due to the almost zero damping for these low frequency modes. It is shown herein that the proposed family method can have exactly the same numerical properties as those of HHT-α method for linear elastic systems. In addition, it still preserves the most important property of a structure-dependent integration method, which is an explicit formulation for each time step. Consequently, it can save a huge computational efforts in solving inertial problems when compared to the HHT-α method. In fact, it is revealed by numerical experiments that the CPU time consumed by the proposed family method is only about 1.6% of that consumed by the HHT-α method for the 125-DOF system while it reduces to be 0.16% for the 1000-DOF system. Apparently, the saving of computational efforts is very significant.

Keywords: structure-dependent integration method, nonlinear dynamic analysis, unconditional stability, numerical dissipation, accuracy

Procedia PDF Downloads 639
16309 Implementation of an IoT Sensor Data Collection and Analysis Library

Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee

Abstract:

Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.

Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data

Procedia PDF Downloads 378
16308 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning

Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu

Abstract:

This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.

Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning

Procedia PDF Downloads 78
16307 Multimodal Employee Attendance Management System

Authors: Khaled Mohammed

Abstract:

This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.

Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio

Procedia PDF Downloads 155
16306 A Study on Design for Parallel Test Based on Embedded System

Authors: Zheng Sun, Weiwei Cui, Xiaodong Ma, Hongxin Jin, Dongpao Hong, Jinsong Yang, Jingyi Sun

Abstract:

With the improvement of the performance and complexity of modern equipment, automatic test system (ATS) becomes widely used for condition monitoring and fault diagnosis. However, the conventional ATS mainly works in a serial mode, and lacks the ability of testing several equipments at the same time. That leads to low test efficiency and ATS redundancy. Especially for a large majority of equipment under test, the conventional ATS cannot meet the requirement of efficient testing. To reduce the support resource and increase test efficiency, we propose a method of design for the parallel test based on the embedded system in this paper. Firstly, we put forward the general framework of the parallel test system, and the system contains a central management system (CMS) and several distributed test subsystems (DTS). Then we give a detailed design of the system. For the hardware of the system, we use embedded architecture to design DTS. For the software of the system, we use test program set to improve the test adaption. By deploying the parallel test system, the time to test five devices is now equal to the time to test one device in the past. Compared with the conventional test system, the proposed test system reduces the size and improves testing efficiency. This is of great significance for equipment to be put into operation swiftly. Finally, we take an industrial control system as an example to verify the effectiveness of the proposed method. The result shows that the method is reasonable, and the efficiency is improved up to 500%.

Keywords: parallel test, embedded system, automatic test system, automatic test system (ATS), central management system, central management system (CMS), distributed test subsystems, distributed test subsystems (DTS)

Procedia PDF Downloads 305
16305 Instant Location Detection of Objects Moving at High Speed in C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

The practical efficient approach is suggested to estimate the high-speed objects instant bounds in C-OTDR monitoring systems. In case of super-dynamic objects (trains, cars) is difficult to obtain the adequate estimate of the instantaneous object localization because of estimation lag. In other words, reliable estimation coordinates of monitored object requires taking some time for data observation collection by means of C-OTDR system, and only if the required sample volume will be collected the final decision could be issued. But it is contrary to requirements of many real applications. For example, in rail traffic management systems we need to get data off the dynamic objects localization in real time. The way to solve this problem is to use the set of statistical independent parameters of C-OTDR signals for obtaining the most reliable solution in real time. The parameters of this type we can call as 'signaling parameters' (SP). There are several the SP’s which carry information about dynamic objects instant localization for each of C-OTDR channels. The problem is that some of these parameters are very sensitive to dynamics of seismoacoustic emission sources but are non-stable. On the other hand, in case the SP is very stable it becomes insensitive as a rule. This report contains describing the method for SP’s co-processing which is designed to get the most effective dynamic objects localization estimates in the C-OTDR monitoring system framework.

Keywords: C-OTDR-system, co-processing of signaling parameters, high-speed objects localization, multichannel monitoring systems

Procedia PDF Downloads 470
16304 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore

Authors: Ronal Muresano, Andrea Pagano

Abstract:

Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.

Keywords: algorithm optimization, bank failures, OpenMP, parallel techniques, statistical tool

Procedia PDF Downloads 369
16303 From Two-Way to Multi-Way: A Comparative Study for Map-Reduce Join Algorithms

Authors: Marwa Hussien Mohamed, Mohamed Helmy Khafagy

Abstract:

Map-Reduce is a programming model which is widely used to extract valuable information from enormous volumes of data. Map-reduce designed to support heterogeneous datasets. Apache Hadoop map-reduce used extensively to uncover hidden pattern like data mining, SQL, etc. The most important operation for data analysis is joining operation. But, map-reduce framework does not directly support join algorithm. This paper explains and compares two-way and multi-way map-reduce join algorithms for map reduce also we implement MR join Algorithms and show the performance of each phase in MR join algorithms. Our experimental results show that map side join and map merge join in two-way join algorithms has the longest time according to preprocessing step sorting data and reduce side cascade join has the longest time at Multi-Way join algorithms.

Keywords: Hadoop, MapReduce, multi-way join, two-way join, Ubuntu

Procedia PDF Downloads 487
16302 Dimension Free Rigid Point Set Registration in Linear Time

Authors: Jianqin Qu

Abstract:

This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems.

Keywords: covariant point, point matching, dimension free, rigid registration

Procedia PDF Downloads 168
16301 Pragmatics of Socio-Linguistic Influence on Neurologist-Patient Interaction in Selected Hospitals in Nigeria

Authors: Ayodele James Akinola

Abstract:

This study examines how social and linguistic variables influenced communication between neurologists and patients in selected university teaching hospitals (UTHs) in southwestern Nigeria. Jacob Mey’s Pragmatic Acts, complemented by Emanuel and Emanuel’s model of doctor-patient relationship, served as the theoretical framework. Data comprising 22 audio-recorded neurologist-patient interactions were collected from two UTHs in the southwestern region of Nigeria. Data revealed that educational attainment of patients has insignificant influence on the interaction where the linguistic prowess of the patient has been impaired for consultative communication. However, the status influenced the degree of attention paid to patients by neurologists and determines the amount of time 'trying to help patients to communicate'. Patients with lower educational status and who could not communicate in English spent more time narrating their ailment to neurologists. Patients with higher educational status and could communicate in English saves consultation time as they express themselves briefly unlike those who were of little or no education in the clinics. Through this, diagnoses and therapeutic processes took eight to 12 minutes. 20 minutes was the longest duration recorded. Neurologist-patient interaction in the observed hospitals is shaped by neurologists’ experience, patients’ social variables and language.

Keywords: medical pragmatics, neurologist-patient interaction, nigeria, socio-linguistic influence

Procedia PDF Downloads 270
16300 The Vision Baed Parallel Robot Control

Authors: Sun Lim, Kyun Jung

Abstract:

In this paper, we describe the control strategy of high speed parallel robot system with EtherCAT network. This work deals the parallel robot system with centralized control on the real-time operating system such as window TwinCAT3. Most control scheme and algorithm is implemented master platform on the PC, the input and output interface is ported on the slave side. The data is transferred by maximum 20usecond with 1000byte. EtherCAT is very high speed and stable industrial network. The control strategy with EtherCAT is very useful and robust on Ethernet network environment. The developed parallel robot is controlled pre-design nonlinear controller for 6G/0.43 cycle time of pick and place motion tracking. The experiment shows the good design and validation of the controller.

Keywords: parallel robot control, etherCAT, nonlinear control, parallel robot inverse kinematic

Procedia PDF Downloads 571
16299 Using Infrared Thermography, Photogrammetry and a Remotely Piloted Aircraft System to Create 3D Thermal Models

Authors: C. C. Kruger, P. Van Tonder

Abstract:

Concrete deteriorates over time and the deterioration can be escalated due to multiple factors. When deteriorations are beneath the concrete’s surface, they could be unknown, even more so when they are located at high elevations. Establishing the severity of such defects could prove difficult and therefore the need to find efficient, safe and economical methods to find these defects becomes ever more important. Current methods using thermography to find defects require equipment such as scaffolding to reach these higher elevations. This could become time- consuming and costly. The risks involved with personnel scaffold or abseil to such heights are high. Accordingly, by combining the technologies of a thermal camera and a Remotely Piloted Aerial System it could be used to find better diagnostic methods. The data could then be constructed into a 3D thermal model to easy representation of the results

Keywords: concrete, infrared thermography, 3D thermal models, diagnostic

Procedia PDF Downloads 173
16298 The Academic-Practitioner Nexus in Countering Terrorism in New Zealand

Authors: John Battersby, Rhys Ball

Abstract:

After the 15 March 2019 Mosque attacks in Christchurch, the New Zealand security sector has had to address its training and preparedness levels for dealing with contemporary terrorist threats as well as potential future manifestations of terrorism. From time to time, members of the academic community from Australia and New Zealand have been asked to assist agencies in this endeavour. In the course of 2018, New Zealand security sector professionals working in the counter-terrorism area were interviewed about how they regarded academic contributions to understanding terrorism and counter-terrorism. Responses were mixed, ranging from anti-intellectualism, a belief that the inability to access classified material rendered academic work practically useless - to some genuine interest and desire for broad based academic studies on issues practitioners did not have the time to look at. Twelve months later, researchers have revisited those spoken to prior to the Brenton Tarrant 15 March shooting to establish if there has been a change in the way academic research is perceived, viewed and valued, and what key factors have contributed to this shift in thinking. This paper takes this data, combined with a consideration of the literature on higher education within professional police and intelligence forces, and on the general perception of academics by practitioners, to present a series of findings that will contribute to a more proactive and effective set of engagements, between two distinct but important security sectors, that reflect more closely with international practice.

Keywords: academic, counter terrorism, intelligence, practitioner, research, security

Procedia PDF Downloads 108
16297 An in Situ Dna Content Detection Enabled by Organic Long-persistent Luminescence Materials with Tunable Afterglow-time in Water and Air

Authors: Desissa Yadeta Muleta

Abstract:

Purely organic long-persistent luminescence materials (OLPLMs) have been developed as emerging organic materials due to their simple production process, low preparation cost and better biocompatibilities. Notably, OLPLMs with afterglow-time-tunable long-persistent luminescence (LPL) characteristics enable higher-level protection applications and have great prospects in biological applications. The realization of these advanced performances depends on our ability to gradually tune LPL duration under ambient conditions, however, the strategies to achieve this are few due to the lack of unambiguous mechanisms. Here, we propose a two-step strategy to gradually tune LPL duration of OLPLMs over a wide range of seconds in water and air, by using derivatives as the guest and introducing a third-party material into the host-immobilized host–guest doping system. Based on this strategy, we develop an analysis method for deoxyribonucleic acid (DNA) content detection without DNA separation in aqueous samples, which circumvents the influence of the chromophore, fluorophore and other interferents in vivo, enabling a certain degree of in situ detection that is difficult to achieve using today’s methods. This work will expedite the development of afterglow-time-tunable OLPLMs and expand new horizons for their applications in data protection, bio-detection, and bio-sensing

Keywords: deoxyribonucliec acid, long persistent luminescent materials, water, air

Procedia PDF Downloads 76
16296 Developing an Information Model of Manufacturing Process for Sustainability

Authors: Jae Hyun Lee

Abstract:

Manufacturing companies use life-cycle inventory databases to analyze sustainability of their manufacturing processes. Life cycle inventory data provides reference data which may not be accurate for a specific company. Collecting accurate data of manufacturing processes for a specific company requires enormous time and efforts. An information model of typical manufacturing processes can reduce time and efforts to get appropriate reference data for a specific company. This paper shows an attempt to build an abstract information model which can be used to develop information models for specific manufacturing processes.

Keywords: process information model, sustainability, OWL, manufacturing

Procedia PDF Downloads 430
16295 Bulk Viscous Bianchi Type V Cosmological Model with Time Dependent Gravitational Constant and Cosmological Constant in General Relativity

Authors: Reena Behal, D. P. Shukla

Abstract:

In this paper, we investigate Bulk Viscous Bianchi Type V Cosmological Model with Time dependent gravitational constant and cosmological constant in general Relativity by assuming ξ(t)=ξ_(0 ) p^m where ξ_(0 ) and m are constants. We also assume a variation law for Hubble parameter as H(R) = a (R^(-n)+1), where a>0, n>1 being constant. Two universe models were obtained, and their physical behavior has been discussed. When n=1 the Universe starts from singular state whereas when n=0 the cosmology follows a no singular state. The presence of bulk viscosity increase matter density’s value.

Keywords: Bulk Viscous Bianchi Type V Cosmological Model, hubble constants, gravitational constant, cosmological constants

Procedia PDF Downloads 175
16294 Synthesis of Novel Nanostructure Copper(II) Metal-Organic Complex for Photocatalytic Degradation of Remdesivir Antiviral COVID-19 from Aqueous Solution: Adsorption Kinetic and Thermodynamic Studies

Authors: Sam Bahreini, Payam Hayati

Abstract:

Metal-organic coordination [Cu(L)₄(SCN)₂] was synthesized applying ultrasonic irradiation, and its photocatalytic performance for the degradation of Remdesivir (RS) under sunlight irradiation was systematically explored for the first time in this study. The physicochemical properties of the synthesized photocatalyst were investigated using Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), powder x-ray diffraction (PXRD), energy-dispersive x-ray (EDX), thermal gravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS) techniques. Systematic examinations were carried out by changing irradiation time, temperature, solution pH value, contact time, RS concentration, and catalyst dosage. The photodegradation kinetic profiles were modeled in pseudo-first order, pseudo-second-order, and intraparticle diffusion models reflected that photodegradation onto [Cu(L)₄(SCN)₂] catalyst follows pseudo-first order kinetic model. The fabricated [Cu(L)₄(SCN)₂] nanostructure bandgap was determined as 2.60 eV utilizing the Kubelka-Munk formula from the diffuse reflectance spectroscopy method. Decreasing chemical oxygen demand (COD) (from 70.5 mgL-1 to 36.4 mgL-1) under optimal conditions well confirmed mineralizing of the RS drug. The values of ΔH° and ΔS° was negative, implying the process of adsorption is spontaneous and more favorable in lower temperatures.

Keywords: Photocatalytic degradation, COVID-19, density functional theory (DFT), molecular electrostatic potential (MEP)

Procedia PDF Downloads 169
16293 Development of a Combustible Gas Detector with Two Sensor Modules to Enable Measuring Range of Low Concentration

Authors: Young Gyu Kim, Sangguk Ahn, Gyoutae Park, Hiesik Kim

Abstract:

In the gas industrial fields, there are many problems to detect extremely small amounts of combustible gas (CH₄) if a conventional semiconductor is used. Those reasons are that measuring is difficult at the low concentration level, the stabilization time is long, and an initial response time is slow. In this study, we propose a method to solve these issues using two specific sensors to overcome the circumstances of temperature and humidity. This idea is to combine a catalytic and a semiconductor type sensor and to utilize every advantage from every sensor’s characteristic. In order to achieve the goal, we reduced fluctuations of a gas sensor for temperature and humidity by applying designed circuits for sensing temperature and humidity. And we induced the best calibration line of gas sensors through adjusting a weight value corresponding to changeable patterns of temperature and humidity after their data are previously acquired and stored. We proposed and developed the gas leak detector using two sensor modules, which is first operated by a semiconductor sensor for measuring small gas quantities and second a catalytic type sensor is detected if measuring range of the first sensor is beyond. We conclusively verified characteristics of sharp sensitivity and fast response time against even at lower gas concentration level through experiments other than a conventional gas sensor. We think that our proposed idea is very useful if another gas leak is developed to enable measuring extremely small quantities of toxic and flammable gases.

Keywords: gas sensor, leak detector, lower concentration, and calibration

Procedia PDF Downloads 240