Search results for: machine modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4565

Search results for: machine modelling

2285 Impact Assessment of Tropical Cyclone Hudhud on Visakhapatnam, Andhra Pradesh

Authors: Vivek Ganesh

Abstract:

Tropical cyclones are some of the most damaging events. They occur in yearly cycles and affect the coastal population with three dangerous effects: heavy rain, strong wind and storm surge. In order to estimate the area and the population affected by a cyclone, all the three types of physical impacts must be taken into account. Storm surge is an abnormal rise of water above the astronomical tides, generated by strong winds and drop in the atmospheric pressure. The main aim of the study is to identify the impact by comparing three different months data. The technique used here is NDVI classification technique for change detection and other techniques like storm surge modelling for finding the tide height. Current study emphasize on recent very severe cyclonic storm Hud Hud of category 3 hurricane which had developed on 8 October 2014 and hit the coast on 12 October 2014 which caused significant changes on land and coast of Visakhapatnam, Andhra Pradesh. In the present study, we have used Remote Sensing and GIS tools for investigating and quantifying the changes in vegetation and settlement.

Keywords: inundation map, NDVI map, storm tide map, track map

Procedia PDF Downloads 269
2284 Vibration Mitigation in Partially Liquid-Filled Vessel Using Passive Energy Absorbers

Authors: Maor Farid, Oleg Gendelman

Abstract:

The following study deals with fluid vibration of a liquid in a partially filled vessel under periodic ground excitation. This external excitation might lead to hidraulic impact applied on the vessel inner walls. In order to model these sloshing dynamic regimes, several equivalent mechanical models were suggested in the literature, such as series of pendula or mass-spring systems that are able to impact the inner tank walls. In the following study, we use the latter methodology, use parameter values documented in literature corresponding to cylindrical tanks and consider structural elasticity of the tank. The hydraulic impulses are modeled by the high-exponent potential function. Additional system parameters are found with the help of Finite-Element (FE) analysis. Model-driven stress assessment method is developed. Finally, vibration mitigation performances of both tuned mass damper (TMD) and nonlinear energy sink (NES) are examined.

Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics

Procedia PDF Downloads 197
2283 Grid Computing for Multi-Objective Optimization Problems

Authors: Aouaouche Elmaouhab, Hassina Beggar

Abstract:

Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.

Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing

Procedia PDF Downloads 486
2282 Water Demand Modelling Using Artificial Neural Network in Ramallah

Authors: F. Massri, M. Shkarneh, B. Almassri

Abstract:

Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.

Keywords: water management, demand forecasting, consumption, ANN, Ramallah

Procedia PDF Downloads 219
2281 Ensuring Cyber Security Using Kippo Honeypots

Authors: S. Vivekananda Pandian

Abstract:

A major challenging task in this current scenario is protecting your computer and other electronic gadgets against Cyber-attacks. In this current era Cyber warfare becomes a major threat to the entire world which targets a particular organization or a country spreading the Malwares, Breaching the securities, causing major loss to the organization. Several sectors both public and private are computerized such as Energy sectors, Oil refinery sectors, Defense sectors and Aviation sectors are prone to attacks. Several attacks are unknown while accessing the internet. To study the characteristics and Intention of the Attacker Kippo Honeypots are used. Honeypots are the trap set by us which enables them to monitor the malicious activities and detailed study about attackers which leads to strengthening of the security.

Keywords: attackers, security, Kippo Honeypots, virtual machine

Procedia PDF Downloads 427
2280 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation

Procedia PDF Downloads 245
2279 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 51
2278 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy

Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly

Abstract:

In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.

Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening

Procedia PDF Downloads 72
2277 Valorization of By-Products through Feed Formulation for Tilapia sp: Zootechnical Performance Study

Authors: Redhouane Benfares, Kamel Boudjemaa, Affaf Kord, Sonia Messis, Linda Farai, Belkacem Guenachi, Kherarba Maha, Jaroslava ŠVarc-Gajić

Abstract:

In recent years valorization of biowaste has attracted a lot of attention worldwide owing to its high nutritional value and low price. In this work, biowaste of animal (sardines) and plant (tomato) biowaste was used to formulate a new feed for red tilapia that showed to be competitive in its price, and zootechnical performance in comparison to commercially available tilapia feeds. Mathematical modelling was used to formulate optimal feed composition with favorable chemical composition and the lowest price. Formulated feed had high protein content (40.76%) and an energy value of 279.6 Kcal/100 g. Optimised feed was manufactured and compared to commercially available reference feed with respect to feeding intake, feed efficiency, the specific growth rate of fingerlings of Tilapia sp, and, most important, zootechnical parameters. With a fish survival rate of 100% calculated feed conversion index for the formulated feed was 2.7.

Keywords: conversion index, fish waste, formulated feed, tomato waste

Procedia PDF Downloads 151
2276 An Investigation of Machinability of Inconel 718 in EDM Using Different Cryogenic Treated Tools

Authors: Pradeep Joshi, Prashant Dhiman, Shiv Dayal Dhakad

Abstract:

Inconel 718 is a family if Nickel-Chromium based Superalloy; it has very high oxidation and corrosion resistance. Inconel 718 is widely being used in aerospace, engine, turbine etc. due to its high mechanical strength and creep resistance. Being widely used, its machining should be easy but in real its machining is very difficult, especially by using traditional machining methods. It becomes easy to machine only by using non Traditional machining such as EDM. During EDM machining there is wear of both tool and workpiece, the tool wear is undesired because it changes tool shape, geometry. To reduce the tool wear rate (TWR) cryogenic treatment is performed on tool before the machining operation. The machining performances of the process are to be evaluated in terms of MRR, TWR which are functions of Discharge current, Pulse on-time, Pulse Off-time.

Keywords: EDM, cyrogenic, TWR, MRR

Procedia PDF Downloads 457
2275 A Probabilistic View of the Spatial Pooler in Hierarchical Temporal Memory

Authors: Mackenzie Leake, Liyu Xia, Kamil Rocki, Wayne Imaino

Abstract:

In the Hierarchical Temporal Memory (HTM) paradigm the effect of overlap between inputs on the activation of columns in the spatial pooler is studied. Numerical results suggest that similar inputs are represented by similar sets of columns and dissimilar inputs are represented by dissimilar sets of columns. It is shown that the spatial pooler produces these results under certain conditions for the connectivity and proximal thresholds. Following the discussion of the initialization of parameters for the thresholds, corresponding qualitative arguments about the learning dynamics of the spatial pooler are discussed.

Keywords: hierarchical temporal memory, HTM, learning algorithms, machine learning, spatial pooler

Procedia PDF Downloads 345
2274 Optimization of Cutting Parameters during Machining of Fine Grained Cemented Carbides

Authors: Josef Brychta, Jiri Kratochvil, Marek Pagac

Abstract:

The group of progressive cutting materials can include non-traditional, emerging and less-used materials that can be an efficient use of cutting their lead to a quantum leap in the field of machining. This is essentially a “superhard” materials (STM) based on polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) cutting performance ceramics and development is constantly "perfecting" fine coated cemented carbides. The latter cutting materials are broken down by two parameters, toughness and hardness. A variation of alloying elements is always possible to improve only one of each parameter. Reducing the size of the core on the other hand doing achieves "contradictory" properties, namely to increase both hardness and toughness.

Keywords: grained cutting materials difficult to machine materials, optimum utilization, mechanic, manufacturing

Procedia PDF Downloads 299
2273 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 456
2272 Antecedents of Spinouts: Technology Relatedness, Intellectual Property Rights, and Venture Capital

Authors: Sepideh Yeganegi, Andre Laplume, Parshotam Dass, Cam-Loi Huynh

Abstract:

This paper empirically examines organizational and institutional antecedents of entrepreneurial entry. We employ multi-level logistic regression modelling methods on a sub-sample of the Global Entrepreneurship Monitor’s 2011 survey covering 30 countries. The results reveal that employees who have experience with activities unrelated to the core technology of their organizations are more likely to spin out entrepreneurial ventures, whereas those with experiences related to the core technology are less likely to do so. In support of the recent theory, we find that the strength of intellectual property rights and the availability of venture capital have negative and positive effects, respectively, on the likelihood that employees turn into entrepreneurs. These institutional factors also moderate the effect of relatedness to core technology such that entrepreneurial entries by employees with experiences related to core technology are curbed more severely by stronger intellectual property rights protection regimes and lack of venture capital.

Keywords: spinouts, intellectual property rights, venture capital, entrepreneurship, organizational experiences, core technology

Procedia PDF Downloads 356
2271 Empirical Study on Grassroots Innovation for Entrepreneurship Development with Microfinance Provision as Moderator

Authors: Sonal H. Singh, Bhaskar Bhowmick

Abstract:

The research hypothesis formulated in this paper examines the importance of microfinance provision for entrepreneurship development by engendering a high level of entrepreneurial orientation among the grassroots entrepreneurs. A theoretically well supported empirical framework is proposed to identify the influence of financial services and non-financial services provided by microfinance institutes in strengthening the impact of grassroots innovation on entrepreneurial orientation under resource constraints. In this paper, Grassroots innovation is perceived in three dimensions: new learning practice, localized solution, and network development. The study analyzes the moderating effect of microfinance provision on the relationship between grassroots innovation and entrepreneurial orientation. The paper employed structural equation modelling on 400 data entries from the grassroots entrepreneurs in India. The research intends to help policymakers, entrepreneurs and microfinance providers to promote the innovative design of microfinance services for the well-being of grassroots entrepreneurs and to foster sustainable entrepreneurship development.

Keywords: entrepreneurship development, grassroots innovation, India, structural equation model

Procedia PDF Downloads 265
2270 Mechanical Performances and Viscoelastic Behaviour of Starch-Grafted-Polypropylene/Kenaf Fibres Composites

Authors: A. Hamma, A. Pegoretti

Abstract:

The paper focuses on the evaluation of mechanical performances and viscoelastic behaviour of starch-grafted-PP reinforced with kenaf fibres. Investigations were carried out on composites prepared by melt compounding and compression molding. Two aspects have been taken into account, the effects of various fibres loading rates (10, 20 and 30 wt.%) and the fibres aspect ratios (L/D=30 and 160). Good fibres/matrix interaction has been evidenced by SEM observations. However, processing induced variation of fibre length quantified by optical microscopy observations. Tensile modulus and ultimate properties, hardness and tensile impact stress, were found to remarkably increase with fibre loading. Moreover, short term tensile creep tests have proven that kenaf fibres improved considerably the creep stability. Modelling of creep behaviour by a four parameter Burger model was successfully used. An empirical equation involving Halpin-Tsai semi empirical model was also used to predict the elastic modulus of composites.

Keywords: mechanical properties, creep, fibres, thermoplastic composites, starch-grafted-PP

Procedia PDF Downloads 260
2269 Design of a Drift Assist Control System Applied to Remote Control Car

Authors: Sheng-Tse Wu, Wu-Sung Yao

Abstract:

In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.

Keywords: drift assist control system, remote control cars, gyroscope, vehicle dynamics

Procedia PDF Downloads 397
2268 2D-Modeling with Lego Mindstorms

Authors: Miroslav Popelka, Jakub Nozicka

Abstract:

The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.

Keywords: LEGO Mindstorms, ultrasonic sensor, real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software

Procedia PDF Downloads 473
2267 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision

Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek

Abstract:

This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.

Keywords: autonomous maritime vehicle, object detection, situation awareness, tracking

Procedia PDF Downloads 458
2266 Modelling and Simulation of Single Mode Optical Fiber Directional Coupler for Medical Application

Authors: Shilpa Kulkarni, Sujata Patrikar

Abstract:

A single-mode fiber directional coupler is modeled and simulated for its application in medical field. Various fiber devices based on evanescent field absorption, interferometry, couplers, resonators, tip coated fibers, etc, have been developed so far, suitable for medical application. This work focuses on the possibility of sensing by single mode fiber directional coupler. In the preset work, a fiber directional coupler is modeled to detect the changes taking place in the surrounding medium optoelectronically. In this work, waveguiding characteristics of the fiber are studied in depth. The sensor is modeled and simulated by finding photocurrent, sensitivity and detection limit by varying various parameters of the directional coupler. The device is optimized for the best possible output. It is found that the directional coupler shows measurable photocurrents and good sensitivity with coupling length in micrometers. It is thus a miniature device, hence, suitable for medical applications.

Keywords: single mode fiber directional coupler, modeling and simulation of fiber directional coupler sensor, biomolecular sensing, medical sensor device

Procedia PDF Downloads 274
2265 Numerical Analysis of Various V- rib Cross-section to Optimize Thermal Performance of the Rocket Engine

Authors: Hisham Elmouazen, Xiaobing Zhang

Abstract:

In regenerative-cooled rocket engines, understanding the coolant behaviour within cooling channels is essential to enhance engine performance and maintain chamber walls at low temperatures. However, modelling and testing the rocket engine's cooling channels is challenging due to the high temperature of the chamber walls, supercritical flow, and high Reynolds number. Therefore, a numerical analysis of five different V-rib cross-sections to optimize rocket engine cooling channels' performance is developed and validated in this work. Three-dimensional CFD simulations are employed by the Shear Stress Transport (k- ω) turbulent model at Reynolds number 42,500. The study findings illustrate that the V-ribbed channel performance is optimized by 59.5% relative to the plain/flat channel. Additionally, the chamber wall temperature is decreased to 726.4 K, and the right-angle trapezoidal V-rib (Case 4) improves thermal augmentation up to 74.3 % with a slightly high friction factor.

Keywords: computational fluid dynamics CFD, regenerative-cooled system, thermal performance, V-rib cross-sections

Procedia PDF Downloads 75
2264 Assessing Bus Service Quality in Dhaka City from the Perspective of Female Passengers

Authors: S. K. Subah, R. Tasnim, M. I. Jahan, M. R. Islam

Abstract:

While talking about how comfortable and convenient Dhaka's bus service is, the minimum emphasis is placed on the female commuters of the Dhaka city. Recognizing the contemporary situation, the supreme focus is to develop experimental model based on statistical methods. SEM has been adopted to quantify passenger satisfaction, which is affected by the perceived service quality. The study deals with 16 observed variables and three latent variables, which were correlated to identify their significance on the regulation of perceived SQ (Service Quality). To calibrate the model, a dataset of 250 responses from female users of local buses has been utilized through survey. A questionnaire structured with SQ variables was prepared in consultation with prevailing literature, practitioners, academicians, and users. The result concludes that the attributes of safe and secured environment have the most significant impact on the overall bus service quality according to the insight of female respondents. The study outcome might be a great help for the policymakers, women's organizations, and NGOs to formulate transport policy that will ensure a women-friendly public bus service.

Keywords: bus service quality, female perception, structural equation modelling, safety-security, women friendly bus

Procedia PDF Downloads 157
2263 Using Neural Networks for Click Prediction of Sponsored Search

Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov

Abstract:

Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.

Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate

Procedia PDF Downloads 572
2262 Experimental Evaluation of UDP in Wireless LAN

Authors: Omar Imhemed Alramli

Abstract:

As Transmission Control Protocol (TCP), User Datagram Protocol (UDP) is transfer protocol in the transportation layer in Open Systems Interconnection model (OSI model) or in TCP/IP model of networks. The UDP aspects evaluation were not recognized by using the pcattcp tool on the windows operating system platform like TCP. The study has been carried out to find a tool which supports UDP aspects evolution. After the information collection about different tools, iperf tool was chosen and implemented on Cygwin tool which is installed on both Windows XP platform and also on Windows XP on virtual box machine on one computer only. Iperf is used to make experimental evaluation of UDP and to see what will happen during the sending the packets between the Host and Guest in wired and wireless networks. Many test scenarios have been done and the major UDP aspects such as jitter, packet losses, and throughput are evaluated.

Keywords: TCP, UDP, IPERF, wireless LAN

Procedia PDF Downloads 354
2261 Emotions Evoked by Robots - Comparison of Older Adults and Students

Authors: Stephanie Lehmann, Esther Ruf, Sabina Misoch

Abstract:

Background: Due to demographic change and shortage of skilled nursing staff, assistive robots are built to support older adults at home and nursing staff in care institutions. When assistive robots facilitate tasks that are usually performed by humans, user acceptance is essential. Even though they are an important aspect of acceptance, emotions towards different assistive robots and different situations of robot-use have so far not been examined in detail. The appearance of assistive robots can trigger emotions that affect their acceptance. Acceptance of robots is assumed to be greater when they look more human-like; however, too much human similarity can be counterproductive. Regarding different groups, it is assumed that older adults have a more negative attitude towards robots than younger adults. Within the framework of a simulated robot study, the aim was to investigate emotions of older adults compared to students towards robots with different appearances and in different situations and so contribute to a deeper view of the emotions influencing acceptance. Methods: In a questionnaire study, vignettes were used to assess emotions toward robots in different situations and of different appearance. The vignettes were composed of two situations (service and care) shown by video and four pictures of robots varying in human similarity (machine-like to android). The combination of the vignettes was randomly distributed to the participants. One hundred forty-two older adults and 35 bachelor students of nursing participated. They filled out a questionnaire that surveyed 30 positive and 30 negative emotions. For each group, older adults and students, a sum score of “positive emotions” and a sum score of “negative emotions” was calculated. Mean value, standard deviation, or n for sample size and % for frequencies, according to the scale level, were calculated. For differences in the scores of positive and negative emotions for different situations, t-tests were calculated. Results: Overall, older adults reported significantly more positive emotions than students towards robots in general. Students reported significantly more negative emotions than older adults. Regarding the two different situations, the results were similar for the care situation, with older adults reporting more positive emotions than students and less negative emotions than students. In the service situation, older adults reported significantly more positive emotions; negative emotions did not differ significantly from the students. Regarding the appearance of the robot, there were no significant differences in emotions reported towards the machine-like, the mechanical-human-like and the human-like appearance. Regarding the android robot, students reported significantly more negative emotions than older adults. Conclusion: There were differences in the emotions reported by older adults compared to students. Older adults reported more positive emotions, and students reported more negative emotions towards robots in different situations and with different appearances. It can be assumed that older adults have a different attitude towards the use of robots than younger people, especially young adults in the health sector. Therefore, the use of robots in the service or care sector should not be rejected rashly based on the attitudes of younger persons, without considering the attitudes of older adults equally.

Keywords: emotions, robots, seniors, young adults

Procedia PDF Downloads 466
2260 Requirements Engineering via Controlling Actors Definition for the Organizations of European Critical Infrastructure

Authors: Jiri F. Urbanek, Jiri Barta, Oldrich Svoboda, Jiri J. Urbanek

Abstract:

The organizations of European and Czech critical infrastructure have specific position, mission, characteristics and behaviour in European Union and Czech state/ business environments, regarding specific requirements for regional and global security environments. They must respect policy of national security and global rules, requirements and standards in all their inherent and outer processes of supply-customer chains and networks. A controlling is generalized capability to have control over situational policy. This paper aims and purposes are to introduce the controlling as quite new necessary process attribute providing for critical infrastructure is environment the capability and profit to achieve its commitment regarding to the effectiveness of the quality management system in meeting customer/ user requirements and also the continual improvement of critical infrastructure organization’s processes overall performance and efficiency, as well as its societal security via continual planning improvement via DYVELOP modelling.

Keywords: added value, DYVELOP, controlling, environments, process approach

Procedia PDF Downloads 412
2259 Accurate and Repeatable Pressure Control for Critical Testing of Advanced Ceramics Using Proportional and Derivative Controller

Authors: Benchalak Muangmeesri

Abstract:

The purpose of this paper is to discuss how to test the best control performance of a ceramics. Hydraulic press machine (HPM) is the most common shaping of advanced ceramic with products, dimensions, and ceramic products mainly from synthetic powders. A microcontroller can be achieved to control process and has set high standards in the shaping of raw materials in powder form. HPM was proposed to develop a position control system that linked to the embedded controller PIC16F877 via Proportional and Derivative (PD) controller. The model is performed using MATLAB/SIMULINK and the best control performance of an HPM. Finally, PD controller results, showing the best performance as it had the smallest overshoot and highest quality using a microcontroller control.

Keywords: ceramics, hydraulic press, microcontroller, PD controller

Procedia PDF Downloads 356
2258 Adaptive Auth - Adaptive Authentication Based on User Attributes for Web Application

Authors: Senthuran Manoharan, Rathesan Sivagananalingam

Abstract:

One of the main issues in system security is Authentication. Authentication can be defined as the process of recognizing the user's identity and it is the most important step in the access control process to safeguard data/resources from being accessed by unauthorized users. The static method of authentication cannot ensure the genuineness of the user. Due to this reason, more innovative authentication mechanisms came into play. At first two factor authentication was introduced and later, multi-factor authentication was introduced to enhance the security of the system. It also had some issues and later, adaptive authentication was introduced. In this research paper, the design of an adaptive authentication engine was put forward. The user risk profile was calculated based on the user parameters and then the user was challenged with a suitable authentication method.

Keywords: authentication, adaptive authentication, machine learning, security

Procedia PDF Downloads 249
2257 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach

Authors: Saowaluck Ukrisdawithid

Abstract:

The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.

Keywords: single laboratory validation approach, within-laboratory reproducibility, method and laboratory bias, certified reference material

Procedia PDF Downloads 153
2256 Data Mining in Healthcare for Predictive Analytics

Authors: Ruzanna Muradyan

Abstract:

Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.

Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health

Procedia PDF Downloads 63