Search results for: language acquisition and learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10282

Search results for: language acquisition and learning

8002 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: feature generation, feature learning, genetic algorithm, music information retrieval

Procedia PDF Downloads 435
8001 Online Bakery Management System Proposal

Authors: Alexander Musyoki, Collins Odour

Abstract:

Over the past few years, the bakery industry in Kenya has experienced significant growth largely in part to the increased adoption of technology and automation in their processes; more specifically due to the adoption of bakery management systems to help in running bakeries. While they have been largely responsible for the improved productivity and efficiency in bakeries, most of them are now outdated and pose more challenges than benefits. The proposed online bakery management system mentioned in this paper aims to address this by allowing bakery owners to track inventory, budget, job progress, and data analytics on each job and in doing so, promote the Sustainable Development Goals 3 and 12, which aim to ensure healthy lives and promote sustainable economic growth as the proposed benefits of these features include scalability, easy accessibility, reduced acquisition costs, better reliability, and improved functionality that will allow bakeries to become more competitive, reduce waste and track inventory more efficiently. To better understand the challenges, a comprehensive study has been performed to assess these traditional systems and try to understand if an online bakery management system can prove to be advantageous to bakery owners. The study conducted gathered feedback from bakery owners and employees in Nairobi County, Kenya using an online survey with a response rate of about 86% from the target population. The responses cited complex and hard to use bakery management systems (59.7%), lack of portability from one device to the other (58.1%) and high acquisition costs (51.6%) as the top challenges of traditional bakery management systems. On the other hand, some of the top benefits that most of the respondents would realize from the online bakery management system was better reliability (58.1%) and reduced acquisition costs (58.1%). Overall, the findings suggest that an online bakery management system has a lot of advantages over traditional systems and is likely to be well-received in the market. In conclusion, the proposed online bakery management system has the potential to improve the efficiency and competitiveness of small-sized bakeries in Nairobi County. Further research is recommended to expand the sample size and diversity of respondents and to conduct more in-depth analyses of the data collected.

Keywords: ICT, technology and automation, bakery management systems, food innovation

Procedia PDF Downloads 78
8000 Schoolwide Implementation of Schema-Based Instruction for Mathematical Problem Solving: An Action Research Investigation

Authors: Sara J. Mills, Sally Howell

Abstract:

The field of special education has long struggled to bridge the research to practice gap. There is ample evidence from research of effective strategies for students with special needs, but these strategies are not routinely implemented in schools in ways that yield positive results for students. In recent years, the field of special education has turned its focus to implementation science. That is, discovering effective methods of implementing evidence-based practices in school settings. Teacher training is a critical factor in implementation. This study aimed to successfully implement Schema-Based Instruction (SBI) for math problem solving in four classrooms in a special primary school serving students with language deficits, including students with Autism Spectrum Disorders (ASD) and Intellectual Disabilities (ID). Using an action research design that allowed for adjustments and modification to be made over the year-long study, two cohorts of teachers across the school were trained and supported in six-week learning cycles to implement SBI in their classrooms. The learning cycles included a one-day training followed by six weeks of one-on-one or team coaching and three fortnightly cohort group meetings. After the first cohort of teachers completed the learning cycle, modifications and adjustments were made to lesson materials in an attempt to improve their effectiveness with the second cohort. Fourteen teachers participated in the study, including master special educators (n=3), special education instructors (n=5), and classroom assistants (n=6). Thirty-one students participated in the study (21 boys and 10 girls), ranging in age from 5 to 12 years (M = 9 years). Twenty-one students had a diagnosis of ASD, 20 had a diagnosis of mild or moderate ID, with 13 of these students having both ASD and ID. The remaining students had diagnosed language disorders. To evaluate the effectiveness of the implementation approach, both student and teacher data was collected. Student data included pre- and post-tests of math word problem solving. Teacher data included fidelity of treatment checklists and pre-post surveys of teacher attitudes and efficacy for teaching problem solving. Finally, artifacts were collected throughout the learning cycle. Results from cohort 1 and cohort 2 revealed similar outcomes. Students improved in the number of word problems they answered correctly and in the number of problem-solving steps completed independently. Fidelity of treatment data showed that teachers implemented SBI with acceptable levels of fidelity (M = 86%). Teachers also reported increases in the amount of time spent teaching problem solving, their confidence in teaching problem solving and their perception of students’ ability to solve math word problems. The artifacts collected during instruction indicated that teachers made modifications to allow their students to access the materials and to show what they knew. These findings are in line with research that shows student learning can improve when teacher professional development is provided over an extended period of time, actively involves teachers, and utilizes a variety of learning methods in classroom contexts. Further research is needed to evaluate whether these gains in teacher instruction and student achievement can be maintained over time once the professional development is completed.

Keywords: implementation science, mathematics problem solving, research-to-practice gap, schema based instruction

Procedia PDF Downloads 125
7999 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 211
7998 Cross-Language Variation and the ‘Fused’ Zone in Bilingual Mental Lexicon: An Experimental Research

Authors: Yuliya E. Leshchenko, Tatyana S. Ostapenko

Abstract:

Language variation is a widespread linguistic phenomenon which can affect different levels of a language system: phonological, morphological, lexical, syntactic, etc. It is obvious that the scope of possible standard alternations within a particular language is limited by a variety of its norms and regulations which set more or less clear boundaries for what is possible and what is not possible for the speakers. The possibility of lexical variation (alternate usage of lexical items within the same contexts) is based on the fact that the meanings of words are not clearly and rigidly defined in the consciousness of the speakers. Therefore, lexical variation is usually connected with unstable relationship between words and their referents: a case when a particular lexical item refers to different types of referents, or when a particular referent can be named by various lexical items. We assume that the scope of lexical variation in bilingual speech is generally wider than that observed in monolingual speech due to the fact that, besides ‘lexical item – referent’ relations it involves the possibility of cross-language variation of L1 and L2 lexical items. We use the term ‘cross-language variation’ to denote a case when two equivalent words of different languages are treated by a bilingual speaker as freely interchangeable within the common linguistic context. As distinct from code-switching which is traditionally defined as the conscious use of more than one language within one communicative act, in case of cross-language lexical variation the speaker does not perceive the alternate lexical items as belonging to different languages and, therefore, does not realize the change of language code. In the paper, the authors present research of lexical variation of adult Komi-Permyak – Russian bilingual speakers. The two languages co-exist on the territory of the Komi-Permyak District in Russia (Komi-Permyak as the ethnic language and Russian as the official state language), are usually acquired from birth in natural linguistic environment and, according to the data of sociolinguistic surveys, are both identified by the speakers as coordinate mother tongues. The experimental research demonstrated that alternation of Komi-Permyak and Russian words within one utterance/phrase is highly frequent both in speech perception and production. Moreover, our participants estimated cross-language word combinations like ‘маленькая /Russian/ нывка /Komi-Permyak/’ (‘a little girl’) or ‘мунны /Komi-Permyak/ домой /Russian/’ (‘go home’) as regular/habitual, containing no violation of any linguistic rules and being equally possible in speech as the equivalent intra-language word combinations (‘учöтик нывка’ /Komi-Permyak/ or ‘идти домой’ /Russian/). All the facts considered, we claim that constant concurrent use of the two languages results in the fact that a large number of their words tend to be intuitively interpreted by the speakers as lexical variants not only related to the same referent, but also referring to both languages or, more precisely, to none of them in particular. Consequently, we can suppose that bilingual mental lexicon includes an extensive ‘fused’ zone of lexical representations that provide the basis for cross-language variation in bilingual speech.

Keywords: bilingualism, bilingual mental lexicon, code-switching, lexical variation

Procedia PDF Downloads 148
7997 Code Switching and Code Mixing among Adolescents in Kashmir

Authors: Sarwat un Nisa

Abstract:

One of the remarkable gifts that a human being is blessed with is the ability to speak using a combination of sounds. Different combinations of sounds combine to form a word which in turn make a sentence and therefore give birth to a language. A person can either be a monolingual, i.e., can speak one language or bilingual, i.e., can speak more than one language. Whether a person speaks one language or multiple languages or in whatever language a person speaks, the main aim is to communicate, express ideas, feelings or thoughts. Sometimes the choice of a language is deliberate and sometimes it is a habitual act. The language which is used to put our ideas across speaks many things about our cultural, linguistic and ethnic identities. It can never be claimed that bilinguals are better than monolinguals in terms of linguistic skills, bilinguals or multilinguals have more than one language at their disposal. Therefore, how effectively two languages are used by the same person keeps linguists always intrigued. The most prominent and common features found in the speech of bilingual speakers are code switching and code mixing. The aim of the present paper is to explore these features among the adolescent speakers of Kashmir. The reason for studying the linguistics behavior of adolescents is the age when a person is neither an adult nor a child. They want to drift away from the norms and make a new norm for themselves. Therefore, how their linguistics skills are influenced by their age is of great interest because it can set the trend for the future generation. Kashmir is a multilingual society where three languages, i.e., Kashmiri, Urdu, and English are regularly used by the speakers, especially the educated ones. Kashmiri is widely used at home or mostly among adults. Urdu is the official language, and English is used in schools and for most of the written official correspondences. Thus, it is not uncommon to find these three languages coming in contact with each other quite frequently. The language contact results in the code switching and code mixing. In this paper different aspects of code switching and code mixing are discussed. Research Method: The data were collected from the different districts of Kashmir. The informants did not have prior knowledge of the survey. The situation was spontaneous and natural. The topics were introduced by the interviewer to the group of informants which comprised of three participants. They were asked to discuss the topic, most of the times without any intervention of the interviewer. Along with conversations, the informants also filled in written questionnaires comprising sociolinguistic questions. Questionnaires were analysed to get an idea about the sociolinguistic attitude of the informants. Percentage, frequency, and average were used as statistical tools to analyse the data. Conclusions were drawn taking into consideration of interpretations of both speech samples and questionnaires.

Keywords: code mixing, code switching, Kashmir, bilingualism

Procedia PDF Downloads 144
7996 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning

Procedia PDF Downloads 550
7995 Developing the Skills of Reading Comprehension of Learners of English as a Second Language

Authors: Indu Gamage

Abstract:

Though commonly utilized as a language improvement technique, reading has not been fully employed by both language teachers and learners to develop reading comprehension skills in English as a second language. In a Sri Lankan context, this area has to be delved deep into as the learners’ show more propensity to analyze. Reading comprehension is an area that most language teachers and learners struggle with though it appears easy. Most ESL learners engage in reading tasks without being properly aware of the objective of doing reading comprehension. It is observed that when doing reading tasks, the language learners’ concern is more on the meanings of individual words than on the overall comprehension of the given text. The passiveness with which the ESL learners engage themselves in reading comprehension makes reading a tedious task for the learner thereby giving the learner a sense of disappointment at the end. Certain reading tasks take the form of translations. The active cognitive participation of the learner in the mode of using productive strategies for predicting, employing schemata and using contextual clues seems quite less. It was hypothesized that the learners’ lack of knowledge of the productive strategies of reading was the major obstacle that makes reading comprehension a tedious task for them. This study is based on a group of 30 tertiary students who read English only as a fundamental requirement for their degree. They belonged to the Faculty of Humanities and Social Sciences of the University of Ruhuna, Sri Lanka. Almost all learners hailed from areas where English was hardly utilized in their day to day conversations. The study is carried out in the mode of a questionnaire to check their opinions on reading and a test to check whether the learners are using productive strategies of reading when doing reading comprehension tasks. The test comprised reading questions covering major productive strategies for reading. Then the results were analyzed to see the degree of their active engagement in comprehending the text. The findings depicted the validity of the hypothesis as grounds behind the difficulties related to reading comprehension.

Keywords: reading, comprehension, skills, reading strategies

Procedia PDF Downloads 175
7994 Using Multiple Intelligences Theory to Develop Thai Language Skill

Authors: Bualak Naksongkaew

Abstract:

The purposes of this study were to compare pre- and post-test achievement of Thai language skills. The samples consisted of 40 tenth grader of Secondary Demonstration School of Suan Sunandha Rajabhat University in the first semester of the academic year 2010. The researcher prepared the Thai lesson plans, the pre- and post-achievement test at the end program. Data analyses were carried out using means, standard deviations and descriptive statistics, independent samples t-test analysis for comparison pre- and post-test. The study showed that there were a statistically significant difference at α= 0.05; therefore the use multiple intelligences theory can develop Thai languages skills. The results after using the multiple intelligences theory for Thai lessons had higher level than standard.

Keywords: multiple intelligences theory, Thai language skills, development, pre- and post-test achievement

Procedia PDF Downloads 425
7993 Language Literacy Attrition: An Empirical Investigation

Authors: Ahmad Al-Issa

Abstract:

Our world is now operating under the auspices of globalization with its attendant language of ‘global English.' In many parts of the world, the need for English is often accepted without much thought given to native languages. Indeed, this is the current situation in the United Arab Emirates (UAE), with English encroaching into all areas of society, and especially forcefully into the education sector, where English as a medium of instruction (EMI) is on the rise. At the same time, Arabic literacy (i.e., the ability to read and write in Arabic) is declining among the UAE youth. Using a mixed-methods design, a study was conducted to gain insights into the use of Arabic by Emirati University students. The study examines how often Emiratis, males and females, use their native language (Arabic) in their daily lives, how they view their reading and writing skills in Arabic vis-à-vis their English literacy skills, and the extent to which they can demonstrate their literacy skills in Arabic. Clear evidence emerged showing that while Arabic as a dialect continues to be spoken on a daily basis, Arabic literacy is unquestionably losing ground. This was found to be motivated by educational, political, societal, and personal forces. These findings and their implications to language policy and existing bilingualism programs will be discussed. Suggestions for further research will also be made.

Keywords: Arabic, globalization, global English, literacy attrition, United Arab Emirates

Procedia PDF Downloads 291
7992 Challenges to Collaborative Learning in Architectural Education in the Middle East

Authors: Lizmol Mathew, Divya Thomas, Shiney Rajan

Abstract:

Educational paradigm all over the globe is undergoing significant reform today. Because of this, so-called flipped classroom model is becoming increasingly popular in higher education. Flipped classroom has proved to be more effective than traditional lecture based model as flipped classroom model promotes active learning by encouraging students to work on in collaborative tasks and peer-led learning during the class-time. However, success of flipped classrooms relies on students’ ability and their attitudes towards collaboration and group work. This paper examines: 1) Students’ attitudes towards collaborative learning; 2) Main challenges to successful collaboration from students’ experience and 3) Students’ perception of criteria for successful team work. 4) Recommendations for enhancing collaborative learning. This study’s methodology involves quantitative analysis of surveys collected from students enrolled in undergraduate Architecture program at Qatar University. Analysis indicates that in general students enrolled in the program do not have positive perceptions or experiences associated with group work. Positive and negative factors that influence collaborative learning in higher education have been identified. Recommendations for improving collaborative work experience have been proposed.

Keywords: architecture, collaborative learning, female, group work, higher education, Middle East, Qatar, student experience

Procedia PDF Downloads 331
7991 Use of Cloud-Based Virtual Classroom in Connectivism Learning Process to Enhance Information Literacy and Self-Efficacy for Undergraduate Students

Authors: Kulachai Kultawanich, Prakob Koraneekij, Jaitip Na-Songkhla

Abstract:

The way of learning has been changed into a new paradigm since the improvement of network and communication technology, so learners have to interact with massive amount of the information. Thus, information literacy has become a critical set of abilities required by every college and university in the world. Connectivism is considered to be an alternative way to design information literacy course in online learning environment, such as Virtual Classroom (VC). With the change of learning pedagogy, VC is employed to improve the social capability by integrating cloud-based technology. This paper aims to study the use of Cloud-based Virtual Classroom (CBVC) in Connectivism learning process to enhance information literacy and self-efficacy of twenty-one undergraduate students who registered in an e-publishing course at Chulalongkorn University. The data were gathered during 6 weeks of the study by using the following instruments: (1) Information literacy test (2) Information literacy rubrics (3) Information Literacy Self-Efficacy (ILSE) Scales and (4) Questionnaire. The result indicated that students have information literacy and self-efficacy posttest mean scores higher than pretest mean scores at .05 level of significant after using CBVC in Connectivism learning process. Additionally, the study identified that the Connectivism learning process proved useful for developing information rich environment and a sense of community, and the CBVC proved useful for developing social connection.

Keywords: cloud-based, virtual classroom, connectivism, information literacy

Procedia PDF Downloads 453
7990 An Evaluation of the Trends in Land Values around Institutions of Higher Learning in North Central Nigeria

Authors: Ben Nwokenkwo, Michael M. Eze, Felix Ike

Abstract:

The need to study trends in land values around institutions of higher learning cannot be overemphasized. Numerous studies in Nigeria have investigated the economic, and social influence of the sitting of institutions of higher learning at the micro, meso and macro levels. However, very few studies have evaluated the temporal extent at which such institution influences local land values. Since institutions greatly influence both the physical and environmental aspects of their immediate vicinity, attention must be taken to understand the influence of such changes on land values. This study examines the trend in land values using the Mann-Kendall analysis in order to determine if, between its beginning and end, a monotonic increase, decrease or stability exist in the land values across six institutions of higher learning for the period between 2004 and 2014. Specifically, The analysis was applied to the time series of the price(or value) of the land .The results of this study revealed that land values has either been increasing or remained stabled across all the institution sampled. The study finally recommends measures that can be put in place as counter magnets for land values estimation across institutions of higher learning.

Keywords: influence, land, trend, value

Procedia PDF Downloads 364
7989 Effectiveness of Interactive Integrated Tutorial in Teaching Medical Subjects to Dental Students: A Pilot Study

Authors: Mohammad Saleem, Neeta Kumar, Anita Sharma, Sazina Muzammil

Abstract:

It is observed that some of the dental students in our setting take less interest in medical subjects. Various teaching methods are focus of research interest currently and being tried to generate interest among students. An approach of interactive integrated tutorial was used to assess its feasibility in teaching medical subjects to dental undergraduates. The aim was to generate interest and promote active self-learning among students. The objectives were to (1) introduce the integrated interactive learning method through two departments, (2) get feedback from the students and faculty on feasibility and effectiveness of this method. Second-year students in Bachelor of Dental Surgery course were divided into two groups. Each group was asked to study physiology and pathology of a common and important condition (anemia and hypertension) in a week’s time. During the tutorial, students asked questions on physiology and pathology of that condition from each other in the presence of teachers of both physiology and pathology departments. The teachers acted only as facilitators. After the session, the feedback from students and faculty on this alternative learning method was obtained. Results: Majority of the students felt that this method of learning is enjoyable, helped to develop reasoning skills and ability to correlate and integrate the knowledge from two related fields. Majority of the students felt that this kind of learning led to better understanding of the topic and motivated them towards deep learning. Teachers observed that the study promoted interdepartmental cross-discipline collaboration and better students’ linkages. Conclusion: Interactive integrated tutorial is effective in motivating dental students for better and deep learning of medical subjects.

Keywords: active learning, education, integrated, interactive, self-learning, tutorials

Procedia PDF Downloads 314
7988 The Use of the Mediated Learning Experience in Response of Special Needs Education

Authors: Maria Luisa Boninelli

Abstract:

This study wants to explore the effects of a mediated intervention program in a primary school. The participants where 120 students aged 8-9, half of them Italian and half immigrants of first or second generation. The activities consisted on the cognitive enhancement of the participants through Feuerstein’s Instrumental Enrichment, (IE) and on an activity centred on body awareness and mediated learning experience. Given that there are limited studied on learners in remedial schools, the current study intented to hypothesized that participants exposed to mediation would yiel a significant improvement in cognitive functioning. Hypothesis One proposed that, following the intervention, improved Q1vata scores of the participants would occur in each of the groups. Hypothesis two postulated that participants within the Mediated Learning Experience would perform significantly better than those group of control. For the intervention a group of 60 participants constituted a group of Mediation sample and were exposed to Mediated Learning Experience through Enrichment Programm. Similiary the other 60 were control group. Both the groups have students with special needs and were exposed to the same learning goals. A pre-experimental research design, in particular a one-group pretest-posttest approach was adopted. All the participants in this study underwent pretest and post test phases whereby they completed measures according to the standard instructions. During the pretest phase, all the participants were simultaneously exposed to Q1vata test for logical and linguistic evaluation skill. During the mediation intervention, significant improvement was demonstrated with the group of mediation. This supports Feuerstein's Theory that initial poor performance was a result of a lack of mediated learning experience rather than inherent difference or deficiencies. Furthermore the use of an appropriate mediated learning enabled the participants to function adequately.

Keywords: cognitive structural modifiability, learning to learn, mediated learning experience, Reuven Feuerstein, special needs

Procedia PDF Downloads 378
7987 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach

Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy

Abstract:

In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.

Keywords: interaction, machine learning, predictive modeling, virtual reality

Procedia PDF Downloads 143
7986 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia PDF Downloads 199
7985 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 388
7984 Learners' Attitudes and Expectations towards Digital Learning Paths

Authors: Eirini Busack

Abstract:

Since the outbreak of the Covid-19 pandemic and the sudden transfer to online teaching, teachers have struggled to reconstruct their teaching and learning materials to adapt them to the new reality of online teaching and learning. Consequently, the pupils’ learning was disrupted during this orientation phase. Due to the above situation, teachers from all fields concluded that it is vital that their pupils should be able to continue their learning even without the teacher being physically present. Various websites and applications have been in use since then in hope that pupils will still enjoy a qualitative education; unfortunately, this was often not the case. To address this issue, it was therefore decided to focus the research on the development of digital learning paths. The fundamentals of these learning paths include the implementation of scenario-based learning (digital storytelling), the integration of media-didactic theory to make it pedagogically appropriate for learners, alongside instructional design knowledge and the drive to promote autonomous learners. This particular research is being conducted within the frame of the research project “Sustainable integration of subject didactic digital teaching-learning concepts” (InDiKo, 2020-2023), which is currently conducted at the University of Education Karlsruhe and investigates how pre-service teachers can acquire the necessary interdisciplinary and subject-specific media-didactic competencies to provide their future learners with digitally enhanced learning opportunities, and how these competencies can be developed continuously and sustainably. As English is one of the subjects involved in this project, the English Department prepared a seminar for the pre-service secondary teachers: “Media-didactic competence development: Developing learning paths & Digital Storytelling for English grammar teaching.” During this seminar, the pre-service teachers plan and design a Moodle-based differentiated lesson sequence on an English grammar topic that is to be tested by secondary school pupils. The focus of the present research is to assess the secondary school pupils’ expectations from an English grammar-focused digital learning path created by pre-service English teachers. The nine digital learning paths that are to be distributed to 25 pupils were produced over the winter and the current summer semester as the artifact of the seminar. Finally, the data to be quantitatively analysed and interpreted derive from the online questionnaires that the secondary school pupils fill in so as to reveal their expectations on what they perceive as a stimulating and thus effective grammar-focused digital learning path.

Keywords: digital storytelling, learning paths, media-didactics, autonomous learning

Procedia PDF Downloads 80
7983 Assessment of Students Skills in Error Detection in SQL Classes using Rubric Framework - An Empirical Study

Authors: Dirson Santos De Campos, Deller James Ferreira, Anderson Cavalcante Gonçalves, Uyara Ferreira Silva

Abstract:

Rubrics to learning research provide many evaluation criteria and expected performance standards linked to defined student activity for learning and pedagogical objectives. Despite the rubric being used in education at all levels, academic literature on rubrics as a tool to support research in SQL Education is quite rare. There is a large class of SQL queries is syntactically correct, but certainly, not all are semantically correct. Detecting and correcting errors is a recurring problem in SQL education. In this paper, we usthe Rubric Abstract Framework (RAF), which consists of steps, that allows us to map the information to measure student performance guided by didactic objectives defined by the teacher as long as it is contextualized domain modeling by rubric. An empirical study was done that demonstrates how rubrics can mitigate student difficulties in finding logical errors and easing teacher workload in SQL education. Detecting and correcting logical errors is an important skill for students. Researchers have proposed several ways to improve SQL education because understanding this paradigm skills are crucial in software engineering and computer science. The RAF instantiation was using in an empirical study developed during the COVID-19 pandemic in database course. The pandemic transformed face-to-face and remote education, without presential classes. The lab activities were conducted remotely, which hinders the teaching-learning process, in particular for this research, in verifying the evidence or statements of knowledge, skills, and abilities (KSAs) of students. Various research in academia and industry involved databases. The innovation proposed in this paper is the approach used where the results obtained when using rubrics to map logical errors in query formulation have been analyzed with gains obtained by students empirically verified. The research approach can be used in the post-pandemic period in both classroom and distance learning.

Keywords: rubric, logical error, structured query language (SQL), empirical study, SQL education

Procedia PDF Downloads 190
7982 LaPEA: Language for Preprocessing of Edge Applications in Smart Factory

Authors: Masaki Sakai, Tsuyoshi Nakajima, Kazuya Takahashi

Abstract:

In order to improve the productivity of a factory, it is often the case to create an inference model by collecting and analyzing operational data off-line and then to develop an edge application (EAP) that evaluates the quality of the products or diagnoses machine faults in real-time. To accelerate this development cycle, an edge application framework for the smart factory is proposed, which enables to create and modify EAPs based on prepared inference models. In the framework, the preprocessing component is the key part to make it work. This paper proposes a language for preprocessing of edge applications, called LaPEA, which can flexibly process several sensor data from machines into explanatory variables for an inference model, and proves that it meets the requirements for the preprocessing.

Keywords: edge application framework, edgecross, preprocessing language, smart factory

Procedia PDF Downloads 146
7981 Impact of Dynamic Capabilities on Knowledge Management Processes

Authors: Farzad Yavari, Fereydoun Ohadi

Abstract:

Today, with the development and growth of technology and extreme environmental changes, organizations need to identify opportunities and create creativity and innovation in order to be able to maintain or improve their position in competition with others. In this regard, it is necessary that the resources and assets of the organization are coordinated and reviewed in accordance with the orientation of the strategy. One of the competitive advantages of the present age is knowledge management, which is to equip the organization with the knowledge of the day and disseminate among employees and use it in the development of products and services. Therefore, in the forthcoming research, the impact of dynamic capabilities components (sense, seize, and reconfiguration) has been investigated on knowledge management processes (acquisition, integration and knowledge utilization) in the MAPNA Engineering and Construction Company using a field survey and applied research method. For this purpose, a questionnaire was filled out in the form of 15 questions for dynamic components and 15 questions for measuring knowledge management components and distributed among 46 employees of the knowledge management organization. Validity of the questionnaire was evaluated through content validity and its reliability with Cronbach's coefficient. Pearson correlation test and structural equation technique were used to analyze the data. The results of the research indicate a positive significant correlation between the components of dynamic capabilities and knowledge management.

Keywords: dynamic capabilities, knowledge management, sense capability, seize capability, reconfigurable capability, knowledge acquisition, knowledge integrity, knowledge utilization

Procedia PDF Downloads 119
7980 A Computerized Tool for Predicting Future Reading Abilities in Pre-Readers Children

Authors: Stephanie Ducrot, Marie Vernet, Eve Meiss, Yves Chaix

Abstract:

Learning to read is a key topic of debate today, both in terms of its implications on school failure and illiteracy and regarding what are the best teaching methods to develop. It is estimated today that four to six percent of school-age children suffer from specific developmental disorders that impair learning. The findings from people with dyslexia and typically developing readers suggest that the problems children experience in learning to read are related to the preliteracy skills that they bring with them from kindergarten. Most tools available to professionals are designed for the evaluation of child language problems. In comparison, there are very few tools for assessing the relations between visual skills and the process of learning to read. Recent literature reports that visual-motor skills and visual-spatial attention in preschoolers are important predictors of reading development — the main goal of this study aimed at improving screening for future reading difficulties in preschool children. We used a prospective, longitudinal approach where oculomotor processes (assessed with the DiagLECT test) were measured in pre-readers, and the impact of these skills on future reading development was explored. The dialect test specifically measures the online time taken to name numbers arranged irregularly in horizontal rows (horizontal time, HT), and the time taken to name numbers arranged in vertical columns (vertical time, VT). A total of 131 preschoolers took part in this study. At Time 0 (kindergarten), the mean VT, HT, errors were recorded. One year later, at Time 1, the reading level of the same children was evaluated. Firstly, this study allowed us to provide normative data for a standardized evaluation of the oculomotor skills in 5- and 6-year-old children. The data also revealed that 25% of our sample of preschoolers showed oculomotor impairments (without any clinical complaints). Finally, the results of this study assessed the validity of the DiagLECT test for predicting reading outcomes; the better a child's oculomotor skills are, the better his/her reading abilities will be.

Keywords: vision, attention, oculomotor processes, reading, preschoolers

Procedia PDF Downloads 147
7979 Literature Review: Adversarial Machine Learning Defense in Malware Detection

Authors: Leidy M. Aldana, Jorge E. Camargo

Abstract:

Adversarial Machine Learning has gained importance in recent years as Cybersecurity has gained too, especially malware, it has affected different entities and people in recent years. This paper shows a literature review about defense methods created to prevent adversarial machine learning attacks, firstable it shows an introduction about the context and the description of some terms, in the results section some of the attacks are described, focusing on detecting adversarial examples before coming to the machine learning algorithm and showing other categories that exist in defense. A method with five steps is proposed in the method section in order to define a way to make the literature review; in addition, this paper summarizes the contributions in this research field in the last seven years to identify research directions in this area. About the findings, the category with least quantity of challenges in defense is the Detection of adversarial examples being this one a viable research route with the adaptive approach in attack and defense.

Keywords: Malware, adversarial, machine learning, defense, attack

Procedia PDF Downloads 63
7978 Preparing Japanese University Students for an Increasingly Diverse Workplace

Authors: Jane O`Halloran

Abstract:

Japanese university students have traditionally shown antipathy towards English due to a generally unsatisfactory language-learning experience at the secondary level with a focus on grammar and translation rather than communication. The situation has become urgent, however, due to the rapid decline in the Japanese population, which will present both difficulties and opportunities as employees will increasingly be forced to use English in the workplace. For university lecturers, the challenge is to overcome the students` apathy and convince them of the need for English in the increasingly diverse workplaces they will be entering. This article will illustrate how English teachers and content teachers at a private science university came together to address this quandary.

Keywords: student motivation, CLIL, globalization, demographics

Procedia PDF Downloads 103
7977 The Effects of Self-Graphing on the Reading Fluency of an Elementary Student with Learning Disabilities

Authors: Matthias Grünke

Abstract:

In this single-case study, we evaluated the effects of a self-graphing intervention to help students improve their reading fluency. Our participant was a 10-year-old girl with a suspected learning disability in reading. We applied an ABAB reversal design to test the efficacy of our approach. The dependent measure was the number of correctly read words from a children’s book within five minutes. Our participant recorded her daily performance using a simple line diagram. Results indicate that her reading rate improved simultaneously with the intervention and dropped as soon as the treatment was suspended. The findings give reasons for optimism that our simple strategy can be a very effective tool in supporting students with learning disabilities to boost their reading fluency.

Keywords: single-case study, learning disabilities, elementary education, reading problems, reading fluency

Procedia PDF Downloads 111
7976 Virtual Science Hub: An Open Source Platform to Enrich Science Teaching

Authors: Enrique Barra, Aldo Gordillo, Juan Quemada

Abstract:

This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a video conference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.

Keywords: e-learning, platform, authoring tool, science teaching, educational sciences

Procedia PDF Downloads 397
7975 New Ways of Vocabulary Enlargement

Authors: S. Pesina, T. Solonchak

Abstract:

Lexical invariants, being a sort of stereotypes within the frames of ordinary consciousness, are created by the members of a language community as a result of uniform division of reality. The invariant meaning is formed in person’s mind gradually in the course of different actualizations of secondary meanings in various contexts. We understand lexical the invariant as abstract language essence containing a set of semantic components. In one of its configurations it is the basis or all or a number of the meanings making up the semantic structure of the word.

Keywords: lexical invariant, invariant theories, polysemantic word, cognitive linguistics

Procedia PDF Downloads 322
7974 Exploring Students’ Self-Evaluation on Their Learning Outcomes through an Integrated Cumulative Grade Point Average Reporting Mechanism

Authors: Suriyani Ariffin, Nor Aziah Alias, Khairil Iskandar Othman, Haslinda Yusoff

Abstract:

An Integrated Cumulative Grade Point Average (iCGPA) is a mechanism and strategy to ensure the curriculum of an academic programme is constructively aligned to the expected learning outcomes and student performance based on the attainment of those learning outcomes that is reported objectively in a spider web. Much effort and time has been spent to develop a viable mechanism and trains academics to utilize the platform for reporting. The question is: How well do learners conceive the idea of their achievement via iCGPA and whether quality learner attributes have been nurtured through the iCGPA mechanism? This paper presents the architecture of an integrated CGPA mechanism purported to address a holistic evaluation from the evaluation of courses learning outcomes to aligned programme learning outcomes attainment. The paper then discusses the students’ understanding of the mechanism and evaluation of their achievement from the generated spider web. A set of questionnaires were distributed to a group of students with iCGPA reporting and frequency analysis was used to compare the perspectives of students on their performance. In addition, the questionnaire also explored how they conceive the idea of an integrated, holistic reporting and how it generates their motivation to improve. The iCGPA group was found to be receptive to what they have achieved throughout their study period. They agreed that the achievement level generated from their spider web allows them to develop intervention and enhance the programme learning outcomes before they graduate.

Keywords: learning outcomes attainment, iCGPA, programme learning outcomes, spider web, iCGPA reporting skills

Procedia PDF Downloads 208
7973 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks

Authors: Guanghua Zhang, Fubao Wang, Weijun Duan

Abstract:

Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.

Keywords: convolution neural network, discriminator, generator, unsupervised learning

Procedia PDF Downloads 268