Search results for: gas hydrate experiments
1034 Saponins vs Anthraquinones: Different Chemicals, Similar Ecological Roles in Marine Symbioses
Authors: Guillaume Caulier, Lola Brasseur, Patrick Flammang, Pascal Gerbaux, Igor Eeckhaut
Abstract:
Saponins and quinones are two major groups of secondary metabolites widely distributed in the biosphere. More specifically, triterpenoid saponins and anthraquinones are mainly found in a wide variety of plants, bacteria and fungi. In the animal kingdom, these natural organic compounds are rare and only found in small quantities in arthropods, marine sponges and echinoderms. In this last group, triterpenoid saponins are specific to holothuroids (sea cucumbers) while anthraquinones are the chemical signature of crinoids (feather stars). Depending on the species, they present different molecular cocktails. Despite presenting different chemical properties, these molecules share numerous similarities. This study compares the biological distribution, the pharmacological effects and the ecological roles of holothuroid saponins and crinoid anthraquinones. Both of them have been defined as allomones repelling predators and parasites (i.e. chemical defense) and have interesting pharmacological properties (e.g. anti-bacterial, anti-fungal, anti-cancer). Our study investigates the chemical ecology of two symbiotic associations models; between the snapping shrimp Synalpheus stimpsonii associated with crinoids and the Harlequin crab Lissocarcinus orbicularis associated with holothuroids. Using behavioral experiments in olfactometers, chemical extractions and mass spectrometry analyses, we discovered that saponins and anthraquinones present a second ecological role: the attraction of obligatory symbionts towards their hosts. They can, therefore, be defined as kairomones. This highlights a new paradigm in marine chemical ecology: Chemical repellents are attractants to obligatory symbionts because they constitute host specific chemical signatures.Keywords: anthraquinones, kairomones, marine symbiosis, saponins, attractant
Procedia PDF Downloads 1991033 The Effect of General Corrosion on the Guided Wave Inspection of the Pipeline
Authors: Shiuh-Kuang Yang, Sheam-Chyun Lin, Jyin-Wen Cheng, Deng-Guei Hsu
Abstract:
The torsional mode of guided wave, T(0,1), has been applied to detect characteristics and defects in pipelines, especially in the cases of coated, elevated and buried pipes. The signals of minor corrosions would be covered by the noise, unfortunately, because the coated material and buried medium always induce a strong attenuation of the guided wave. Furthermore, the guided wave would be attenuated more seriously and make the signals hard to be identified when setting the array ring of the transducers on a general corrosion area of the pipe. The objective of this study is then to discuss the effects of the above-mentioned general corrosion on guided wave tests by experiments and signal processing techniques, based on the use of the finite element method, the two-dimensional Fourier transform and the continuous wavelet transform. Results show that the excitation energy would be reduced when the array ring set on the pipe surface having general corrosion. The non-uniformed contact surface also produces the unwanted asymmetric modes of the propagating guided wave. Some of them are even mixing together with T(0,1) mode and increase the difficulty of measurements, especially when a defect or local corrosion merged in the general corrosion area. It is also showed that the guided waves attenuation are increasing with the increasing corrosion depth or the rising inspection frequency. However, the coherent signals caused by the general corrosion would be decayed with increasing frequency. The results obtained from this research should be able to provide detectors to understand the impact when the array ring set on the area of general corrosion and the way to distinguish the localized corrosion which is inside the area of general corrosion.Keywords: guided wave, finite element method, two-dimensional fourier transform, wavelet transform, general corrosion, localized corrosion
Procedia PDF Downloads 4041032 Investigating Potential Pest Management Strategies for Citrus Gall Wasp in Australia
Authors: M. Yazdani, J. F. Carragher
Abstract:
Citrus gall wasp (CGW), Bruchophagus fellis (Hym: Eurytomidae), is an Australian native insect pest. CGW has now become a problem of national concern, threatening the viability of the entire Australian citrus industry. However, CGW appears to exhibit a preference for certain citrus species; growers report that grapefruit and lemons are most severely infested, with oranges and mandarins affected to a lesser extent. Given the specificity of the host plant-insect interactions, it is speculated that plant volatiles may play a significant role in host recognition. To address whether plant volatiles is involved in host plant preference by CGW we tested the behavioral response of CGW to plants in a wind tunnel. The result showed that CGW had significantly higher preference to grapefruit and lemon than other cultivars and the least preference was recorded to mandarin (Chi-square test, P<0.001). Because CGW exhibited a detectable choice further studies were undertaken to identify the components of the volatiles from each species. We trapped the volatile chemicals emitted by a 30 cm tip of each plant onto a solid Porapak matrix. Eluted extracts were then analysed by Gas Chromatography-Mass Spectrometry (GCMS) and the presumptive identity of the major compounds from each species inferred from the MS library. Although the same major compounds existed in all of the cultivars, the relative ratios of them differed between species. Next, we will validate the identity of the key volatiles using authentic standards and establish their ability to elicit olfactory responses in CGW in wind tunnel and field experiments. Identification of semiochemicals involved in host location by CGW is of interest not only from an ecological perspective but also for the development of novel pest control strategies.Keywords: Citrus gall wasp, Bruchophagus fellis, volatiles, semiochemicals, IPM
Procedia PDF Downloads 2321031 Double-Spear 1-H2-1 Oncolytic-Immunotherapy for Refractory and Relapsing High-Risk Human Neuroblastoma and Glioma
Authors: Lian Zeng
Abstract:
Double-Spear 1-H2-1 (DS1-H2-1) is an oncolytic virus and an innovative biological drug candidate. The chemical composition of the drug product is a live attenuated West Nile virus (WNV) containing the human T cell costimulator (CD86) gene. After intratumoral injection, the virus can rapidly self-replicate in the injected site and lyse/kill the tumor by repeated infection among tumor cells. We also established xenograft tumor models in mice to evaluate the drug candidate's efficacy on those tumors. The results from preclinical studies on transplanted tumors in immunodeficient mice showed that DS1-H2-1 had significant oncolytic effects on human-origin cancers: it completely (100%) shrieked human glioma; limited human neuroblastoma growth reached as high as 95% growth inhibition rate (%TGITW). The safety data of preclinical animal experiments confirmed that DS1-H2-1 is safe as a biological drug for clinical use. In the preclinical drug efficacy experiment, virus-drug administration with different doses did not show abnormal signs and disease symptoms in more than 300 tested mice, and no side effects or death occurred through various administration routes. Intravenous administration did not cause acute infectious disease or other side effects. However, the replication capacity of the virus in tumor tissue via intravenous administration is only 1% of that of direct intratumoral administration. The direct intratumoral administration of DS1-H2-1 had a higher rate of viral replication. Therefore, choosing direct intratumoral injection can ensure both efficacy and safety.Keywords: oncolytic virus, WNV-CD86, immunotherapy drugs, glioma, neuroblastoma
Procedia PDF Downloads 1321030 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 771029 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods
Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim
Abstract:
Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.Keywords: economical analysis, probability of failure, retaining walls, statistical analysis
Procedia PDF Downloads 4061028 Development of Site-Specific Colonic Drug Delivery System (Nanoparticles) of Chitosan Coated with pH Sensitive Polymer for the Management of Colonic Inflammation
Authors: Pooja Mongia Raj, Rakesh Raj, Alpana Ram
Abstract:
Background: The use of multiparticulate drug delivery systems in preference to single unit dosage forms for colon targeting purposes dates back to 1985 when Hardy and co-workers showed that multiparticulate systems enabled the drug to reach the colon quickly and were retained in the ascending colon for a relatively long period of time. Methods: Site-specific colonic drug delivery system (nanoparticles) of 5-ASA were prepared and coated with pH sensitive polymer. Chitosan nanoparticles (CTNP) bearing 5-Amino salicylic acid (5-ASA) were prepared, by ionotropic gelation method. Nanoparticulate dosage form consisting of a hydrophobic core enteric coated with pH-dependent polymer Eudragit S-100 by solvent evaporation method, for the effective delivery of drug to the colon for treatment of ulcerative colitis. Results: The mean diameter of CTNP and ECTNP formulations were 159 and 661 nm, respectively. Also optimum value of polydispersity index was found to be 0.249 [count rate (kcps) was 251.2] and 0.170 [count rate (kcps) was 173.9] was obtained for both the formulations respectively. Conclusion: CTNP and Eudragit chitosan nanoparticles (ECTNP) was characterized for shape and surface morphology by scanning electron microscopy (SEM) appeared to be spherical in shape. The in vitro drug release was investigated using USP dissolution test apparatus in different simulated GIT fluids showed promising release. In vivo experiments are in further proceeding for fruitful results.Keywords: colon targeting, nanoparticles, polymer, 5-amino salicylic acid, edragit
Procedia PDF Downloads 4951027 Biofuel Production via Thermal Cracking of Castor Methyl Ester
Authors: Roghaieh Parvizsedghy, Seyed Mojtaba Sadrameli
Abstract:
Diminishing oil reserves, deteriorating health standards because of greenhouse gas emissions and associated environmental impacts have emerged biofuel production. Vegetable oils are proved to be valuable feedstock in these growing industries as they are renewable and potentially inexhaustible sources. Thermal Cracking of vegetable oils (triglycerides) leads to production of biofuels which are similar to fossil fuels in terms of composition but their combustion and physical properties have limits. Acrolein (very poisonous gas) and water production during cracking of triglycerides occurs because of presence of glycerin in their molecular structure. Transesterification of vegetable oil is a method to extract glycerol from triglycerides structure and produce methyl ester. In this study, castor methyl ester was used for thermal cracking in order to survey the efficiency of this method to produce bio-gasoline and bio-diesel. Thus, several experiments were designed by means of central composite method. Statistical studies showed that two reaction parameters, namely cracking temperature and feed flowrate, affect products yield significantly. At the optimized conditions (480 °C and 29 g/h) for maximum bio-gasoline production, 88.6% bio-oil was achieved which was distilled and separated as bio-gasoline (28%) and bio-diesel (48.2%). Bio-gasoline exposed a high octane number and combustion heat. Distillation curve and Reid vapor pressure of bio-gasoline fell in the criteria of standard gasoline (class AA) by ASTM D4814. Bio-diesel was compatible with standard diesel by ASTM D975. Water production was negligible and no evidence of acrolein production was distinguished. Therefore, thermal cracking of castor methyl ester could be used as a method to produce valuable biofuels.Keywords: bio-diesel, bio-gasoline, castor methyl ester, thermal cracking, transesterification
Procedia PDF Downloads 2401026 Deuterium Effect on the Growth of the Fungus Aspergillus Fumigatus and Candida Albicans
Authors: Farzad Doostishoar, Abdolreza Hasanzadeh, Seyed Amin Ayatolahi Mousavi
Abstract:
Introduction and Goals: Deuterium has different action from its isotopes hydrogen in chemical reactions and biochemical processes. It is not a significant difference in heavier atoms between the behavior of heavier isotope and the lighter One but for very lighter atoms it is significant . According to that most of the weight of all creatures body is water natural rate can be significant. In this article we want to study the effect of reduced deuterium on the fungus cell. If we saw the dependence of deuterium concentration of environment on the cells growth we can test this in invivo models too. Methods: First we measured deuterium concentration of the distillated water this analyze was operated by Arak’s heavy water company. Then the deuterium was diluted to ½ ¼ 1/8 1/16 by adding water free of deuterium for making media. In tree of samples the deuterium concentration was increased by adding D2O up to 10,50,100 times more concentrated. For candida albicans growth we used sabor medium and for aspergillus fomigatis growth we used sabor medium containing chloramphenicol. After culturing the funguses species we put the mediums for each species in the shaker incubator for 10 days in 25 centigrade. In different days and times the plates were studied morphologically and some microscopic characteristics were studied too. This experiments and cultures were repeated 3 times. Results: Statistical analyzes by paired-sample T test showed that aspergilus fomigatoos growth was decreased in concentration of 72 ppm( half deuterium concentration of negative control) significantly. In deuterium concentration reduction the growth reduce into the negative control significantly. The project results showed that candida albicans was sensitive to reduce and decrease of the deuterium in all concentrations.Keywords: deuterium, cancer cell, growth, candida albicans
Procedia PDF Downloads 4011025 Synthesis, Characterization of Organic and Inorganic Zn-Al Layered Double Hydroxides and Application for the Uptake of Methyl Orange from Aqueous Solution
Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohammed Abdennouri, Noureddine Barka
Abstract:
Zn-Al layered double hydroxides containing carbonate, nitrate and dodecylsulfate as the interlamellar anions have been prepared through a coprecipitation method. The resulting compounds were characterized using XRD, ICP, FTIR, TGA/DTA, TEM/EDX and pHPZC analysis. The XRD patterns revealed that carbonate and nitrate could be intercalated into the interlayer structure with basal spacing of 22.74 and 26.56 Å respectively. Bilayer intercalation of dodecylsulfate molecules was achieved in Zn-Al LDH with a basal spacing of 37.86 Å. The TEM observation indicated that the materials synthesized via coprecipitation present nanoscale LDH particle. The average particle size of Zn-AlCO3 is 150 to 200 nm. Irregular circular to hexagonal shaped particles with 30 to 40 nm in diameter was observed in the Zn-AlNO3 morphology. TEM image of Zn-AlDs display nanostructured sheet like particles with size distribution between 5 to 10 nm. The sorption characteristics and mechanisms of methyl orange dye on organic LDH were investigated and were subsequently compared with that on the inorganic Zn-Al layered double hydroxides. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. The adsorption behavior onto inorganic LDHs was obviously influenced by initial pH. However, the adsorption capacity of organic LDH was influenced indistinctively by initial pH and the removal percentage of MO was practically constant at various value of pH. As the MO concentration increased, the curve of adsorption capacity became L-type onto LDHs. The adsorption behavior for Zn-AlDs was proposed by the dissolution of dye in a hydrophobic interlayer region (i.e., adsolubilization). The results suggested that Zn-AlDs could be applied as a potential adsorbent for MO removal in a wide range of pH.Keywords: adsorption, dodecylsulfate, kinetics, layered double hydroxides, methyl orange removal
Procedia PDF Downloads 2931024 An Energy-Balanced Clustering Method on Wireless Sensor Networks
Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu
Abstract:
In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network
Procedia PDF Downloads 2741023 Social-Cognitive Aspects of Interpretation: Didactic Approaches in Language Processing and English as a Second Language Difficulties in Dyslexia
Authors: Schnell Zsuzsanna
Abstract:
Background: The interpretation of written texts, language processing in the visual domain, in other words, atypical reading abilities, also known as dyslexia, is an ever-growing phenomenon in today’s societies and educational communities. The much-researched problem affects cognitive abilities and, coupled with normal intelligence normally manifests difficulties in the differentiation of sounds and orthography and in the holistic processing of written words. The factors of susceptibility are varied: social, cognitive psychological, and linguistic factors interact with each other. Methods: The research will explain the psycholinguistics of dyslexia on the basis of several empirical experiments and demonstrate how domain-general abilities of inhibition, retrieval from the mental lexicon, priming, phonological processing, and visual modality transfer affect successful language processing and interpretation. Interpretation of visual stimuli is hindered, and the problem seems to be embedded in a sociocultural, psycholinguistic, and cognitive background. This makes the picture even more complex, suggesting that the understanding and resolving of the issues of dyslexia has to be interdisciplinary, aided by several disciplines in the field of humanities and social sciences, and should be researched from an empirical approach, where the practical, educational corollaries can be analyzed on an applied basis. Aim and applicability: The lecture sheds light on the applied, cognitive aspects of interpretation, social cognitive traits of language processing, the mental underpinnings of cognitive interpretation strategies in different languages (namely, Hungarian and English), offering solutions with a few applied techniques for success in foreign language learning that can be useful advice for the developers of testing methodologies and measures across ESL teaching and testing platforms.Keywords: dyslexia, social cognition, transparency, modalities
Procedia PDF Downloads 841022 Mechanisms and Regulation of the Bi-directional Motility of Mitotic Kinesin Nano-motors
Authors: Larisa Gheber
Abstract:
Mitosis is an essential process by which duplicated genetic information is transmitted from mother to daughter cells. Incorrect chromosome segregation during mitosis can lead to genetic diseases, chromosome instability and cancer. This process is mediated by a dynamic microtubule-based intracellular structure, the mitotic spindle. One of the major factors that govern the mitotic spindle dynamics are the kinesin-5 biological nano motors that were believed to move unidirectionally on the microtubule filaments, using ATP hydrolysis, thus performing essential functions in mitotic spindle dynamics. Surprisingly, several reports from our and other laboratories have demonstrated that some kinesin-5 motors are bi-directional: they move in minus-end direction on the microtubules as single-molecules and can switch directionality under a number of conditions. These findings broke a twenty-five-years old dogma regarding kinesin directionality (1, 2). The mechanism of this bi-directional motility and its physiological significance remain unclear. To address this unresolved problem, we apply an interdisciplinary approach combining live cell imaging, biophysical single molecule, and structural experiments to examine the activity of these motors and their mutated variants in vivo and in vitro. Our data shows that factors such as protein phosphorylation (3, 4), motor clustering on the microtubules (5, 6) and structural elements (7, 8) regulate the bi-directional motility of kinesin motors. We also show, using Cryo-EM, that bi-directional kinesin motors obtain non-canonical microtubule binding, which is essential to their special motile properties and intracellular functions. We will discuss the implication of these findings to mechanism bi-directional motility and physiological roles in mitosis.Keywords: mitosis, cancer, kinesin, microtubules, biochemistry, biophysics
Procedia PDF Downloads 811021 Effect of Pole Weight on Nordic Walking
Authors: Takeshi Sato, Mizuki Nakajima, Macky Kato, Shoji Igawa
Abstract:
The purpose of study was to investigate the effect of varying pole weights on energy expenditure, upper limb and lower limb muscle activity as Electromyogram during Nordic walking (NW). Four healthy men [age = 22.5 (±1.0) years, body mass = 61.4 (±3.6) kg, height = 170.3 (±4.3) cm] and three healthy women [age = 22.7 (±2.9) years, body mass = 53.0 (±1.7) kg, height = 156.7 (±4.5) cm] participated in the experiments after informed consent. Seven healthy subjects were tested on the treadmill, walking, walking (W) with Nordic Poles (NW) and walking with 1kg weight Nordic Poles (NW+1). Walking speed was 6 km per hours in all trials. Eight EMG activities were recorded by bipolar surface methods in biceps brachii, triceps brachii, trapezius, deltoideus, tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris muscles. And heart rate (HR), oxygen uptake (VO2), and rate of perceived exertion (RPE) were measured. The level of significance was set at a = 0.05, with p < 0.05 regarded as statistically significant. Our results confirmed that use of NW poles increased HR at a given upper arm muscle activity but decreased lower limb EMGs in comparison with W. Moreover NW was able to increase more step lengths with hip joint extension during NW rather than W. Also, EMG revealed higher activation of upper limb for almost all NW and 1kgNW tests plus added masses compared to W (p < 0.05). Therefore, it was thought either of NW and 1kgNW were to have benefit as a physical exercise for safe, feasible, and readily training for a wide range of aged people in the quality of daily life. However, there was no significant effected in leg muscles activity by using 1kgNW except for upper arm muscle activity during Nordic pole walking.Keywords: Nordic walking, electromyogram, heart rate, RPE
Procedia PDF Downloads 2391020 Evaluation of Stable Isotope in Life History and Mating Behaviour of Mediterranean Fruit Fly Ceratitis capitata (Diptera: Tephidae) in Laboratory Conditions
Authors: Hasan AL-Khshemawee, Manjree Agarwal, Xin Du, Yonglin Ren
Abstract:
The possibility use of stable isotopes to study Medfly mating and life history were investigated in these experiments. 13C6 glucose was incorporated in the diet of the Mediterranean fruit fly Ceratitis capitata (Diptera: Tephidae). Treatments included labelling and unlabelled of either the media or adult sugar water. The measured started from egg hatching till the adults have died. After mating, the adults were analysed for 13C6 glucose ratio using Liquid chromatography-mass spectrometry LC-MS in two periods of time immediately and after three days of mating. Results showed that stable isotopes were used successfully for labelling Medfly in laboratory conditions, and there were significant differences between labelled and unlabelled treatment in eggs hatching, larval development, pupae emergence, survival of adults and mating behaviour. Labelling during larval development and combined labelling of larvae and adults resulted in detectable values. The label glucose in larvae stage did not effect on mating behaviour, however, the label glucose in adults’ stage was affected by mating behaviour. We recommended that it is possible to label adults of Mediterranean fruit fly C. capitata and detected the label after mating. This method offers good tools to study mating behaviour in Medfly and other types of insects and could be providing useful tools in genetic studies, sterile insect technique (SIT) or agricultural pest management. Also, we recommended using this technique in the field.Keywords: stable isotope, sterile insect technique (SIT), medfly, mating behaviour
Procedia PDF Downloads 2561019 Thermolysin Entrapment in a Gold Nanoparticles/Polymer Composite: Construction of an Efficient Biosensor for Ochratoxin a Detection
Authors: Fatma Dridi, Mouna Marrakchi, Mohammed Gargouri, Alvaro Garcia Cruz, Sergei V. Dzyadevych, Francis Vocanson, Joëlle Saulnier, Nicole Jaffrezic-Renault, Florence Lagarde
Abstract:
An original method has been successfully developed for the immobilization of thermolysin onto gold interdigitated electrodes for the detection of ochratoxin A (OTA) in olive oil samples. A mix of polyvinyl alcohol (PVA), polyethylenimine (PEI) and gold nanoparticles (AuNPs) was used. Cross-linking sensors chip was made by using a saturated glutaraldehyde (GA) vapor atmosphere in order to render the two polymers water stable. Performance of AuNPs/ (PVA/PEI) modified electrode was compared to a traditional immobilized enzymatic method using bovine serum albumin (BSA). Atomic force microscopy (AFM) experiments were employed to provide a useful insight into the structure and morphology of the immobilized thermolysin composite membranes. The enzyme immobilization method influence the topography and the texture of the deposited layer. Biosensors optimization and analytical characteristics properties were studied. Under optimal conditions AuNPs/ (PVA/PEI) modified electrode showed a higher increment in sensitivity. A 700 enhancement factor could be achieved with a detection limit of 1 nM. The newly designed OTA biosensors showed a long-term stability and good reproducibility. The relevance of the method was evaluated using commercial doped olive oil samples. No pretreatment of the sample was needed for testing and no matrix effect was observed. Recovery values were close to 100% demonstrating the suitability of the proposed method for OTA screening in olive oil.Keywords: thermolysin, A. ochratoxin , polyvinyl alcohol, polyethylenimine, gold nanoparticles, olive oil
Procedia PDF Downloads 5911018 Microstructure Evolution and Modelling of Shear Forming
Authors: Karla D. Vazquez-Valdez, Bradley P. Wynne
Abstract:
In the last decades manufacturing needs have been changing, leading to the study of manufacturing methods that were underdeveloped, such as incremental forming processes like shear forming. These processes use rotating tools in constant local contact with the workpiece, which is often also rotating, to generate shape. This means much lower loads to forge large parts and no need for expensive special tooling. Potential has already been established by demonstrating manufacture of high-value products, e.g., turbine and satellite parts, with high dimensional accuracy from difficult to manufacture materials. Thus, huge opportunities exist for these processes to replace the current method of manufacture for a range of high value components, e.g., eliminating lengthy machining, reducing material waste and process times; or the manufacture of a complicated shape without the development of expensive tooling. However, little is known about the exact deformation conditions during processing and why certain materials are better than others for shear forming, leading to a lot of trial and error before production. Three alloys were used for this study: Ti-54M, Jethete M154, and IN718. General Microscopy and Electron Backscatter Diffraction (EBSD) were used to measure strains and orientation maps during shear forming. A Design of Experiments (DOE) analysis was also made in order to understand the impact of process parameters in the properties of the final workpieces. Such information was the key to develop a reliable Finite Element Method (FEM) model that closely resembles the deformation paths of this process. Finally, the potential of these three materials to be shear spun was studied using the FEM model and their Forming Limit Diagram (FLD) which led to the development of a rough methodology for testing the shear spinnability of various metals.Keywords: shear forming, damage, principal strains, forming limit diagram
Procedia PDF Downloads 1641017 Improved Water Productivity by Deficit Irrigation: Implications for Water Saving in Orange, Olive and Vineyard Orchards in Arid Conditions of Tunisia
Authors: K. Nagaz, F. El Mokh, M. Masmoudi, N. Ben Mechlia, M. O. Baba Sy, G. Ghiglieri
Abstract:
Field experiments on deficit irrigation (DI) were performed in Médenine, Tunisia on drip-irrigated olive, orange and grapevine orchards during 2013 and 2014. Four irrigation treatments were compared: full irrigation (FI), which was irrigated at 100% of ETc for the whole season; two deficit irrigation (DI) strategies -DI75 and DI50- which received, respectively, 25 and 50% less water than FI; and traditional farming management (FM) - with water input much less than actually needed. The traditional farming (FM) applied 11, 18, 30 and 33% less water than the FI treatment, respectively, in orange, grapevine and table and oil olive orchards, indicating that the farmers practices represent a form of unintended deficit irrigation. Yield was reduced when deficit irrigation was applied and there were significant differences between DI75, DI50 and FM treatments. Significant differences were not observed between DI50 and FM treatments even though numerically smaller yield was observed in the former (DI50) as compared to the latter (FM). The irrigation water productivity (IWP) was significantly affected by irrigation treatments. The smallest IWP was recorded under the FI treatment, while the largest IWP was obtained under the deficit irrigation treatment (DI50). The DI50 and FM treatments reduced the economic return compared to the full treatment (FI), while the DI75 treatment resulted in a better economic return in respect to DI50 and FM. Full irrigation (FI) could be recommended for olive, orange and grapevine irrigation under the arid climate of Tunisia. Nevertheless, the treatment DI75 can be applied as a strategy under water scarcity conditions in commercial olive, orange and grapevine orchards allowing water savings up to 25% but with some reduction in yield and net return. The results would be helpful in adopting deficit irrigation in ways that enhance net financial returns.Keywords: water productivity, deficit irrigation, drip irrigation, orchards
Procedia PDF Downloads 2231016 Determination of Optimum Conditions for the Leaching of Oxidized Copper Ores with Ammonium Nitrate
Authors: Javier Paul Montalvo Andia, Adriana Larrea Valdivia, Adolfo Pillihuaman Zambrano
Abstract:
The most common lixiviant in the leaching process of copper minerals is H₂SO₄, however, the current situation requires more environmentally friendly reagents and in certain situations that have a lower consumption due to the presence of undesirable gangue as muscovite or kaolinite that can make the process unfeasible. The present work studied the leaching of an oxidized copper mineral in an aqueous solution of ammonium nitrate, in order to obtain the optimum leaching conditions of the copper contained in the malachite mineral from Peru. The copper ore studied comes from a deposit in southern Peru and was characterized by X-ray diffractometer, inductively coupled-plasma emission spectrometer (ICP-OES) and atomic absorption spectrophotometry (AAS). The experiments were developed in batch reactor of 600 mL where the parameters as; temperature, pH, ammonium nitrate concentration, particle size and stirring speed were controlled according to experimental planning. The sample solution was analyzed for copper by atomic absorption spectrophotometry (AAS). A simulation in the HSC Chemistry 6.0 program showed that the predominance of the copper compounds of a Cu-H₂O aqueous system is altered by the presence in the system of ammonium complexes, the compound being thermodynamically more stable Cu(NH3)₄²⁺, which predominates in pH ranges from 8.5 to 10 at a temperature of 25 °C. The optimum conditions for copper leaching of the malachite mineral were a stirring speed of 600 rpm, an ammonium nitrate concentration of 4M, a particle diameter of 53 um and temperature of 62 °C. These results showed that the leaching of copper increases with increasing concentration of the ammonium solution, increasing the stirring rate, increasing the temperature and decreasing the particle diameter. Finally, the recovery of copper in optimum conditions was above 80%.Keywords: ammonium nitrate, malachite, copper oxide, leaching
Procedia PDF Downloads 1891015 An Ultrasonic Approach to Investigate the Effect of Aeration on Rheological Properties of Soft Biological Materials with Bubbles Embedded
Authors: Hussein M. Elmehdi
Abstract:
In this paper, we present the results of our recent experiments done to examine the effect of air bubbles, which were introduced to bio-samples during preparation, on the rheological properties of soft biological materials. To effectively achieve this, we three samples each prepared with differently. Our soft biological systems comprised of three types of flour dough systems made from different flour varieties with variable protein concentrations. The samples were investigated using ultrasonic waves operated at low frequency in transmission mode. The sample investigated included dough made from bread flour, wheat flour and all-purpose flour. During mixing, the main ingredient of the samples (the flour) was transformed into cohesive dough comprised of the continuous dough matrix and air pebbles. The rheological properties of such materials determine the quality of the end cereal product. Two ultrasonic parameters, the longitudinal velocity and attenuation coefficient were found to be very sensitive to properties such as the size of the occluded bubbles, and hence have great potential of providing quantitative evaluation of the properties of such materials. The results showed that the magnitudes of the ultrasonic velocity and attenuation coefficient peaked at optimum mixing times; the latter of which is taken as an indication of the end of the mixing process. There was an agreement between the results obtained by conventional rheology and ultrasound measurements, thus showing the potential of the use of ultrasound as an on-line quality control technique for dough-based products. The results of this work are explained with respect to the molecular changes occurring in the dough system as the mixing process proceeds; particular emphasis is placed on the presence of free water and bound water.Keywords: ultrasound, soft biological materials, velocity, attenuation
Procedia PDF Downloads 2771014 Fake News Detection Based on Fusion of Domain Knowledge and Expert Knowledge
Authors: Yulan Wu
Abstract:
The spread of fake news on social media has posed significant societal harm to the public and the nation, with its threats spanning various domains, including politics, economics, health, and more. News on social media often covers multiple domains, and existing models studied by researchers and relevant organizations often perform well on datasets from a single domain. However, when these methods are applied to social platforms with news spanning multiple domains, their performance significantly deteriorates. Existing research has attempted to enhance the detection performance of multi-domain datasets by adding single-domain labels to the data. However, these methods overlook the fact that a news article typically belongs to multiple domains, leading to the loss of domain knowledge information contained within the news text. To address this issue, research has found that news records in different domains often use different vocabularies to describe their content. In this paper, we propose a fake news detection framework that combines domain knowledge and expert knowledge. Firstly, it utilizes an unsupervised domain discovery module to generate a low-dimensional vector for each news article, representing domain embeddings, which can retain multi-domain knowledge of the news content. Then, a feature extraction module uses the domain embeddings discovered through unsupervised domain knowledge to guide multiple experts in extracting news knowledge for the total feature representation. Finally, a classifier is used to determine whether the news is fake or not. Experiments show that this approach can improve multi-domain fake news detection performance while reducing the cost of manually labeling domain labels.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 731013 Application of Computational Chemistry for Searching Anticancer Derivatives of 2-Phenazinamines as Bcr-Abl Tyrosine Kinase Inhibitors
Authors: Gajanan M. Sonwane
Abstract:
The computational studies on 2-phenazinamines with their protein targets have been carried out to design compounds with potential anticancer activity. This strategy of designing compounds possessing selectivity over specific tyrosine kinase has been achieved through G-QSAR and molecular docking studies. The objective of this research has been to design newer 2-phenazinamine derivatives as Bcr-Abl tyrosine kinase inhibitors by G-QSAR, molecular docking studies followed by wet-lab studies along with evaluation of their anticancer potential. Computational chemistry was done by using VLife MDS 4.3 and Autodock 4.2 followed by wet-lab experiments for synthesizing 2-phenazinamine derivatives. The chemical structures of ligands in 2D were drawn by employing Chemdraw 2D Ultra 8.0 and were converted into 3D. These were optimized by using a semi-empirical method called MOPAC. The protein structure was retrieved from RCSC protein data bank as a PDB file. The binding interactions of protein and ligands were done by using PYMOL. The molecular properties of the designed compounds were predicted in silico by using Osiris property explorer. The parent compound 2-phenazinamine was synthesized by reduction of 2, 4-dinitro-N-phenyl-benzenamine in the presence of tin chloride followed by cyclization in the presence of nitrobenzene and magnesium sulfate. The derivatization at the amino function of 2-phenazinamine was performed by treating parent compound with various aldehydes in the presence of dicyclohexylcarbodiimide (DCC) and urea to afford 2-(2-chlorophenyl)-3-(phenazine-2-yl) thiazolidine-4-one. Synthesized 39 novel derivatives of 2-phenazinamine and performed antioxidant activity, anti antiproliferative on the bulb of onion and anticancer activity on cell line showing significant competition with marked blockbuster drug imatinib.Keywords: computer-aided drug design, tyrosin kinases, anticancer, docking
Procedia PDF Downloads 1401012 Improving Patient-Care Services at an Oncology Center with a Flexible Adaptive Scheduling Procedure
Authors: P. Hooshangitabrizi, I. Contreras, N. Bhuiyan
Abstract:
This work presents an online scheduling problem which accommodates multiple requests of patients for chemotherapy treatments in a cancer center of a major metropolitan hospital in Canada. To solve the problem, an adaptive flexible approach is proposed which systematically combines two optimization models. The first model is intended to dynamically schedule arriving requests in the form of waiting lists whereas the second model is used to reschedule the already booked patients with the goal of finding better resource allocations when new information becomes available. Both models are created as mixed integer programming formulations. Various controllable and flexible parameters such as deviating the prescribed target dates by a pre-determined threshold, changing the start time of already booked appointments and the maximum number of appointments to move in the schedule are included in the proposed approach to have sufficient degrees of flexibility in handling arrival requests and unexpected changes. Several computational experiments are conducted to evaluate the performance of the proposed approach using historical data provided by the oncology clinic. Our approach achieves outstandingly better results as compared to those of the scheduling system being used in practice. Moreover, several analyses are conducted to evaluate the effect of considering different levels of flexibility on the obtained results and to assess the performance of the proposed approach in dealing with last-minute changes. We strongly believe that the proposed flexible adaptive approach is very well-suited for implementation at the clinic to provide better patient-care services and to utilize available resource more efficiently.Keywords: chemotherapy scheduling, multi-appointment modeling, optimization of resources, satisfaction of patients, mixed integer programming
Procedia PDF Downloads 1691011 3D Human Face Reconstruction in Unstable Conditions
Authors: Xiaoyuan Suo
Abstract:
3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition
Procedia PDF Downloads 1501010 Novel Bioinspired Design to Capture Smoky CO2 by Reactive Absorption with Aqueous Scrubber
Authors: J. E. O. Hernandez
Abstract:
In the next 20 years, energy production by burning fuels will increase and so will the atmospheric concentration of CO2 and its well-known threats to life on Earth. The technologies available for capturing CO2 are still dubious and this keeps fostering an interest in bio-inspired approaches. The leading one is the application of carbonic anhydrase (CA) –a superfast biocatalyst able to convert up to one million molecules of CO2 into carbonates in water. However, natural CA underperforms when applied to real smoky CO2 in chimneys and, so far, the efforts to create superior CAs in the lab rely on screening methods running under pristine conditions at the micro level, which are far from resembling those in chimneys. For the evolution of man-made enzymes, selection rather than screening would be ideal but this is challenging because of the need for a suitable artificial environment that is also sustainable for our society. Herein we present the stepwise design and construction of a bioprocess (from bench-scale to semi-pilot) for evolutionary selection experiments. In this bioprocess, reaction and adsorption took place simultaneously at atmospheric pressure in a spray tower. The scrubbing solution was fed countercurrently by reusing municipal pressure and it was mainly prepared with water, carbonic anhydrase and calcium chloride. This bioprocess allowed for the enzymatic carbonation of smoky CO2; the reuse of process water and the recovery of solid carbonates without cooling of smoke, pretreatments, solvent amines and compression of CO2. The average yield of solid carbonates was 0.54 g min-1 or 12-fold the amount produced in serum bottles at lab bench scale. This bioprocess could be used as a tailor-made environment for driving the selection of superior CAs. The bioprocess and its match CA could be sustainably used to reduce global warming by CO2 emissions from exhausts.Keywords: biological carbon capture and sequestration, carbonic anhydrase, directed evolution, global warming
Procedia PDF Downloads 1931009 Sun-Light Driven Photocatalytic Degradation of Tetracycline Antibiotics Employing Hydrothermally Synthesized sno₂/mnv₂o₆ Heterojunction
Authors: Sandeep Kaushal
Abstract:
Tetracycline (TC) is a widespread antibiotic that is utilised in a multitude of countries, particularly China, India, and the United States of America, due to its low cost and potency in boosting livestock production. Unfortunately, certain antibiotics can be hazardous to living beings due to metal complexation and aggregation, which can lead to teratogenicity and carcinogenicity. Heterojunction photocatalysts are promising for the effective removal of pollutants like antibiotics. Herein, a simple, economical, and pollution-less hydrothermal technique was used to construct SnO₂/MnV₂O₆heterojunction with varying amounts of tin dioxide (SO₂). Various sophisticated techniques like XRD, FTIR, XPS, FESEM, HRTEM, and PLand Raman spectroscopy demonstrated the successful synthesis of SnO₂/MnV₂O₆ heterojunction photocatalysts.BET surface area analysis revealed that the as-synthesized heterojunction has a favorable surface area and surface properties for efficacious degradation of tetracycline. Under the direct sunlight exposure, the SnO₂/MnV₂O₆ heterojunction possessed superior photodegradation activity toward TC than the pristine SnO₂ and MnV2O6owing to their excellent adsorption abilities suitable band positions, large surface areas along with the effective charge-transfer ability of the heterojunction. The SnO₂/MnV₂O₆ heterojunction possessed extraordinary efficiency for the photocatalytic degradation of TC antibiotic (98% in 60 min) with an apparent rate constant of 0.092 min–1. In the degradation experiments, photocatalytic activities of as-synthesized heterojunction were studied by varying different factors such as time contact, catalyst dose, and solution pH. The role of reactive species in antibiotics was validated by radical scavenging studies, which indicated that.OH, radical has a critical role in photocatalytic degradation. Moreover, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.Keywords: photocatalytic degradation, tetracycline, heterojunction, LC-MS
Procedia PDF Downloads 1061008 Electromechanical Reliability of ITO/Ag/ITO Multilayer Coated Pet Substrate for Optoelectronic Application
Authors: D. W. Mohammed, J. Bowen, S. N. Kukureka
Abstract:
Successful design and fabrication of flexible devices for electrode components requires a low sheet resistance, high optical transmittance, high mechanical reliability. Indium tin oxide (ITO) film is currently the predominant transparent conductive oxide (TCO) film in potential applications such as flexible organic light- emitting diodes, flat-panel displays, solar cells, and thin film transistors (TFTs). However ITO films are too brittle and their resistivity is rather high in some cases compared with ITO/Ag/ ITO, and they cannot completely meet flexible optoelectronic device requirements. Therefore, in this work the mechanical properties of ITO /Ag/ITO multilayer film that deposited on Polyethylene terephthalate (PET) compared with the single layered ITO sample were investigated using bending fatigue, twisting fatigue and thermal cycling experiments. The electrical resistance was monitored during the application of mechanical and thermal loads to see the pattern of relationship between the load and the electrical continuity as a consequent of failure. Scanning electron microscopy and atomic force microscopy were used to provide surface characterization of the mechanically-tested samples. The effective embedment of the Ag layer between upper and lower ITO films led to metallic conductivity and superior flexibility to the single ITO electrode, due to the high failure strain of the ductile Ag layer. These results indicate that flexible ITO/Ag/ITO multilayer electrodes are a promising candidate for use as transparent conductor in flexible displays. They provided significantly reduced sheet resistance compared to ITO, and improved bending and twisting properties both as a function of radius, angle and thermal cycling.Keywords: ITO/Ag/ITO multilayer, failure strain, mechanical properties, PET
Procedia PDF Downloads 2961007 Effect of Ultrasound-Assisted Pretreatment on Saccharification of Spent Coffee Grounds
Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal
Abstract:
EU is known as the destination with the highest rate of the coffee consumption per capita in the world. Spent coffee grounds (SCG) are the main by-product of coffee brewing. SCG is either disposed as a solid waste or employed as compost, although the polysaccharides from such lignocellulosic biomass might be used as feedstock for fermentation processes. However, SCG as a lignocellulose have a complex structure and pretreatment process is required to facilitate an efficient enzymatic hydrolysis of carbohydrates. However, commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Ultrasound is a promising candidate as a sustainable green pretreatment solution for lignocellulosic biomass utilization in a large scale biorefinery. Thus, ultrasound pretreatment of SCG without adding harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, ultrasound pretreatment experiments were conducted on SCG using different ultrasound frequencies (25, 35, 45, 130, and 950 kHz) for 60 min. Regardless of ultrasound power, low ultrasound frequency is more effective than high ultrasound frequency in pretreatment of biomass. Ultrasound pretreatment of SCG (at ultrasound frequency of 25 kHz for 60 min) followed by enzymatic hydrolysis resulted in total reducing sugars of 56.1 ± 2.8 mg/g of biomass. Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose by low frequency ultrasound in water only was found to be an effective green approach for SCG to improve saccharification and glucose yield compared to native biomass. Pretreatment conditions will be optimized, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol.Keywords: lignocellulose, ultrasound, pretreatment, spent coffee grounds
Procedia PDF Downloads 3261006 In Vitro Antioxidant and Free Radical Scavenging Activity of Phyllanthus Emblica L. Extract
Authors: Benyapa Suksuwan
Abstract:
Introduction: Oxidative stress is identified as the root cause of the development and progression of several diseases as the disproportion of free radicals in the body leads to tissue or cell damage. Polyphenols are the most common antioxidant found in plants and are efficient in capturing oxidative free radicals. Aim of the Study: This study focused on the antioxidant activity of polyphenols extracted from Phyllanthus Emblica L. as oxidative stress plays a vital role in developing and progressing many diseases, including cardiovascular diseases and cancer. Materials and Methods: The plant was extracted using a mixture solvent (ethyl alcohol: water in ratio 8:2). The total phenolic content of P. Emblica extract was determined using the Folin-Cioucalteu method and calculated as gallic acid equivalents (GAE) and various antioxidant assays DPPH and ABTS radical scavenging capacity assays. Results and Discussion: The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, the IC₅₀ of P. Emblica extract via DPPH and ABTS assays were 68.10 μg/mL ± 0.455, and 49.24 μg/mL ± 0.716, respectively. Furthermore, P. Emblica extract showed antioxidant activities in a concentration-dependent manner. Vitamin C was used as a positive control in the DPPH assay, while Trolox was used as a positive control in the ABTS assay. Conclusions: In conclusion, P. Emblica extract consisted of a high amount of total phenolic content, which possesses potent antioxidant activity. However, further antioxidant activity assays using human cell lines such as SOD, ROS, and RNS scavenging assays and in vitro antioxidant experiments should be performed in order.Keywords: antioxidant, ABTS scavenging, DPPH scavenging assay, total phenol contents assay, Phyllanthus Emblica L
Procedia PDF Downloads 1951005 Evaluation of Commercial Herbicides for Weed Control and Yield under Direct Dry Seeded Rice Cultivation System in Pakistan
Authors: Sanaullah Jalil, Abid Majeed, Syed Haider Abbas
Abstract:
Direct dry seeded rice cultivation system is an emerging production technology in Pakistan. Weeds are a major constraint to the success of direct dry seeded rice (DDSR). Studies were carried out for two years during 2015 and 2016 to evaluate the performance of applications of pre-emergence herbicides (Top Max @ 2.25 lit/ha, Click @1.5 lit/ha and Pendimethaline @ 1.25 lit/ha) and post-emergence herbicides (Clover @ 200 g/ha, Pyranex Gold @ 250 g/ha, Basagran @ 2.50 lit/ha, Sunstar Gold @ 50 g/ha and Wardan @ 1.25 lit/ha) at rice research field area of National Agriculture Research Center (NARC), Islamabad. The experiments were laid out in Randomized Complete Block Design (RCBD) with three replications. All evaluated herbicides reduced weed density and biomass by a significant amount. The net plot size was 2.5 x 5 m with 10 rows. Basmati-385 was used as test variety of rice. Data indicated that Top Max and Click provided best weed control efficiency but suppressed the germination of rice seed which causes the lowest grain yield production (680.6 kg/ha and 314.5 kg/ha respectively). A weedy check plot contributed 524.7 kg/ha paddy yield with highest weed density. Pyranex Gold provided better weed control efficiency and contributed to significantly higher paddy yield 5116.6 kg/ha than that of all other herbicide applications followed by the Clover which give paddy yield 4241.7 kg/ha. The results of our study suggest that pre-emergence herbicides provided best weed control but not fit for direct dry seeded rice (DDSR) cultivation system, and therefore post-emergence herbicides (Pyranex Gold and Clover) can be suggested for weed control and higher yield.Keywords: pyranex gold, clover, direct dry seeded rice (DDSR), yield
Procedia PDF Downloads 261