Search results for: edge scanning
588 Investigations on Enhancement of Fly Ash in Cement Manufacturing through Optimization of Clinker Quality and Fly Ash Fineness
Authors: Suresh Vanguri, Suresh Palla, K. V. Kalyani, S. K. Chaturvedi, B. N. Mohapatra
Abstract:
Enhancing the fly ash utilization in the manufacture of cement is identified as one of the key areas to mitigate the Green House Gas emissions from the cement industry. Though increasing the fly ash content in cement has economic and environmental benefits, it results in a decrease in the compressive strength values, particularly at early ages. Quality of clinker and fly ash were identified as predominant factors that govern the extent of absorption of fly ash in the manufacturing of cement. This paper presents systematic investigations on the effect of clinker and fly ash quality on the properties of resultant cement. Since mechanical activation alters the physicochemical properties such as particle size distribution, surface area, phase morphology, understanding the variation of these properties with activation is required for its applications. The effect of mechanical activation on fly ash surface area, specific gravity, flow properties, lime reactivity, comparative compressive strength (CCS), reactive silica and mineralogical properties were also studied. The fineness of fly ash was determined by Blaine’s method, specific gravity, lime reactivity, CCS were determined as per the method IS 1727-1967. The phase composition of fly ash was studied using the X-ray Diffraction technique. The changes in the microstructure and morphology with activation were examined using the scanning electron microscope. The studies presented in this paper also include evaluation of Portland Pozzolana Cement (PPC), prepared using high volume fly ash. Studies are being carried out using clinker from cement plants located in different regions/clusters in India. Blends of PPC containing higher contents of activated fly ash have been prepared and investigated for their chemical and physical properties, as per Indian Standard procedures. Changes in the microstructure of fly ash with activation and mechanical properties of resultant cement containing high volumes of fly ash indicated the significance of optimization of the quality of clinker and fly ash fineness for better techno-economical benefits.Keywords: flow properties, fly ash enhancement, lime reactivity, microstructure, mineralogy
Procedia PDF Downloads 463587 Investigating Concentration of Multi-Walled Carbon Nanotubes on Electrochemical Sensors
Authors: Mohsen Adabi, Mahdi Adabi, Reza Saber
Abstract:
The recent advancements in nanomaterials have provided a platform to develop efficient transduction matrices for sensors. Modified electrodes allow to electrochemists to enhance the property of electrode surface and provide desired properties such as improved sensing capabilities, higher electron transfer rate and prevention of undesirable reactions competing kinetically with desired electrode process. Nanostructured electrodes including arrays of carbon nanotubes have demonstrated great potential for the development of electrochemical sensors and biosensors. The aim of this work is to evaluate the concentration of multi-walled carbon nanotubes (MWCNTs) on the conductivity of gold electrode. For this work, raw MWCNTs was functionalized and shortened. Raw and shorten MWCNTs were characterized using transfer electron microscopy (TEM). Next, 0.5, 2 and 3.5 mg of Shortened and functionalized MWCNTs were dispersed in 2 mL Dimethyl formamide (DMF) and cysteamine modified gold electrodes were incubated in the different concentrations of MWCNTs for 8 hours. Then, the immobilization of MWCNTs on cysteamine modified gold electrode was characterized by scanning electron microscopy (SEM) and the effect of MWCNT concentrations on electron transfer of modified electrodes was investigated by cyclic voltammetry (CV). The results demonstrated that CV response of ferricyanide redox at modified gold electrodes increased as concentration of MWCNTs enhanced from 0.5 to 2 mg in 2 mL DMF. This increase can be attributed to the number of MWCNTs which enhance on the surface of cysteamine modified gold electrode as the MWCNTs concentration increased whereas CV response of ferricyanide redox at modified gold electrodes did not changed significantly as the MWCNTs concentration increased from 2 to 3.5 mg in 2 mL DMF. The reason may be that amine groups of cysteamine modified gold electrodes are limited to a given number which can interact with the given number of carboxylic groups of MWCNTs and CV response of ferricyanide redox at modified gold do not enhance after amine groups of cysteamine are saturated with carboxylic groups of MWCNTs.Keywords: carbon nanotube, cysteamine, electrochemical sensor, gold electrode
Procedia PDF Downloads 467586 Fire Smoke Removal over Cu-Mn-Ce Oxide Catalyst with CO₂ Sorbent Addition: Co Oxidation and in-situ CO₂ Sorption
Authors: Jin Lin, Shouxiang Lu, Kim Meow Liew
Abstract:
In a fire accident, fire smoke often poses a serious threat to human safety especially in the enclosed space such as submarine and space-crafts environment. Efficient removal of the hazardous gas products particularly a large amount of CO and CO₂ gases from these confined space is critical for the security of the staff and necessary for the post-fire environment recovery. In this work, Cu-Mn-Ce composite oxide catalysts coupled with CO₂ sorbents were prepared using wet impregnation method, solid-state impregnation method and wet/solid-state impregnation method. The as-prepared samples were tested dynamically and isothermally for CO oxidation and CO₂ sorption and further characterized by the X-ray diffraction (XRD), nitrogen adsorption and desorption, and field emission scanning electron microscopy (FE-SEM). The results showed that all the samples were able to catalyze CO into CO₂ and capture CO₂ in situ by chemisorption. Among all the samples, the sample synthesized by the wet/solid-state impregnation method showed the highest catalytic activity toward CO oxidation and the fine ability of CO₂ sorption. The sample prepared by the solid-state impregnation method showed the second CO oxidation performance, while the coupled sample using the wet impregnation method exhibited much poor CO oxidation activity. The various CO oxidation and CO₂ sorption properties of the samples might arise from the different dispersed states of the CO₂ sorbent in the CO catalyst, owing to the different preparation methods. XRD results confirmed the high-dispersed sorbent phase in the samples prepared by the wet and solid impregnation method, while that of the sample prepared by wet/solid-state impregnation method showed the larger bulk phase as indicated by the high-intensity diffraction peaks. Nitrogen adsorption and desorption results further revealed that the latter sample had a higher surface area and pore volume, which were beneficial for the CO oxidation over the catalyst. Hence, the Cu-Mn-Ce oxide catalyst coupled with CO₂ sorbent using wet/solid-state impregnation method could be a good choice for fire smoke removal in the enclosed space.Keywords: CO oxidation, CO₂ sorption, preparation methods, smoke removal
Procedia PDF Downloads 139585 Study of Electro-Chemical Properties of ZnO Nanowires for Various Application
Authors: Meera A. Albloushi, Adel B. Gougam
Abstract:
The development in the field of piezoelectrics has led to a renewed interest in ZnO nanowires (NWs) as a promising material in the nanogenerator devices category. It can be used as a power source for self-powered electronic systems with higher density, higher efficiency, longer lifetime, as well as lower cost of fabrication. Highly aligned ZnO nanowires seem to exhibit a higher performance compared with nonaligned ones. The purpose of this study was to develop ZnO nanowires and to investigate their electrical and chemical properties for various applications. They were grown on silicon (100) and glass substrates. We have used a low temperature and non-hazardous method: aqueous chemical growth (ACG). ZnO (non-doped) and AZO (Aluminum doped) seed layers were deposited using RF magnetron sputteringunder Argon pressure of 3 mTorr and deposition power of 180 W, the times of growth were selected to obtain thicknesses in the range of 30 to 125 nm. Some of the films were subsequently annealed. The substrates were immersed tilted in an equimolar solution composed of zinc nitrate and hexamine (HMTA) of 0.02 M and 0.05 M in the temperature range of 80 to 90 ᵒC for 1.5 to 2 hours. The X-ray diffractometer shows strong peaks at 2Ө = 34.2ᵒ of ZnO films which indicates that the films have a preferred c-axis wurtzite hexagonal (002) orientation. The surface morphology of the films is investigated by atomic force microscope (AFM) which proved the uniformity of the film since the roughness is within 5 nm range. The scanning electron microscopes(SEM) (Quanta FEG 250, Quanta 3D FEG, Nova NanoSEM 650) are used to characterize both ZnO film and NWs. SEM images show forest of ZnO NWs grown vertically and have a range of length up to 2000 nm and diameter of 20-300 nm. The SEM images prove that the role of the seed layer is to enhance the vertical alignment of ZnO NWs at the pH solution of 5-6. Also electrical and optical properties of the NWs are carried out using Electrical Force Microscopy (EFM). After growing the ZnO NWs, developing the nano-generator is the second step of this study in order to determine the energy conversion efficiency and the power output.Keywords: ZnO nanowires(NWs), aqueous chemical growth (ACG), piezoelectric NWs, harvesting enery
Procedia PDF Downloads 322584 Sol-Gel Derived 58S Bioglass Substituted by Li and Mg: A Comparative Evaluation on in vitro Bioactivity, MC3T3 Proliferation and Antibacterial Efficiency
Authors: Amir Khaleghipour, Amirhossein Moghanian, Elhamalsadat Ghaffari
Abstract:
Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO₂–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂–(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well enhanced antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria among all of the synthesized L-BGs and M-BGs.Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes
Procedia PDF Downloads 190583 Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials
Authors: I. Kerti, G. Sezen, S. Daglilar
Abstract:
This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism.Keywords: boron carbide, electroless coating, nickel boron deposition, silicon carbide
Procedia PDF Downloads 347582 New Recipes of Communication in the New Linguistic World Order: End of Road for Aged Pragmatics
Authors: Shailendra Kumar Singh
Abstract:
With the rise of New Linguistic World Order in the 21st century, the Aged Pragmatics is palpitating on the edge of theoretical irrelevance. What appears to be a new sociolinguistic reality is that the enlightening combination of alternative west, inclusive globalization and techno-revolution is adding novel recipes to communicative actions, style and gain among new linguistic breed which is being neither dominated nor powered by the western supremacy. The paper has the following main, interrelated, aims: it is intended to introduce the concept of alternative pragmatics that can offer what exactly is needed for our emerging societal realities; it asserts as to how the basic pillar of linguistic success in the new linguistic world order rests upon linguistic temptation and calibration of all; and it also reviews an inevitability of emerging economies in shaping the communication trends at a time when the western world is struggling to maintain the same control on the others exercised in the past. In particular, the paper seeks answers for the following questions: (a) Do we need an alternative pragmatics, one with alternativist leaning in an era of inclusive globalization and alternative west? (b) What are the pulses of shift which are encapsulating emergence of new communicative behavior among the new linguistic breed by breaking yesterday’s linguistic rigidity? (c) Or, what are those shifts which are making linguistic shift more perceptible? (d) Is New Linguistic World Order succeeding in reversing linguistic priorities of `who speaks, what language, where, how, why, to whom and in which condition’ with no parallel in the history? (e) What is explicit about the contemporary world of 21st century which makes linguistic world all exciting and widely celebrative phenomenon and that is also forced into our vision? (f) What factors will hold key to the future of yesterday’s `influential languages’ and today’s `emerging languages’ as world is in the paradigm transition? (g) Is the collapse of Aged Pragmatics good for the 21st century for understanding the difference between pragmatism of old linguistic world and new linguistic world order? New Linguistic world Order today, unlike in the past, is about a branding of new world with liberal world view for a particular form of ideal to be imagined in the 21st century. At this time without question it is hope that a new set of ideals with popular vocabulary will become the implicit pragmatic model as one of benign majoritarianism in all aspects of sociolinguistic reality. It appears to be a reality that we live in an extraordinary linguistic world with no parallel in the past. In particular, the paper also highlights the paradigm shifts: Demographic, Social-psychological, technological and power. These shifts are impacting linguistic shift which is unique in itself. The paper will highlight linguistic shift in details in which alternative west plays a major role without challenging the west because it is an era of inclusive globalization in which almost everyone takes equal responsibility.Keywords: inclusive globalization, new linguistic world order, linguistic shift, world order
Procedia PDF Downloads 343581 Limiting Freedom of Expression to Fight Radicalization: The 'Silencing' of Terrorists Does Not Always Allow Rights to 'Speak Loudly'
Authors: Arianna Vedaschi
Abstract:
This paper addresses the relationship between freedom of expression, national security and radicalization. Is it still possible to talk about a balance between the first two elements? Or, due to the intrusion of the third, is it more appropriate to consider freedom of expression as “permanently disfigured” by securitarian concerns? In this study, both the legislative and the judicial level are taken into account and the comparative method is employed in order to provide the reader with a complete framework of relevant issues and a workable set of solutions. The analysis moves from the finding according to which the tension between free speech and national security has become a major issue in democratic countries, whose very essence is continuously endangered by the ever-changing and multi-faceted threat of international terrorism. In particular, a change in terrorist groups’ recruiting pattern, attracting more and more people by way of a cutting-edge communicative strategy, often employing sophisticated technology as a radicalization tool, has called on law-makers to modify their approach to dangerous speech. While traditional constitutional and criminal law used to punish speech only if it explicitly and directly incited the commission of a criminal action (“cause-effect” model), so-called glorification offences – punishing mere ideological support for terrorism, often on the web – are becoming commonplace in the comparative scenario. Although this is direct, and even somehow understandable, consequence of the impending terrorist menace, this research shows many problematic issues connected to such a preventive approach. First, from a predominantly theoretical point of view, this trend negatively impacts on the already blurred line between permissible and prohibited speech. Second, from a pragmatic point of view, such legislative tools are not always suitable to keep up with ongoing developments of both terrorist groups and their use of technology. In other words, there is a risk that such measures become outdated even before their application. Indeed, it seems hard to still talk about a proper balance: what was previously clearly perceived as a balancing of values (freedom of speech v. public security) has turned, in many cases, into a hierarchy with security at its apex. In light of these findings, this paper concludes that such a complex issue would perhaps be better dealt with through a combination of policies: not only criminalizing ‘terrorist speech,’ which should be relegated to a last resort tool, but acting at an even earlier stage, i.e., trying to prevent dangerous speech itself. This might be done by promoting social cohesion and the inclusion of minorities, so as to reduce the probability of people considering terrorist groups as a “viable option” to deal with the lack of identification within their social contexts.Keywords: radicalization, free speech, international terrorism, national security
Procedia PDF Downloads 197580 A Left Testicular Cancer with Multiple Metastases Nursing Experience
Authors: Syue-Wen Lin
Abstract:
Objective:This article reviews the care experience of a 40-year-old male patient who underwent a thoracoscopic right lower lobectomy following a COVID-19 infection. His complex medical history included multiple metastases (lungs, liver, spleen, and left kidney) and lung damage from COVID-19, which complicated the weaning process from mechanical ventilation. The care involved managing cancer treatment, postoperative pain, wound care, and palliative care. Methods:Nursing care was provided from August 16 to August 17, 2024. Challenges included difficulty with sputum clearance, which exacerbated the patient's anxiety and fear of reintubation. Pain management strategies combined analgesic drugs, non-drug methods, essential oil massages with family members, and playing the patient’s favorite music to reduce pain and anxiety. Progressive rehabilitation began with stabilizing vital signs, followed by assistance with sitting on the edge of the bed and walking within the ward. Strict sterile procedures and advanced wound care technology were used for daily dressing changes, with meticulous documentation of wound conditions and appropriate dressing selection. Holistic cancer care and palliative measures were integrated to address the patient’s physical and psychological needs. Results:The interdisciplinary care team developed a comprehensive plan addressing both physical and psychological aspects. Respiratory therapy, lung expansion exercises, and a high-frequency chest wall oscillation vest facilitated sputum expulsion and assisted in weaning from mechanical ventilation. The integration of cancer care, pain management, wound care, and palliative care led to improved quality of life and recovery. The collaborative approach between nursing staff and family ensured that the patient received compassionate and effective care. Conclusion: The complex interplay of emergency surgery, COVID-19, and advanced cancer required a multifaceted care strategy. The care team’s approach, combining critical care with tailored cancer and palliative care, effectively improved the patient’s quality of life and facilitated recovery. The comprehensive care plan, developed with family collaboration, provided both high-quality medical care and compassionate support for the terminally ill patient.Keywords: multiple metastases, testicular cancer, palliative care, nursing experience
Procedia PDF Downloads 22579 Study of Mechanical Properties of Large Scale Flexible Silicon Solar Modules on the Various Substrates
Authors: M. Maleczek, Leszek Bogdan, Kazimierz Drabczyk, Agnieszka Iwan
Abstract:
Crystalline silicon (Si) solar cells are the main product in the market among the various photovoltaic technologies concerning such advantages as: material richness, high carrier mobilities, broad spectral absorption range and established technology. However, photovoltaic technology on the stiff substrates are heavier, more fragile and less cost-effective than devices on the flexible substrates to be applied in special applications. The main goal of our work was to incorporate silicon solar cells into various fabric, without any change of the electrical and mechanical parameters of devices. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. In our work, the polyamide or polyester fabrics were used as a flexible substrate in the created devices. Applied fabrics differ in tensile and tear strength. All investigated polyamide fabrics are resistant to weathering and UV, while polyester ones is resistant to ozone, water and ageing. The examined fabrics are tight at 100 cm water per 2 hours. In our work, commercial silicon solar cells with the size 156 × 156 mm were cut into nine parts (called single solar cells) by diamond saw and laser. Gap and edge after cutting of solar cells were checked by transmission electron microscope (TEM) to study morphology and quality of the prepared single solar cells. Modules with the size of 160 × 70 cm (containing about 80 single solar cells) were created and investigated by electrical and mechanical methods. Weight of constructed module is about 1.9 kg. Three types of solar cell architectures such as: -fabric/EVA/Si solar cell/EVA/film for lamination, -backsheet PET/EVA/Si solar cell/EVA/film for lamination, -fabric/EVA/Si solar cell/EVA/tempered glass, were investigated taking into consideration type of fabric and lamination process together with the size of solar cells. In investigated devices EVA, it is ethylene-vinyl acetate, while PET - polyethylene terephthalate. Depend on the lamination process and compatibility of textile with solar cell an efficiency of investigated flexible silicon solar cells was in the range of 9.44-16.64 %. Multi folding and unfolding of flexible module has no impact on its efficiency as was detected by Instron equipment. Power (P) of constructed solar module is 30 W, while voltage about 36 V. Finally, solar panel contains five modules with the polyamide fabric and tempered glass will be produced commercially for different applications (dual use).Keywords: flexible devices, mechanical properties, silicon solar cells, textiles
Procedia PDF Downloads 173578 Portuguese Guitar Strings Characterization and Comparison
Authors: P. Serrão, E. Costa, A. Ribeiro, V. Infante
Abstract:
The characteristic sonority of the Portuguese guitar is in great part what makes Fado so distinguishable from other traditional song styles. The Portuguese guitar is a pear-shaped plucked chordophone with six courses of double strings. This study compares the two types of plain strings available for Portuguese guitar and used by the musicians. One is stainless steel spring wire, the other is high carbon spring steel (music wire). Some musicians mention noticeable differences in sound quality between these two string materials, such as a little more brightness and sustain in the steel strings. Experimental tests were performed to characterize string tension at pitch; mechanical strength and tuning stability using the universal testing machine; dimensional control and chemical composition analysis using the scanning electron microscope. The string dynamical behaviour characterization experiments, including frequency response, inharmonicity, transient response, damping phenomena and were made in a monochord test set-up designed and built in-house. Damping factor was determined for the fundamental frequency. As musicians are able to detect very small damping differences, an accurate a characterization of the damping phenomena for all harmonics was necessary. With that purpose, another improved monochord was set and a new system identification methodology applied. Due to the complexity of this task several adjustments were necessary until obtaining good experimental data. In a few cases, dynamical tests were repeated to detect any evolution in damping parameters after break-in period when according to players experience a new string sounds gradually less dull until reaching the typically brilliant timbre. Finally, each set of strings was played on one guitar by a distinguished player and recorded. The recordings which include individual notes, scales, chords and a study piece, will be analysed to potentially characterize timbre variations.Keywords: damping factor, music wire, portuguese guitar, string dynamics
Procedia PDF Downloads 553577 Effect of Humic Acids on Agricultural Soil Structure and Stability and Its Implication on Soil Quality
Authors: Omkar Gaonkar, Indumathi Nambi, Suresh G. Kumar
Abstract:
The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of the behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment leads to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding soil aggregation and the interactions at soil solid-liquid interface.Keywords: humic acids, natural organic matter, zeta potential, soil quality
Procedia PDF Downloads 250576 Identifying Artifacts in SEM-EDS of Fouled RO Membranes Used for the Treatment of Brackish Groundwater Through Raman and ICP-MS Analysis
Authors: Abhishek Soti, Aditya Sharma, Akhilendra Bhushan Gupta
Abstract:
Fouled reverse osmosis membranes are primarily characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectrometer (EDS) for a detailed investigation of foulants; however, this has severe limitations on several accounts. Apart from inaccuracy in spectral properties and inevitable interferences and interactions between sample and instrument, misidentification of elements due to overlapping peaks is a significant drawback of EDS. This paper discusses this limitation by analyzing fouled polyamide RO membranes derived from community RO plants of Rajasthan treating brackish water via a combination of results obtained from EDS and Raman spectroscopy and cross corroborating with ICP-MS analysis of water samples prepared by dissolving the deposited salts. The anomalous behavior of different morphic forms of CaCO₃ in aqueous suspensions tends to introduce false reporting of the presence of certain heavy metals and rare earth metals in the scales of the fouled RO membranes used for treating brackish groundwater when analyzed using the commonly adopted techniques like SEM-EDS or Raman spectrometry. Peaks of CaCO₃ reflected in EDS spectra of the membrane were found to be misinterpreted as Scandium due to the automatic assignment of elements by the software. Similarly, the morphic forms merged with the dominant peak of CaCO₃ might be reflected as a single peak of Molybdenum in the Raman spectrum. A subsequent ICP-MS analysis of the deposited salts showed that both Sc and Mo were below detectable levels. It is always essential to cross-confirm the results through a destructive analysis method to avoid such interferences. It is further recommended to study different morphic forms of CaCO₃ scales, as they exhibit anomalous properties like reverse solubility with temperature and hence altered precipitation tendencies, for an accurate description of the composition of scales, which is vital for the smooth functioning of RO systems.Keywords: reverse osmosis, foulant analysis, groundwater, EDS, artifacts
Procedia PDF Downloads 105575 Acoustic Emission for Tool-Chip Interface Monitoring during Orthogonal Cutting
Authors: D. O. Ramadan, R. S. Dwyer-Joyce
Abstract:
The measurement of the interface conditions in a cutting tool contact is essential information for performance monitoring and control. This interface provides the path for the heat flux to the cutting tool. This elevate in the cutting tool temperature leads to motivate the mechanism of tool wear, thus affect the life of the cutting tool and the productivity. This zone is representative by the tool-chip interface. Therefore, understanding and monitoring this interface is considered an important issue in machining. In this paper, an acoustic emission (AE) technique was used to find the correlation between AE parameters and the tool-chip interface. For this reason, a response surface design (RSD) has been used to analyse and optimize the machining parameters. The experiment design was based on the face centered, central composite design (CCD) in the Minitab environment. According to this design, a series of orthogonal cutting experiments for different cutting conditions were conducted on a Triumph 2500 lathe machine to study the sensitivity of the acoustic emission (AE) signal to change in tool-chip contact length. The cutting parameters investigated were the cutting speed, depth of cut, and feed and the experiments were performed for 6082-T6 aluminium tube. All the orthogonal cutting experiments were conducted unlubricated. The tool-chip contact area was investigated using a scanning electron microscope (SEM). The results obtained in this paper indicate that there is a strong dependence of the root mean square (RMS) on the cutting speed, where the RMS increases with increasing the cutting speed. A dependence on the tool-chip contact length has been also observed. However there was no effect observed of changing the cutting depth and feed on the RMS. These dependencies have been clarified in terms of the strain and temperature in the primary and secondary shear zones, also the tool-chip sticking and sliding phenomenon and the effect of these mechanical variables on dislocation activity at high strain rates. In conclusion, the acoustic emission technique has the potential to monitor in situ the tool-chip interface in turning and consequently could indicate the approaching end of life of a cutting tool.Keywords: Acoustic emission, tool-chip interface, orthogonal cutting, monitoring
Procedia PDF Downloads 487574 Role of SiOx Interlayer on Lead Oxide Electrodeposited on Stainless Steel for Promoting Electrochemical Treatment of Wastewater Containing Textile Dye
Authors: Hanene Akrout, Ines Elaissaoui, Sabrina Grassini, Daniele Fulginiti, Latifa Bousselmi
Abstract:
The main objective of this work is to investigate the efficiency of depollution power related to PbO₂ layer deposited onto a stainless steel (SS) substrate with SiOx as interlayer. The elaborated electrode was used as anode for anodic oxidation of wastewater containing Amaranth dye, as recalcitrant organic pollutant model. SiOx interlayer was performed using Plasma Enhanced Chemical Vapor Deposition ‘PECVD’ in plasma fed with argon, oxygen, and tetraethoxysilane (TEOS, Si precursor) in different ratios, onto the SS substrate. PbO₂ layer was produced by pulsed electrodeposition on SS/SiOx. The morphological of different surfaces are depicted with Field Emission Scanning Electron Microscope (FESEM) and the composition of the lead oxide layer was investigated by X-Ray Diffractometry (XRD). The results showed that the SiOx interlayer with more rich oxygen content improved better the nucleation of β-PbO₂ form. Electrochemical Impedance Spectroscopy (EIS) measurements undertaken on different interfaces (at optimized conditions) revealed a decrease of Rfilm while CPE film increases for SiOx interlayer, characterized by a more inorganic nature and deposited in a plasma fed by higher O2-to-TEOS ratios. Quantitative determinations of the Amaranth dye degradation rate were performed in terms of colour and COD removals, reaching a 95% and an 80% respectively removal at pH = 2 in 300 min. Results proved the improvement of the degradation wastewater containing the amaranth dye. During the electrolysis, the Amaranth dye solution was sampled at 30 min intervals and analyzed by ‘High-performance Liquid Chromatography’ HPLC. The gradual degradation of the Amaranth dye confirmed by the decrease in UV absorption using the SS/SiOx(20:20:1)/PbO₂ anode, the reaction exhibited an apparent first-order kinetic for electrolysis time of 5 hours, with an initial rate constant of about 0.02 min⁻¹.Keywords: electrochemical treatment, PbO₂ anodes, COD removal, plasma
Procedia PDF Downloads 193573 Evolution of Web Development Progress in Modern Information Technology
Authors: Abdul Basit Kiani
Abstract:
Web development, the art of creating and maintaining websites, has witnessed remarkable advancements. The aim is to provide an overview of some of the cutting-edge developments in the field. Firstly, the rise of responsive web design has revolutionized user experiences across devices. With the increasing prevalence of smartphones and tablets, web developers have adapted to ensure seamless browsing experiences, regardless of screen size. This progress has greatly enhanced accessibility and usability, catering to the diverse needs of users worldwide. Additionally, the evolution of web frameworks and libraries has significantly streamlined the development process. Tools such as React, Angular, and Vue.js have empowered developers to build dynamic and interactive web applications with ease. These frameworks not only enhance efficiency but also bolster scalability, allowing for the creation of complex and feature-rich web solutions. Furthermore, the emergence of progressive web applications (PWAs) has bridged the gap between native mobile apps and web development. PWAs leverage modern web technologies to deliver app-like experiences, including offline functionality, push notifications, and seamless installation. This innovation has transformed the way users interact with websites, blurring the boundaries between traditional web and mobile applications. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.Keywords: progressive web applications (PWAs), web security, machine learning (ML), web frameworks, advancement responsive web design
Procedia PDF Downloads 54572 Poly(Ethylene Glycol)-Silicone Containing Phase Change Polymer for Thermal Energy Storage
Authors: Swati Sundararajan, , Asit B. Samui, Prashant S. Kulkarni
Abstract:
The global energy crisis has led to extensive research on alternative sources of energy. The gap between energy supply and demand can be met by thermal energy storage techniques, of which latent heat storage is most effective in the form of phase change materials (PCMs). Phase change materials utilize latent heat absorbed or released over a narrow temperature range of the material undergoing phase transformation, to store energy. The latent heat can be utilized for heating or cooling purposes. It can also be used for converting to electricity. All these actions amount to minimizing the load on electricity demand. These materials retain this property over repeated number of cycles. Different PCMs differ in the phase change temperature and the heat storage capacities. Poly(ethylene glycol) (PEG) was cross-linked to hydroxyl-terminated poly(dimethyl siloxane) (PDMS) in the presence of cross-linker, tetraethyl orthosilicate (TEOS) and catalyst, dibutyltin dilaurate. Four different ratios of PEG and PDMS were reacted together, and the composition with the lowest PEG concentration resulted in the formation of a flexible solid-solid phase change membrane. The other compositions are obtained in powder form. The enthalpy values of the prepared PCMs were studied by using differential scanning calorimetry and the crystallization properties were analyzed by using X-ray diffraction and polarized optical microscopy. The incorporation of silicone moiety was expected to reduce the hydrophilic character of PEG, which was evaluated by measurement of contact angle. The membrane forming ability of this crosslinked polymer can be extended to several smart packaging, building and textile applications. The detailed synthesis, characterization and performance evaluation of the crosslinked polymer blend will be incorporated in the presentation.Keywords: phase change materials, poly(ethylene glycol), poly(dimethyl siloxane), thermal energy storage
Procedia PDF Downloads 354571 Unlocking Synergy: Exploring the Impact of Integrating Knowledge Management and Competitive Intelligence for Synergistic Advantage for Efficient, Inclusive and Optimum Organizational Performance
Authors: Godian Asami Mabindah
Abstract:
The convergence of knowledge management (KM) and competitive intelligence (CI) has gained significant attention in recent years as organizations seek to enhance their competitive advantage in an increasingly complex and dynamic business environment. This research study aims to explore and understand the synergistic relationship between KM and CI and its impact on organizational performance. By investigating how the integration of KM and CI practices can contribute to decision-making, innovation, and competitive advantage, this study seeks to unlock the potential benefits and challenges associated with this integration. The research employs a mixed-methods approach to gather comprehensive data. A quantitative analysis is conducted using survey data collected from a diverse sample of organizations across different industries. The survey measures the extent of integration between KM and CI practices and examines the perceived benefits and challenges associated with this integration. Additionally, qualitative interviews are conducted with key organizational stakeholders to gain deeper insights into their experiences, perspectives, and best practices regarding the synergistic relationship. The findings of this study are expected to reveal several significant outcomes. Firstly, it is anticipated that organizations that effectively integrate KM and CI practices will outperform those that treat them as independent functions. The study aims to highlight the positive impact of this integration on decision-making, innovation, organizational learning, and competitive advantage. Furthermore, the research aims to identify critical success factors and enablers for achieving constructive interaction between KM and CI, such as leadership support, culture, technology infrastructure, and knowledge-sharing mechanisms. The implications of this research are far-reaching. Organizations can leverage the findings to develop strategies and practices that facilitate the integration of KM and CI, leading to enhanced competitive intelligence capabilities and improved knowledge management processes. Additionally, the research contributes to the academic literature by providing a comprehensive understanding of the synergistic relationship between KM and CI and proposing a conceptual framework that can guide future research in this area. By exploring the synergies between KM and CI, this study seeks to help organizations harness their collective power to gain a competitive edge in today's dynamic business landscape. The research provides practical insights and guidelines for organizations to effectively integrate KM and CI practices, leading to improved decision-making, innovation, and overall organizational performance.Keywords: Competitive Intelligence, Knowledge Management, Organizational Performance, Incusivity, Optimum Performance
Procedia PDF Downloads 90570 Multifunctional Plasmonic Ag-TiO2 Nano-biocompoistes: Surface Enhanced Raman Scattering and Anti-microbial Properties
Authors: Jai Prakash, Promod Kumar, Chantel Swart, J. H. Neethling, A. Janse van Vuuren, H. C. Swart
Abstract:
Ag nanoparticles (NPs) have been used as functional nanomaterials due to their optical and antibacterial properties. Similarly, TiO2 photocatalysts have also been used as suitable nanomaterials for killing cancer cells, viruses and bacteria. Here, we report on multifunctional plasmonic Ag-TiO2 nano-biocomposite synthesized by the sol-gel technique and their optical, surface enhanced Raman scattering (SERS) and antibacterial activities. The as-prepared composites of Ag–TiO2 with different silver content and TiO2 nanopowder were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersed X-ray analysis (EDX), UV-vis and Raman spectroscopy. The Ag NPs were found to be uniformly distributed and strongly attached to the TiO2 matrix. The novel optical response of the Ag-TiO2 nanocomposites is due to the strong electric field from the surface plasmon excitation of the Ag NPs. The Raman spectrum of Ag-TiO2 nanocomposite was found to be enhanced as compared to TiO2. The enhancement of the low frequency band is evident. This indicates the SERS effect of the TiO2 NPs in close vicinity of Ag NPs. In addition, nanocomposites showed enhancement in the SERS signals of methyl orange (MO) dye molecules with increasing Ag content. The localized electromagnetic field from the surface plasmon excitation of the Ag NPs was responsible for the SERS signals of the TiO2 NPs and MO molecules. The antimicrobial effect of the Ag–TiO2 nanocomposites with different silver content and TiO2 nanopowder were carried out against the bacterium Staphylococcus aureus. The Ag–TiO2 composites showed antibacterial activity towards S. aureus with increasing Ag content as compared to the TiO2 nanopowder. These results foresee promising applications of the functional plasmonic metal−semiconductor based nanobiocomposites for both chemical and biological samples.Keywords: metal-Semiconductor, nano-Biocomposites, anti-microbial activity, surface enhanced Raman scattering
Procedia PDF Downloads 230569 Sustainable Hydrogen Generation via Gasification of Pig Hair Biowaste with NiO/Al₂O₃ Catalysts
Authors: Jamshid Hussain, Kuen Song Lin
Abstract:
Over one thousand tons of pig hair biowaste (PHB) are produced yearly in Taiwan. The improper disposal of PHB can have a negative impact on the environment, consequently contributing to the spread of diseases. The treatment of PHB has become a major environmental and economic challenge. Innovative treatments must be developed because of the heavy metal and sulfur content of PHB. Like most organic materials, PHB is composed of many organic volatiles that contain large amounts of hydrogen. Hydrogen gas can be effectively produced by the catalytic gasification of PHB using a laboratory-scale fixed-bed gasifier, employing 15 wt% NiO/Al₂O₃ catalyst at 753–913 K. The derived kinetic parameters were obtained and refined using simulation calculations. FE–SEM microphotograph showed that NiO/Al₂O₃ catalyst particles are Spherical or irregularly shaped with diameters of 10–20 nm. HR–TEM represented that the fresh Ni particles were evenly dispersed and uniform in the microstructure of Al₂O₃ support. The sizes of the NiO nanoparticles were vital in determining catalyst activity. As displayed in the pre-edge XANES spectra of the NiO/Al₂O₃ catalysts, it exhibited a non-intensive absorbance nature for the 1s to 3d transition, which is prohibited by the selection rule for an ideal octahedral symmetry. Similarly, the populace of Ni(II) and Ni(0) onto Al₂O₃ supports are proportional to the strength of the 1s to 4pxy transition, respectively. The weak shoulder at 8329–8334 eV and a strong character at 8345–8353 eV were ascribed to the 1s to 4pxy shift, which suggested the presence of NiO types onto Al₂O₃ support in PHB catalytic gasification. As determined by the XANES analyses, Ni(II)→Ni(0) reduction was mostly observed. The oxidation of PHB onto the NiO/Al₂O₃ surface may have resulted in Ni(0) and the formation of tar during the gasification process. The EXAFS spectra revealed that the Ni atoms with Ni–Ni/Ni–O bonds were found. The Ni–O bonding proved that the produced syngas were unable to reduce NiO to Ni(0) completely. The weakness of the Ni–Ni bonds may have been caused by the highly dispersed Ni in the Al₂O₃ support. The central Ni atoms have Ni–O (2.01 Å) and Ni–Ni (2.34 Å) bond distances in the fresh NiO/Al₂O₃ catalyst. The PHB was converted into hydrogen-rich syngas (CO + H₂, >89.8% dry basis). When PHB (250 kg h−1) was catalytically gasified at 753–913 K, syngas was produced at approximately 5.45 × 105 kcal h−1 of heat recovery with 76.5%–83.5% cold gas efficiency. The simulation of the pilot-scale PHB catalytic gasification demonstrated that the system could provide hydrogen (purity > 99.99%) and generate electricity for an internal combustion engine of 100 kW and a proton exchange membrane fuel cell (PEMFC) of 175 kW. A projected payback for a PHB catalytic gasification plant with a capacity of 10- or 20-TPD (ton per day) was around 3.2 or 2.5 years, respectively.Keywords: pig hair biowaste, catalytic gasification, hydrogen production, PEMFC, resource recovery
Procedia PDF Downloads 13568 Optimizing Sustainable Graphene Production: Extraction of Graphite from Spent Primary and Secondary Batteries for Advanced Material Synthesis
Authors: Pratima Kumari, Sukha Ranjan Samadder
Abstract:
This research aims to contribute to the sustainable production of graphene materials by exploring the extraction of graphite from spent primary and secondary batteries. The increasing demand for graphene materials, a versatile and high-performance material, necessitates environmentally friendly methods for its synthesis. The process involves a well-planned methodology, beginning with the gathering and categorization of batteries, followed by the disassembly and careful removal of graphite from anode structures. The use of environmentally friendly solvents and mechanical techniques ensures an efficient and eco-friendly extraction of graphite. Advanced approaches such as the modified Hummers' method and chemical reduction process are utilized for the synthesis of graphene materials, with a focus on optimizing parameters. Various analytical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy were employed to validate the quality and structure of the produced graphene materials. The major findings of this study reveal the successful implementation of the methodology, leading to the production of high-quality graphene materials suitable for advanced material applications. Thorough characterization using various advanced techniques validates the structural integrity and purity of the graphene. The economic viability of the process is demonstrated through a comprehensive economic analysis, highlighting the potential for large-scale production. This research contributes to the field of sustainable production of graphene materials by offering a systematic methodology that efficiently transforms spent batteries into valuable graphene resources. Furthermore, the findings not only showcase the potential for upcycling electronic waste but also address the pressing need for environmentally conscious processes in advanced material synthesis.Keywords: spent primary batteries, spent secondary batteries, graphite extraction, advanced material synthesis, circular economy approach
Procedia PDF Downloads 54567 Genesis of Talc Bodies in Relation to the Mafic-Ultramafic Rocks around Wonu, Ibadan-Apomu Area, Southwestern Nigeria
Authors: Morenike Abimbola Adeleye, Anthony Temidayo Bolarinwa
Abstract:
The genesis of talc bodies around Wonu, Ibadan-Apomu area, southwestern Nigeria, has been speculative due to inadequate compositional data on the talc and the mafic-ultramafic protoliths. Petrography, morphology, using scanning electron microscope, mineral chemistry, X-ray diffraction, and major, trace and rare-earth element compositions of the talc and the mafic-ultramafic in the area were undertaken with a view to determine the genesis of the talc bodies. Fine-grained amphibolite and lherzolite are the major mafic-ultramafic rocks in the study area. The amphibolite is fine-grained, composed of amphiboles, pyroxenes plagioclase, K-feldspar, ilmenite, magnetite, and garnet. The lherzolite and talc are composed of olivines, pyroxenes, amphiboles, and plagioclase. Alteration minerals include serpentine, amesite, talc, Cr-bearing clinochlore, and ferritchromite. Cr-spinel, pyrite, and magnetite are the accessory minerals present. Alteration of olivines, pyroxenes, and amphiboles to talc and chlinochlore; and spinel to ferritchchromite by hydrothermal (H₂O-CO₂-Cl-HF) fluids, provided by the granitic intrusions in the area, showed retrograde metasomatism of amphibolites to greenschist facies at 500-550ºC. This led to the formation of talc, amesite, anthophyllite, actinolite, and tremolite. The Al₂O₃-Fe₂O₃+TiO₂-MgO discrimination diagram suggests tholeiitic protolith for the amphibolite and komatitic protolith for the lherzolite. The lherzolite has flat rare-earth element patterns typical of komatiites and dunites. The Al₂O₃/TiO₂ ratios, Ce/Nb vs. Th/Nb, Cr-TiO₂, TiO₂ vs. Al₂O₃, and Nd vs. Nb discrimination diagrams indicated that the talcs are from two-parent sources: altered metacarbonates and tholeiitic basalts (amphibolites) to komatitic basalts (lherzolites).Keywords: amphibolites, lherzolites, talc, komatiite
Procedia PDF Downloads 219566 Porosity and Surface Chemistry of Functionalized Carbonaceous Materials from Date Palm Leaflets
Authors: El-Said I. El-Shafey, Syeda Naheed F. Ali, Saleh S. Al-Busafi, Haider A. J. Al-Lawati
Abstract:
Date palm leaflets were utilized as a precursor for activated carbon (AC) preparation using KOH activation. AC produced was oxidized using nitric acid producing oxidized activated carbon (OAC). OAC that possesses acidic surface was surface functionalized to produce basic activated carbons using linear diamine compounds (ethylene diamine and propylene diamine). OAC was also functionalized to produce hydrophobic activated carbons using ethylamine (EA) and aniline (AN). Dehydrated carbon was also prepared from date palm leaflets using sulfuric acid dehydration/ oxidation and was surface functionalized in the same way as AC. Nitric acid oxidation was not necessary for DC as it is acidic carbon. The surface area of AC is high (823 m2/g) with microporosity domination, however, after oxidation and surface functionalization, both the surface area and surface microporosity decrease tremendously. DC surface area was low (15 m2/g) with mesoporosity domination. Surface functionalization has decreased the surface area of activated carbons. FTIR spectra show that -COOH group on DC and OAC almost disappeared after surface functionalization. The surface chemistry of all carbons produced was tested for pHzpc, basic sites, boehm titration, thermogravimetric analysis and zeta potential measurement. Scanning electron microscopy and energy dispersive spectroscopy in addition to CHN elemental analysis were also carried out. DC and OAC possess low pHzpc and high surface functionality, however, basic and hydrophobic carbons possess high pHzpc and low surface functionality. The different behavior of carbons is related to their different surface chemistry. Methylene blue adsorption was found to be faster on hydrophobic carbons based on AC and DC. The Larger adsorption capacity of methylene blue was found for hydrophobic carbons. Dominating adsorption forces of methylene blue varies from carbon to another depending on its surface nature. Sorption forces include hydrophobic forces, H-bonding, electrostatic interactions and van der Waals forces.Keywords: carbon, acidic, basic, hydrophobic
Procedia PDF Downloads 285565 Highly Responsive p-NiO/n-rGO Heterojunction Based Self-Powered UV Photodetectors
Authors: P. Joshna, Souvik Kundu
Abstract:
Detection of ultraviolet (UV) radiation is very important as it has exhibited a profound influence on humankind and other existences, including military equipment. In this work, a self-powered UV photodetector was reported based on oxides heterojunctions. The thin films of p-type nickel oxide (NiO) and n-type reduced graphene oxide (rGO) were used for the formation of p-n heterojunction. Low-Cost and low-temperature chemical synthesis was utilized to prepare the oxides, and the spin coating technique was employed to deposit those onto indium doped tin oxide (ITO) coated glass substrates. The top electrode platinum was deposited utilizing physical vapor evaporation technique. NiO offers strong UV absorption with high hole mobility, and rGO prevents the recombination rate by separating electrons out from the photogenerated carriers. Several structural characterizations such as x-ray diffraction, atomic force microscope, scanning electron microscope were used to study the materials crystallinity, microstructures, and surface roughness. On one side, the oxides were found to be polycrystalline in nature, and no secondary phases were present. On the other side, surface roughness was found to be low with no pit holes, which depicts the formation of high-quality oxides thin films. Whereas, x-ray photoelectron spectroscopy was employed to study the chemical compositions and oxidation structures. The electrical characterizations such as current-voltage and current response were also performed on the device to determine the responsivity, detectivity, and external quantum efficiency under dark and UV illumination. This p-n heterojunction device offered faster photoresponse and high on-off ratio under 365 nm UV light illumination of zero bias. The device based on the proposed architecture shows the efficacy of the oxides heterojunction for efficient UV photodetection under zero bias, which opens up a new path towards the development of self-powered photodetector for environment and health monitoring sector.Keywords: chemical synthesis, oxides, photodetectors, spin coating
Procedia PDF Downloads 123564 Investigation of the Growth Kinetics of Phases in Ni–Sn System
Authors: Varun A Baheti, Sanjay Kashyap, Kamanio Chattopadhyay, Praveen Kumar, Aloke Paul
Abstract:
Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system.Keywords: diffusion, equilibrium phase, metastable phase, the Ni-Sn system
Procedia PDF Downloads 307563 Evaluation of κ -Carrageenan Hydrogel Efficiency in Wound-Healing
Authors: Ali Ayatic, Emad Mozaffari, Bahareh Tanhaei, Maryam Khajenoori, Saeedeh Movaghar Khoshkho, Ali Ayati
Abstract:
The abuse of antibiotics, such as tetracycline (TC), is a great global threat to people and the use of topical antibiotics is a promising tact that can help to solve this problem. Antibiotic therapy is often appropriate and necessary for acute wound infections, while topical tetracycline can be highly efficient in improving the wound healing process in diabetics. Due to the advantages of drug-loaded hydrogels as wound dressing, such as ease of handling, high moisture resistance, excellent biocompatibility, and the ability to activate immune cells to speed wound healing, it was found as an ideal wound treatment. In this work, the tetracycline-loaded hydrogels combining agar (AG) and κ-carrageenan (k-CAR) as polymer materials were prepared, in which span60 surfactant was introduced inside as a drug carrier. The Field Emission Scanning Electron Microscopes (FESEM) and Fourier-transform infrared spectroscopy (FTIR) techniques were employed to provide detailed information on the morphology, composition, and structure of fabricated drug-loaded hydrogels and their mechanical properties, and hydrogel permeability to water vapor was investigated as well. Two types of gram-negative and gram-positive bacteria were used to explore the antibacterial properties of prepared tetracycline-contained hydrogels. Their swelling and drug release behavior was studied using the changing factors such as the ratio of polysaccharides (MAG/MCAR), the span60 surfactant concentration, potassium chloride (KCl) concentration and different release media (deionized water (DW), phosphate-buffered saline (PBS), and simulated wound fluid (SWF)) at different times. Finally, the kinetic behavior of hydrogel swelling was studied. Also, the experimental data of TC release to DW, PBS, and SWF using various mathematical models such as Higuchi, Korsmeyer-Peppas, zero-order, and first-order in the linear and nonlinear modes were evaluated.Keywords: drug release, hydrogel, tetracycline, wound healing
Procedia PDF Downloads 80562 Transformation of Aluminum Unstable Oxyhydroxides in Ultrafine α-Al2O3 in Presence of Various Seeds
Authors: T. Kuchukhidze, N. Jalagonia, Z. Phachulia, R. Chedia
Abstract:
Ceramic obtained on the base of aluminum oxide has wide application range, because it has unique properties, for example, wear-resistance, dielectric characteristics, exploitation ability at high temperatures and in corrosive atmosphere. Low temperature synthesis of α-Al2O3 is energo-economical process and it is actual for developing technologies of corundum ceramics fabrication. In the present work possibilities of low temperature transformation of oxyhydroxides in α-Al2O3, during a presence of small amount of rare–earth elements compounds (also Th, Re), have been discussed. Aluminium unstable oxyhydroxides have been obtained by hydrolysis of aluminium isopropoxide, nitrates, sulphate, chloride in alkaline environment at 80-90ºC tempertures. β-Al(OH)3 has been received from aluminium powder by ultrasonic development. Drying of oxyhydroxide sol has been conducted with presence of various types seeds, which amount reaches 0,1-0,2% (mas). Neodymium, holmium, thorium, lanthanum, cerium, gadolinium, disprosium nitrates and rhenium carbonyls have been used as seeds and they have been added to the sol specimens in amount of 0.1-0.2% (mas) calculated on metals. Annealing of obtained gels is carried out at 70 – 1100ºC for 2 hrs. The same specimen transforms in α-Al2O3 at 1100ºC. At this temperature in case of presence of lanthanum and gadolinium transformation takes place by 70-85%. In case of presence of thorium stabilization of γ-and θ-phases takes place. It is established, that thorium causes inhibition of α-phase generation at 1100ºC, at the time in all other doped specimens α-phase is generated at lower temperatures (1000-1050ºC). During the work the following devices have been used: X-ray difractometer DRON-3M (Cu-Kα, Ni filter, 2º/min), High temperature vacuum furnace OXY-GON, electronic scanning microscopes Nikon ECLIPSE LV 150, NMM-800TRF, planetary mill Pulverisette 7 premium line, SHIMADZU Dynamic Ultra Micro Hardness Tester, DUH-211S, Analysette 12 Dyna sizer.Keywords: α-Alumina, combustion, phase transformation, seeding
Procedia PDF Downloads 393561 Printed Electronics for Enhanced Monitoring of Organ-on-Chip Culture Media Parameters
Authors: Alejandra Ben-Aissa, Martina Moreno, Luciano Sappia, Paul Lacharmoise, Ana Moya
Abstract:
Organ-on-Chip (OoC) stands out as a highly promising approach for drug testing, presenting a cost-effective and ethically superior alternative to conventional in vivo experiments. These cutting-edge devices emerge from the integration of tissue engineering and microfluidic technology, faithfully replicating the physiological conditions of targeted organs. Consequently, they offer a more precise understanding of drug responses without the ethical concerns associated with animal testing. When addressing the limitations of OoC due to conventional and time-consuming techniques, Lab-On-Chip (LoC) emerge as a disruptive technology capable of providing real-time monitoring without compromising sample integrity. This work develops LoC platforms that can be integrated within OoC platforms to monitor essential culture media parameters, including glucose, oxygen, and pH, facilitating the straightforward exchange of sensing units within a dynamic and controlled environment without disrupting cultures. This approach preserves the experimental setup, minimizes the impact on cells, and enables efficient, prolonged measurement. The LoC system is fabricated following the patented methodology protected by EU patent EP4317957A1. One of the key challenges of integrating sensors in a biocompatible, feasible, robust, and scalable manner is addressed through fully printed sensors, ensuring a customized, cost-effective, and scalable solution. With this technique, sensor reliability is enhanced, providing high sensitivity and selectivity for accurate parameter monitoring. In the present study, LoC is validated measuring a complete culture media. The oxygen sensor provided a measurement range from 0 mgO2/L to 6.3 mgO2/L. The pH sensor demonstrated a measurement range spanning 2 pH units to 9.5 pH units. Additionally, the glucose sensor achieved a measurement range from 0 mM to 11 mM. All the measures were performed with the sensors integrated in the LoC. In conclusion, this study showcases the impactful synergy of OoC technology with LoC systems using fully printed sensors, marking a significant step forward in ethical and effective biomedical research, particularly in drug development. This innovation not only meets current demands but also lays the groundwork for future advancements in precision and customization within scientific exploration.Keywords: organ on chip, lab on chip, real time monitoring, biosensors
Procedia PDF Downloads 16560 Screening of Plant Growth Promoting Rhizobacteria in the Rhizo- and Endosphere of Sunflower (Helianthus anus) and Their Role in Enhancing Growth and Yield Attriburing Trairs and Colonization Studies
Authors: A. Majeed, M.K. Abbasi, S. Hameed, A. Imran, T. Naqqash, M. K. Hanif
Abstract:
Plant growth-promoting rhizobacteria (PGPR) are free-living soil bacteria that aggressively colonize the rhizosphere/plant roots, and enhance the growth and yield of plants when applied to seed or crops. Root associated (endophytic and rhizospheric) PGPR were isolated from Sunflower (Helianthus anus) grown in soils collected from 16 different sites of sub division Dhirkot, Poonch, Azad Jammu & Kashmir, Pakistan. A total of 150 bacterial isolates were isolated, purified, screened in vitro for their plant growth promoting (PGP) characteristics. 11 most effective isolates were selected on the basis of biochemical assays (nitrogen fixation, phosphate solubilization, growth hormone production, biocontrol assay, and carbon substrates utilization assay through gas chromatography (GCMS), spectrophotometry, high performance liquid chromatography HPLC, fungal and bacterial dual plate assay and BIOLOG GN2/GP2 microplate assay respectively) and were tested on the crop under controlled and field conditions. From the inoculation assay, the most promising 4 strains (on the basis of increased root/shoot weight, root/shoot length, seed oil content, and seed yield) were than selected for colonization studies through confocal laser scanning and transmission electron microscope. 16Sr RNA gene analysis showed that these bacterial isolates belong to Pseudononas, Enterobacter, Azospirrilum, and Citobacter genera. This study is the clear evident that such isolates have the potential for application as inoculants adapted to poor soils and local crops to minimize the chemical fertilizers harmful for soil and environmentKeywords: PGPR, nitrogen fixation, phosphate solubilization, colonization
Procedia PDF Downloads 340559 Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform
Authors: Srinivas Bathini, Duraichelvan Raju, Simona Badilescu, Muthukumaran Packirisamy
Abstract:
A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.Keywords: exosomes, gold nano-islands, microfluidics, plasmonic biosensing
Procedia PDF Downloads 172