Search results for: data loss
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27832

Search results for: data loss

25552 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services

Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme

Abstract:

Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.

Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing

Procedia PDF Downloads 118
25551 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform

Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu

Abstract:

Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.

Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance predicting formula, typical SQL query tasks

Procedia PDF Downloads 232
25550 Model Predictive Controller for Pasteurization Process

Authors: Tesfaye Alamirew Dessie

Abstract:

Our study focuses on developing a Model Predictive Controller (MPC) and evaluating it against a traditional PID for a pasteurization process. Utilizing system identification from the experimental data, the dynamics of the pasteurization process were calculated. Using best fit with data validation, residual, and stability analysis, the quality of several model architectures was evaluated. The validation data fit the auto-regressive with exogenous input (ARX322) model of the pasteurization process by roughly 80.37 percent. The ARX322 model structure was used to create MPC and PID control techniques. After comparing controller performance based on settling time, overshoot percentage, and stability analysis, it was found that MPC controllers outperform PID for those parameters.

Keywords: MPC, PID, ARX, pasteurization

Procedia PDF Downloads 167
25549 Numerical Investigation into Capture Efficiency of Fibrous Filters

Authors: Jayotpaul Chaudhuri, Lutz Goedeke, Torsten Hallenga, Peter Ehrhard

Abstract:

Purification of gases from aerosols or airborne particles via filters is widely applied in the industry and in our daily lives. This separation especially in the micron and submicron size range is a necessary step to protect the environment and human health. Fibrous filters are often employed due to their low cost and high efficiency. For designing any filter the two most important performance parameters are capture efficiency and pressure drop. Since the capture efficiency is directly proportional to the pressure drop which leads to higher operating costs, a detailed investigation of the separation mechanism is required to optimize the filter designing, i.e., to have a high capture efficiency with a lower pressure drop. Therefore a two-dimensional flow simulation around a single fiber using Ansys CFX and Matlab is used to get insight into the separation process. Instead of simulating a solid fiber, the present Ansys CFX model uses a fictitious domain approach for the fiber by implementing a momentum loss model. This approach has been chosen to avoid creating a new mesh for different fiber sizes, thereby saving time and effort for re-meshing. In a first step, only the flow of the continuous fluid around the fiber is simulated in Ansys CFX and the flow field data is extracted and imported into Matlab and the particle trajectory is calculated in a Matlab routine. This calculation is a Lagrangian, one way coupled approach for particles with all relevant forces acting on it. The key parameters for the simulation in both Ansys CFX and Matlab are the porosity ε, the diameter ratio of particle and fiber D, the fluid Reynolds number Re, the Reynolds particle number Rep, the Stokes number St, the Froude number Fr and the density ratio of fluid and particle ρf/ρp. The simulation results were then compared to the single fiber theory from the literature.

Keywords: BBO-equation, capture efficiency, CFX, Matlab, fibrous filter, particle trajectory

Procedia PDF Downloads 213
25548 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data

Authors: Rana Rimawi, Ayman Baklizi

Abstract:

Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.

Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation

Procedia PDF Downloads 202
25547 Minimizing Ship’S Breakdown Maintenance Due to Rope Entangled In Propeller With “Si Kuman” On Mooring Boat PSC I in Surabaya

Authors: Jogi Prayogo, Dwi Qaqa Prasetyatama, Rahmad Dwi Afandi, Kunto Arief Prasetyo, Viorel Herniza Leksono

Abstract:

PT. Pertamina Trans Kontinental managed a fleet of 364 ships in 2018 - 2020. In that period, there were 8 incidents of ship damage, causing breakdown maintenance on 6 ships belonging to PT Pertamina Trans Kontinental throughout Indonesia's operational areas due to ropes entangled in propellers. The company's losses that were caused by the fouled propellers amounted to 306.35 Million Rupiah. Of the 8 incidents, Mooring Boat PSC I was taken as a pilot project for further analysis considering the location of the ship which is in Surabaya and Mooring Boat PSC I has experienced 2 incidents of rope entanglement that caused the company's losses due to the largest Breakdown Maintenance amounted to 200.99 Million Rupiah. After analyzing the rope entanglement in the ship's propeller based on the data of Mooring Boat PSC I related to the location of propellers that are often fouled in the conventional propulsion system, it was found that there is a suitable location for the implementation of SI KUMAN tool that serves to cut ropes to prevent the occurrence of rope entangled in ship propellers. The determination of SI KUMAN tool is based on the strength of the ship's material to be installed and a suitable design to prevent the occurrence of ropes being entangled in propellers. After the installation of the "SI KUMAN" tool and monitoring carried out for 1 year period (August 2020 - August 2021), it was found that SI KUMAN tool can eliminate the risk of fouled propeller incidents which previously occurred twice in one year so that the company's loss amounted to 200.99 Million Rupiah can be eliminated and SI KUMAN tool can still operate optimally.

Keywords: breakdown maintenance, mooring boat, fleet, fouled propeller, rope entangled, cut

Procedia PDF Downloads 185
25546 Effects of Acacia Honey Drink Ingestion during Rehydration after Exercise Compared to Sports Drink on Physiological Parameters and Subsequent Running Performance in the Heat

Authors: Foong Kiew Ooi, Aidi Naim Mohamad Samsani, Chee Keong Chen, Mohamed Saat Ismail

Abstract:

Introduction: Prolonged exercise in a hot and humid environment can result in glycogen depletion and associated with loss of body fluid. Carbohydrate contained in sports beverages is beneficial for improving sports performance and preventing dehydration. Carbohydrate contained in honey is believed can be served as an alternative form of carbohydrate for enhancing sports performance. Objective: To investigate the effectiveness of honey drink compared to sports drink as a recovery aid for running performance and physiological parameters in the heat. Method: Ten male recreational athletes (age: 22.2 ± 2.0 years, VO2max: 51.5 ± 3.7 ml.kg-1.min-1) participated in this randomized cross-over study. On each trial, participants were required to run for 1 hour in the glycogen depletion phase (Run-1), followed by a rehydration phase for 2 hours and subsequently a 20 minutes time trial performance (Run-2). During Run-1, subjects were required to run on the treadmill in the heat (31°C) with 70% relative humidity at 70 % of their VO2max. During rehydration phase, participants drank either honey drink or sports drink, or plain water with amount equivalent to 150% of body weight loss in dispersed interval (60 %, 50 % and 40 %) at 0 min, 30 min and 60 min respectively. Subsequently, time trial was performed by the participants in 20 minutes and the longest distance covered was recorded. Physiological parameters were analysed using two-way ANOVA with repeated measure and time trial performance was analysed using one-way ANOVA. Results: Result showed that Acacia honey elicited a better time trial performance with significantly longer distance compared to water trial (P<0.05). However, there was no significant difference between Acacia honey and sport drink trials (P > 0.05). Acacia honey and sports drink trials elicited 249 m (8.24 %) and 211 m (6.79 %) longer in distance compared to the water trial respectively. For physiological parameters, plasma glucose, plasma insulin and plasma free fatty acids in Acacia honey and sports drink trials were significantly higher compared to the water trial respectively during rehydration phase and time trial running performance phase. There were no significant differences in body weight changes, oxygen uptake, hematocrit, plasma volume changes and plasma cortisol in all the trials. Conclusion: Acacia honey elicited greatest beneficial effects on sports performance among the drinks, thus it has potential to be used for rehydration in athletes who train and compete in hot environment.

Keywords: honey drink, rehydration, sports performance, plasma glucose, plasma insulin, plasma cortisol

Procedia PDF Downloads 312
25545 Cybervetting and Online Privacy in Job Recruitment – Perspectives on the Current and Future Legislative Framework Within the EU

Authors: Nicole Christiansen, Hanne Marie Motzfeldt

Abstract:

In recent years, more and more HR professionals have been using cyber-vetting in job recruitment in an effort to find the perfect match for the company. These practices are growing rapidly, accessing a vast amount of data from social networks, some of which is privileged and protected information. Thus, there is a risk that the right to privacy is becoming a duty to manage your private data. This paper investigates to which degree a job applicant's fundamental rights are protected adequately in current and future legislation in the EU. This paper argues that current data protection regulations and forthcoming regulations on the use of AI ensure sufficient protection. However, even though the regulation on paper protects employees within the EU, the recruitment sector may not pay sufficient attention to the regulation as it not specifically targeting this area. Therefore, the lack of specific labor and employment regulation is a concern that the social partners should attend to.

Keywords: AI, cyber vetting, data protection, job recruitment, online privacy

Procedia PDF Downloads 93
25544 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)

Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim

Abstract:

This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.

Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm

Procedia PDF Downloads 406
25543 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique

Authors: Reda Abdel Azim, Tariq Shehab

Abstract:

The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.

Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension

Procedia PDF Downloads 259
25542 Governance, Risk Management, and Compliance Factors Influencing the Adoption of Cloud Computing in Australia

Authors: Tim Nedyalkov

Abstract:

A business decision to move to the cloud brings fundamental changes in how an organization develops and delivers its Information Technology solutions. The accelerated pace of digital transformation across businesses and government agencies increases the reliance on cloud-based services. They are collecting, managing, and retaining large amounts of data in cloud environments makes information security and data privacy protection essential. It becomes even more important to understand what key factors drive successful cloud adoption following the commencement of the Privacy Amendment Notifiable Data Breaches (NDB) Act 2017 in Australia as the regulatory changes impact many organizations and industries. This quantitative correlational research investigated the governance, risk management, and compliance factors contributing to cloud security success. The factors influence the adoption of cloud computing within an organizational context after the commencement of the NDB scheme. The results and findings demonstrated that corporate information security policies, data storage location, management understanding of data governance responsibilities, and regular compliance assessments are the factors influencing cloud computing adoption. The research has implications for organizations, future researchers, practitioners, policymakers, and cloud computing providers to meet the rapidly changing regulatory and compliance requirements.

Keywords: cloud compliance, cloud security, data governance, privacy protection

Procedia PDF Downloads 123
25541 ELectromagnetic-Thermal Coupled Analysis of PMSM with Cooling Channel

Authors: Hyun-Woo Jun, Tae-Chul Jeong, Huai-Cong Liu, Ju Lee

Abstract:

The paper presents the electromagnetic-thermal flow coupled analysis of permanent magnet synchronous motor (PMSM) which has cooling channel in stator core for forced air cooling. Unlike the general PMSM design, to achieve ohmic loss reduction for high efficiency, cooling channel actively used in the stator core. Equivalent thermal network model was made to analyze the effect of the formation of the additional flow path in the core. According to the shape and position changing of the channel design, electromagnetic-thermal coupled analysis results were reviewed.

Keywords: coupled problems, electric motors, equivalent circuits, fluid flow, thermal analysis

Procedia PDF Downloads 622
25540 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa

Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees

Abstract:

The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.

Keywords: solar energy, solar radiation, ERA-5, potential energy

Procedia PDF Downloads 216
25539 Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data

Authors: Fan Gao, Lior Pachter

Abstract:

The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices, and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data.

Keywords: single-cell, ATAC-seq, bioinformatics, open chromatin landscape, chromatin interactome

Procedia PDF Downloads 158
25538 Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics

Authors: Bing-Jing Li, Sih-Yin Wang, Tse-Chun Yeh, Yuan-Bin Chen

Abstract:

Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.

Keywords: (Mg1-xNix)2(Ti0.95Sn0.05)O4, microwave dielectric ceramics, high quality factor, high frequency wireless communication

Procedia PDF Downloads 491
25537 Meta Mask Correction for Nuclei Segmentation in Histopathological Image

Authors: Jiangbo Shi, Zeyu Gao, Chen Li

Abstract:

Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.

Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations

Procedia PDF Downloads 143
25536 Dealing with the Spaces: Ultra Conservative Approach from Childhood to Adulthood

Authors: Maryam Firouzmandi, Moosa Miri

Abstract:

Common reasons for early tooth loss are trauma, extraction due to caries or periodontal disease and congenital missing. The remaining space after tooth loss may cause functional and esthetic problems. Therefore restorative dentists should attempt to manage these spaces using conservative methods. The goal is to restore the lost esthetic and function, prevent phonetic, self-esteem and personality problems and tongue habits. Preserving alveolar bone is also of great importance during the growth stage. Purpose: When deciding about the management of the missing tooth, space implants are contradicted until the completion of dentoalveolar development. Even in adulthood, due to systemic or periodontal problems or biological and economic issues, the implant might not be indicated. In this article, the alternative conservative restorative methods of space maintenance are going to be discussed. Essix retainers are made chair-side as easy as forming a custom bleaching tray with some modifications. They are esthetically acceptable and not expensive. These temporaries provide support for the lips but could not be used during function. Mini-screw-supported temporaries are another option for maintaining the space, especially after orthodontic treatment when there is a time lag between the termination of orthodontic treatment and definitive restoration. Two techniques will be presented for this kind of restoration: Denture tooth pontic or a composite crown. The benefits are alveolar bone preservation, Physiologic pressure on the alveolar ridge to increase its density and even can be retained until the completion of the definitive treatment. Bonded fixed partial denture includes Maryland bridge, fiber-reinforced composite bridge, resin-bonded bridge, and ceramic bonded bridge. These types of bridges are recommended to be used after a pubertal growth spurt and a recent meta-analysis considered their clinical success similar to conventional FDPs and implant-supported crowns. However, they have several advantages that are going to be discussed by presenting some clinical examples. Practical instruction on how to construct an FRC bridge and a novel chair-side Maryland bridge will be given by means of clinical cases. Clinical relevance: minimally invasive options should always be considered and destruction of healthy enamel and dentin during the preparation phase should be avoided as much as possible.

Keywords: tooth missing, fiber-reinforced composite, Maryland, Essix retainers, screw-retained restoration

Procedia PDF Downloads 200
25535 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.

Keywords: classification, achine learning, predictive quality, feature selection

Procedia PDF Downloads 166
25534 Analysis of the Properties of Hydrophobised Heat-Insulating Mortar with Perlite

Authors: Danuta Barnat-Hunek

Abstract:

The studies are devoted to assessing the effectiveness of hydrophobic and air entraining admixtures based on organ silicon compounds. Mortars with lightweight aggregate–perlite were the subjects of the investigation. The following laboratory tests were performed: density, open porosity, total porosity, absorptivity, capability to diffuse water vapour, compressive strength, flexural strength, frost resistance, sodium sulphate corrosion resistance and the thermal conductivity coefficient. The composition of the two mixtures of mortars was prepared: mortars without a hydrophobic admixture and mortars with cementitious waterproofing material. Surface hydrophobisation was produced on the mortars without a hydrophobic admixture using a methyl silicone resin, a water-based emulsion of methyl silicone resin in potassium hydroxide and alkyl-alkoxy-silane in organic solvents. The results of the effectiveness of hydrophobisation of mortars are the following: The highest absorption after 14 days of testing was shown by mortar without an agent (57.5%), while the lowest absorption was demonstrated by the mortar with methyl silicone resin (52.7%). After 14 days in water the hydrophobisation treatment of the samples proved to be ineffective. The hydrophobised mortars are characterized by an insignificant mass change due to freezing and thawing processes in the case of the methyl silicone resin – 1%, samples without hydrophobisation –5%. This agent efficiently protected the mortars against frost corrosion. The standard samples showed very good resistance to the pressure of sodium sulphate crystallization. Organosilicon compounds have a negative influence on the chemical resistance (weight loss about 7%). The mass loss of non-hydrophobic mortar was 2 times lower than mortar with the hydrophobic admixture. Hydrophobic and aeration admixtures significantly affect the thermal conductivity and the difference is mainly due to the difference in porosity of the compared materials. Hydrophobisation of the mortar mass slightly decreased the porosity of the mortar, and thus in an increase of 20% of its compressive strength. The admixture adversely affected the ability of the hydrophobic mortar – it achieved the opposite effect. As a result of hydrophobising the mass, the mortar samples decreased in density and had improved wettability. Poor protection of the mortar surface is probably due to the short time of saturating the sample in the preparation. The mortars were characterized by high porosity (65%) and water absorption (57.5%), so in order to achieve better efficiency, extending the time of hydrophobisation would be advisable. The highest efficiency was obtained for the surface hydrophobised with the methyl silicone resin.

Keywords: hydrophobisation, mortars, salt crystallization, frost resistance

Procedia PDF Downloads 213
25533 Effect of Self-Lubricating Carbon Materials on the Tribological Performance of Ultra-High Molecular Weight Polyethylene

Authors: Nayeli Camacho, Fernanda Lara-Perez, Carolina Ortega-Portilla, Diego G. Espinosa-Arbelaez, Juan M. Alvarado-Orozco, Guillermo C. Mondragon-Rodriguez

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) has been the gold standard material for total knee replacements for almost five decades. Wear damage to UHMWPE articulating surface is inevitable due to the natural sliding and rolling movements of the knee. This generates a considerable amount of wear debris, which results in mechanical instability of the joint, reduces joint mobility, increases pain with detrimental biologic responses, and causes component loosening. The presence of wear particles has been closely related to adverse reactions in the knee joint surrounding tissue, especially for particles in the range of 0.3 to 2 μm. Carbon-based materials possess excellent mechanical properties and have shown great promise in tribological applications. In this study, diamond-like carbon coatings (DLC) and carbon nanotubes (CNTs) were used to decrease the wear rate of ultra-high molecular weight polyethylene. A titanium doped DLC (Ti-DLC) was deposited by magnetron sputtering on stainless steel precision spheres while CNTs were used as a second phase reinforcement in UHMWPE at a concentration of 1.25 wt.%. A comparative tribological analysis of the wear of UHMWPE and UHMWPE-CNTs with a stainless steel counterpart with and without Ti-DLC coating is presented. The experimental wear testing was performed on a pin-on-disc tribometer under dry conditions, using a reciprocating movement with a load of 1 N at a frequency of 2 Hz for 100,000 and 200,000 cycles. The wear tracks were analyzed with high-resolution scanning electron microscopy to determine wear modes and observe the size and shape of the wear debris. Furthermore, profilometry was used to study the depth of the wear tracks and to map the wear of the articulating surface. The wear tracks at 100,000 and 200,000 cycles on all samples were relatively shallow, and they were in the range of average roughness. It was observed that the Ti-DLC coating decreases the mass loss in the UHMWPE and the depth of the wear track. The combination of both carbon-based materials decreased the material loss compared to the system of stainless steel and UHMWPE. Burnishing of the surface was the predominant wear mode observed with all the systems, more subtle for the systems with Ti-DLC coatings. Meanwhile, in the system composed of stainless steel-UHMWPE, the intrinsic surface roughness of the material was completely replaced by the wear tracks.

Keywords: CNT reinforcement, self-lubricating materials, Ti-DLC, UHMWPE tribological performance

Procedia PDF Downloads 114
25532 Reliability Analysis: A Case Study in Designing Power Distribution System of Tehran Oil Refinery

Authors: A. B. Arani, R. Shojaee

Abstract:

Electrical power distribution system is one of the vital infrastructures of an oil refinery, which requires wide area of study and planning before construction. In this paper, power distribution reliability of Tehran Refinery’s KHDS/GHDS unit has been taken into consideration to investigate the importance of these kinds of studies and evaluate the designed system. In this regard, the authors chose and evaluated different configurations of electrical power distribution along with the existing configuration with the aim of finding the most suited configuration which satisfies the conditions of minimum cost of electrical system construction, minimum cost imposed by loss of load, and maximum power system reliability.

Keywords: power distribution system, oil refinery, reliability, investment cost, interruption cost

Procedia PDF Downloads 878
25531 Research on the Positive Mechanism of Land Transfer Problems and Transformation in the Context of Rural Revitalization

Authors: Dong Tianxiang

Abstract:

In the context of the era of rural revitalization, rural land is popular for more and more active, and its process has been widely concerned by all walks of life. By analyzing and summarizing the actual situation of land transfer, the author found that land transfer has such problems as ambiguous land transfer benefit subjects, decentralized and disorderly land transfer forms, lack of guarantee system for land transfer, and land transfer affecting food production. Based on the above problems, the author first analyzes the specific situation of land transfer in the study area with relevant econometric models and ArcGIS spatial analysis methods and analyzes its causes to construct a positive role mechanism of land use transformation on land transfer.

Keywords: land transfer, land use, rural revitalization, population loss

Procedia PDF Downloads 22
25530 Secure Data Sharing of Electronic Health Records With Blockchain

Authors: Kenneth Harper

Abstract:

The secure sharing of Electronic Health Records (EHRs) is a critical challenge in modern healthcare, demanding solutions to enhance interoperability, privacy, and data integrity. Traditional standards like Health Information Exchange (HIE) and HL7 have made significant strides in facilitating data exchange between healthcare entities. However, these approaches rely on centralized architectures that are often vulnerable to data breaches, lack sufficient privacy measures, and have scalability issues. This paper proposes a framework for secure, decentralized sharing of EHRs using blockchain technology, cryptographic tokens, and Non-Fungible Tokens (NFTs). The blockchain's immutable ledger, decentralized control, and inherent security mechanisms are leveraged to improve transparency, accountability, and auditability in healthcare data exchanges. Furthermore, we introduce the concept of tokenizing patient data through NFTs, creating unique digital identifiers for each record, which allows for granular data access controls and proof of data ownership. These NFTs can also be employed to grant access to authorized parties, establishing a secure and transparent data sharing model that empowers both healthcare providers and patients. The proposed approach addresses common privacy concerns by employing privacy-preserving techniques such as zero-knowledge proofs (ZKPs) and homomorphic encryption to ensure that sensitive patient information can be shared without exposing the actual content of the data. This ensures compliance with regulations like HIPAA and GDPR. Additionally, the integration of Fast Healthcare Interoperability Resources (FHIR) with blockchain technology allows for enhanced interoperability, enabling healthcare organizations to exchange data seamlessly and securely across various systems while maintaining data governance and regulatory compliance. Through real-world case studies and simulations, this paper demonstrates how blockchain-based EHR sharing can reduce operational costs, improve patient outcomes, and enhance the security and privacy of healthcare data. This decentralized framework holds great potential for revolutionizing healthcare information exchange, providing a transparent, scalable, and secure method for managing patient data in a highly regulated environment.

Keywords: blockchain, electronic health records (ehrs), fast healthcare interoperability resources (fhir), health information exchange (hie), hl7, interoperability, non-fungible tokens (nfts), privacy-preserving techniques, tokens, secure data sharing,

Procedia PDF Downloads 27
25529 Challenges in Anti-Counterfeiting of Cyber-Physical Systems

Authors: Daniel Kliewe, Arno Kühn, Roman Dumitrescu, Jürgen Gausemeier

Abstract:

This paper examines the system protection for cyber-physical systems (CPS). CPS are particularly characterized by their networking system components. This means they are able to adapt to the needs of their users and its environment. With this ability, CPS have new, specific requirements on the protection against anti-counterfeiting, know-how loss and manipulation. They increase the requirements on system protection because piracy attacks can be more diverse, for example because of an increasing number of interfaces or through the networking abilities. The new requirements were identified and in a next step matched with existing protective measures. Due to the found gap the development of new protection measures has to be forced to close this gap. Moreover a comparison of the effectiveness between selected measures was realized and the first results are presented in the paper.

Keywords: anti-counterfeiting, cyber physical systems, intellectual property (IP), knowledge management, system protection

Procedia PDF Downloads 500
25528 Effect of Whey Protein-Rice Bran Oil Incorporated Zataria multiflora Extract Edible Coating on Chemical, Physical and Microbial Quality of Chicken Egg

Authors: Majid Javanmard

Abstract:

In this study, the effects of coating with whey protein concentrate (7.5% w/v) alone and/or in combination with rice bran oil (0.2, 0.4, 0.6 g in 100 ml coating solution) and Zataria multiflora extract (1 and 2 μL in 100 ml coating solution) on the quality attributes and egg shelf life were carefully observed and analyzed. Weight loss, Haugh index, yolk index, pH, air cell depth, shell strength and the impact of this coating on the microbial load of the eggs surface were studied at the end of each week (during the 4 weeks of storage in a room environment temperature and humidity). After 4 weeks of storage, it was observed that the weight loss in all of the treated eggs with whey protein concentrate and 0.2 gr of rice bran oil (experimental group) was significantly lower than that of the control group(P < 0/05). With regard to Haugh index and yolk index, egg shelf life increased about 4 weeks compared with the control samples. Haugh Index changes revealed that the coated samples remained at grade A after 3 weeks of storage, while the control samples were relegated from grade AA to B after one week. Haugh and yolk Indices in all coated eggs were more than those of the control group. In the coated groups, Haugh and yolk indices of the coated samples with whey protein concentrate and 0.2 g rice bran oil and with whey protein concentrate and 0.2g of rice bran oil and 1 micro liter of Zataria multiflora extract were more than those of the other coated eggs and the control group eggs. PH values of the control group were higher than those of the coated groups during the storage of the eggs. The shell strength of the coated group was more than that of the control group (uncoated) and in coated samples, whey protein concentrate and 0.2 gr of rice bran oil coated samples had high shell strength. In the other treatments, no significant differences were observed. The depth of the air cell of the coated groups was determined to be less than that of the control group during the storage period. The minimum inhibitory concentration was 1 μL of Zataria multiflora extract. The results showed that 1 μL concentration of Zataria multiflora extract reduces the microbial load of the egg shell surface to 87% and 2 μL reduced total bacterial load to zero. In sensory evaluation, from evaluator point of view, the coated eggs had more overall acceptance than the uncoated group (control), and in the treatment group coated eggs, those containing a low percentage of rice bran oil had higher overall acceptability. In conclusion, coating as a practical and cost effective method can maintain the quality parameters of eggs and lead to durability of supply conditions in addition to the product marketability.

Keywords: edible coating, chicken egg, whey protein concentrate, rice bran oil, Zataria multiflora extract, shelf life

Procedia PDF Downloads 305
25527 Minimally Invasive versus Conventional Sternotomy for Aortic Valve Replacement: A Systematic Review and Meta-Analysis

Authors: Ahmed Shaboub, Yusuf Jasim Althawadi, Shadi Alaa Abdelaal, Mohamed Hussein Abdalla, Hatem Amr Elzahaby, Mohamed Mohamed, Hazem S. Ghaith, Ahmed Negida

Abstract:

Objectives: We aimed to compare the safety and outcomes of the minimally invasive approaches versus conventional sternotomy procedures for aortic valve replacement. Methods: We conducted a PRISMA-compliant systematic review and meta-analysis. We ran an electronic search of PubMed, Cochrane CENTRAL, Scopus, and Web of Science to identify the relevant published studies. Data were extracted and pooled as standardized mean difference (SMD) or risk ratio (RR) using StataMP version 17 for macOS. Results: Forty-one studies with a total of 15,065 patients were included in this meta-analysis (minimally invasive approaches n=7231 vs. conventional sternotomy n=7834). The pooled effect size showed that minimally invasive approaches had lower mortality rate (RR 0.76, 95%CI [0.59 to 0.99]), intensive care unit and hospital stays (SMD -0.16 and -0.31, respectively), ventilation time (SMD -0.26, 95%CI [-0.38 to -0.15]), 24-h chest tube drainage (SMD -1.03, 95%CI [-1.53 to -0.53]), RBCs transfusion (RR 0.81, 95%CI [0.70 to 0.93]), wound infection (RR 0.66, 95%CI [0.47 to 0.92]) and acute renal failure (RR 0.65, 95%CI [0.46 to 0.93]). However, minimally invasive approaches had longer operative time, cross-clamp, and bypass times (SMD 0.47, 95%CI [0.22 to 0.72], SMD 0.27, 95%CI [0.07 to 0.48], and SMD 0.37, 95%CI [0.20 to 0.45], respectively). There were no differences between the two groups in blood loss, endocarditis, cardiac tamponade, stroke, arrhythmias, pneumonia, pneumothorax, bleeding reoperation, tracheostomy, hemodialysis, or myocardial infarction (all P>0.05). Conclusion: Current evidence showed higher safety and better operative outcomes with minimally invasive aortic valve replacement compared to the conventional approach. Future RCTs with long-term follow-ups are recommended.

Keywords: aortic replacement, minimally invasive, sternotomy, mini-sternotomy, aortic valve, meta analysis

Procedia PDF Downloads 124
25526 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development

Procedia PDF Downloads 426
25525 Synthesis, Spectral, Thermal, Optical and Dielectric Studies of Some Organic Arylidene Derivatives

Authors: S. Sathiyamoorthi, P. Srinivasan, K. Suganya Devi

Abstract:

Arylidene derivatives are the subclass of chalcone derivatives. Chalcone derivatives are studied widely for the past decade because of its nonlinearity. To seek new organic group of crystals which suit for fabrication of optical devices, three-member organic arylidene crystals were synthesized by using Claisen–Schmidt condensation reaction. Good quality crystals were grown by slow evaporation method. Functional groups were identified by FT-IR and FT-Raman spectrum. Optical transparency and optical band gap were determined by UV-Vis-IR studies. Thermal stability and melting point were calculated using TGA and DSC. Variation of dielectric loss and dielectric constant with frequency were calculated by dielectric measurement.

Keywords: DSC and TGA studies, nonlinear optic studies, Fourier Transform Infrared Spectroscopy, UV-vis-NIR spectra

Procedia PDF Downloads 325
25524 An Extended Inverse Pareto Distribution, with Applications

Authors: Abdel Hadi Ebraheim

Abstract:

This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.

Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation

Procedia PDF Downloads 86
25523 Potential Determinants of Research Output: Comparing Economics and Business

Authors: Osiris Jorge Parcero, Néstor Gandelman, Flavia Roldán, Josef Montag

Abstract:

This paper uses cross-country unbalanced panel data of up to 146 countries over the period 1996 to 2015 to be the first study to identify potential determinants of a country’s relative research output in Economics versus Business. More generally, it is also one of the first studies comparing Economics and Business. The results show that better policy-related data availability, higher income inequality, and lower ethnic fractionalization relatively favor economics. The findings are robust to two alternative fixed effects specifications, three alternative definitions of economics and business, two alternative measures of research output (publications and citations), and the inclusion of meaningful control variables. To the best of our knowledge, our paper is also the first to demonstrate the importance of policy-related data as drivers of economic research. Our regressions show that the availability of this type of data is the single most important factor associated with the prevalence of economics over business as a research domain. Thus, our work has policy implications, as the availability of policy-related data is partially under policy control. Moreover, it has implications for students, professionals, universities, university departments, and research-funding agencies that face choices between profiles oriented toward economics and those oriented toward business. Finally, the conclusions show potential lines for further research.

Keywords: research output, publication performance, bibliometrics, economics, business, policy-related data

Procedia PDF Downloads 138