Search results for: air data system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 37436

Search results for: air data system

35156 Light Car Assisted by PV Panels

Authors: Soufiane Benoumhani, Nadia Saifi, Boubekeur Dokkar, Mohamed Cherif Benzid

Abstract:

This work presents the design and simulation of electric equipment for a hybrid solar vehicle. The new drive train of this vehicle is a parallel hybrid system which means a vehicle driven by a great percentage of an internal combustion engine with 49.35 kW as maximal power and electric motor only as assistance when is needed. This assistance is carried out on the rear axle by a single electric motor of 7.22 kW as nominal power. The motor is driven by 12 batteries connecting in series, which are charged by three PV panels (300 W) installed on the roof and hood of the vehicle. The individual components are modeled and simulated by using the Matlab Simulink environment. The whole system is examined under different load conditions. The reduction of CO₂ emission is obtained by reducing fuel consumption. With the use of this hybrid system, fuel consumption can be reduced from 6.74 kg/h to 5.56 kg/h when the electric motor works at 100 % of its power. The net benefit of the system reaches 1.18 kg/h as fuel reduction at high values of power and torque.

Keywords: light car, hybrid system, PV panel, electric motor

Procedia PDF Downloads 121
35155 Neural Synchronization - The Brain’s Transfer of Sensory Data

Authors: David Edgar

Abstract:

To understand how the brain’s subconscious and conscious functions, we must conquer the physics of Unity, which leads to duality’s algorithm. Where the subconscious (bottom-up) and conscious (top-down) processes function together to produce and consume intelligence, we use terms like ‘time is relative,’ but we really do understand the meaning. In the brain, there are different processes and, therefore, different observers. These different processes experience time at different rates. A sensory system such as the eyes cycles measurement around 33 milliseconds, the conscious process of the frontal lobe cycles at 300 milliseconds, and the subconscious process of the thalamus cycle at 5 milliseconds. Three different observers experience time differently. To bridge observers, the thalamus, which is the fastest of the processes, maintains a synchronous state and entangles the different components of the brain’s physical process. The entanglements form a synchronous cohesion between the brain components allowing them to share the same state and execute in the same measurement cycle. The thalamus uses the shared state to control the firing sequence of the brain’s linear subconscious process. Sharing state also allows the brain to cheat on the amount of sensory data that must be exchanged between components. Only unpredictable motion is transferred through the synchronous state because predictable motion already exists in the shared framework. The brain’s synchronous subconscious process is entirely based on energy conservation, where prediction regulates energy usage. So, the eyes every 33 milliseconds dump their sensory data into the thalamus every day. The thalamus is going to perform a motion measurement to identify the unpredictable motion in the sensory data. Here is the trick. The thalamus conducts its measurement based on the original observation time of the sensory system (33 ms), not its own process time (5 ms). This creates a data payload of synchronous motion that preserves the original sensory observation. Basically, a frozen moment in time (Flat 4D). The single moment in time can then be processed through the single state maintained by the synchronous process. Other processes, such as consciousness (300 ms), can interface with the synchronous state to generate awareness of that moment. Now, synchronous data traveling through a separate faster synchronous process creates a theoretical time tunnel where observation time is tunneled through the synchronous process and is reproduced on the other side in the original time-relativity. The synchronous process eliminates time dilation by simply removing itself from the equation so that its own process time does not alter the experience. To the original observer, the measurement appears to be instantaneous, but in the thalamus, a linear subconscious process generating sensory perception and thought production is being executed. It is all just occurring in the time available because other observation times are slower than thalamic measurement time. For life to exist in the physical universe requires a linear measurement process, it just hides by operating at a faster time relativity. What’s interesting is time dilation is not the problem; it’s the solution. Einstein said there was no universal time.

Keywords: neural synchronization, natural intelligence, 99.95% IoT data transmission savings, artificial subconscious intelligence (ASI)

Procedia PDF Downloads 127
35154 IOT Based Automated Production and Control System for Clean Water Filtration Through Solar Energy Operated by Submersible Water Pump

Authors: Musse Mohamud Ahmed, Tina Linda Achilles, Mohammad Kamrul Hasan

Abstract:

Deterioration of the mother nature is evident these day with clear danger of human catastrophe emanating from greenhouses (GHG) with increasing CO2 emissions to the environment. PV technology can help to reduce the dependency on fossil fuel, decreasing air pollution and slowing down the rate of global warming. The objective of this paper is to propose, develop and design the production of clean water supply to rural communities using an appropriate technology such as Internet of Things (IOT) that does not create any CO2 emissions. Additionally, maximization of solar energy power output and reciprocally minimizing the natural characteristics of solar sources intermittences during less presence of the sun itself is another goal to achieve in this work. The paper presents the development of critical automated control system for solar energy power output optimization using several new techniques. water pumping system is developed to supply clean water with the application of IOT-renewable energy. This system is effective to provide clean water supply to remote and off-grid areas using Photovoltaics (PV) technology that collects energy generated from the sunlight. The focus of this work is to design and develop a submersible solar water pumping system that applies an IOT implementation. Thus, this system has been executed and programmed using Arduino Software (IDE), proteus, Maltab and C++ programming language. The mechanism of this system is that it pumps water from water reservoir that is powered up by solar energy and clean water production was also incorporated using filtration system through the submersible solar water pumping system. The filtering system is an additional application platform which is intended to provide a clean water supply to any households in Sarawak State, Malaysia.

Keywords: IOT, automated production and control system, water filtration, automated submersible water pump, solar energy

Procedia PDF Downloads 90
35153 Economic Impact of Mediation: Analyzing the Strengths and Weaknesses of Portuguese Mediation System

Authors: M. L. Mesquita, V. H. Ferreira, C. M. Cebola

Abstract:

Mediation is an increasingly important mechanism, particularly in the European context, as demonstrated, for example, by the publication by the European Union of the Directive 2008/52/EC on certain aspects of mediation in civil and mercantile matters. Developments in international trade and globalization in this new century have led to an increase of the number of litigations, often cross-border, and the courts have failed to respond adequately. From the economic point of view, competitive negotiation can generate negative external effects in social terms. Not always the solution found in court is the most efficient solution taking into account all elements of society. On the other hand, the administration of justice adds in economic terms transaction costs that can be mitigated by the application of other forms of conflict resolution, such as mediation. In this paper, the economic benefits of mediation will be analysed in the light of various studies on the functioning of justice. Several theoretical arguments will be confronted with empirical studies to demonstrate that mediation has significant positive economic effects. In the Portuguese legal system, legislative frameworks for mediation display a state committed to creating a new architecture for the administration of justice, based on the construction of a multi-faceted legal system for dispute resolution mechanisms. Understanding the way in which the system of mediation in Portugal was introduced, allows us to point out that our internal ordering is creating the legal instruments which can assist citizens in the effective protection of their rights. However, data on the use of mediation in concrete proceedings and the consequent effectiveness of mediation in settling disputes, reveal a mechanism that is still far from the ideal results that were initially sought.

Keywords: access to justice, alternative dispute resolution, mediation, litigation

Procedia PDF Downloads 167
35152 The Importance of Industrial Work Experience, Career Information, and Work Motivation to Increase Work Readiness

Authors: Nyaris Pambudiyatno, Asto Buditjahjanto, Eppy Yundra, Arie Wardhono, Eko Hariadi

Abstract:

Vocational education is part of the national education system that is prepared to produce graduates who have the skills and knowledge according to the needs and requirements required by the job. Vocational Education is a secondary education that prepares students to work in a particular field. The purpose of this study was to analyze and find out the effect of industrial work practice experience and career information on work readiness through work motivation. This type of research is causal research with a quantitative approach. The population in this study was 359 cadets of Aviation Polytechnic Surabaya. While the number of samples calculates using slovin calculations obtained by 189 cadets of Surabaya Aviation Polytechnic. The type of data used is quantitative data with the primary data source. Data collection techniques are by distributing questionnaires. Analysis of this study is with Lisrel. The findings prove that: (1) Industrial Work Experience experience has a positive and significant effect on work motivation; (2) Industrial Work Experience has a positive and significant impact on work readiness; (3) Career information has a positive and significant effect on job readiness; (4) Career information has a positive and significant impact on job readiness; Dan (5) Work motivation has a positive and significant effect on work readiness.

Keywords: career information, increase work readiness, industrial work experience, work motivation

Procedia PDF Downloads 137
35151 Credit Risk Evaluation of Dairy Farming Using Fuzzy Logic

Authors: R. H. Fattepur, Sameer R. Fattepur, D. K. Sreekantha

Abstract:

Dairy Farming is one of the key industries in India. India is the leading producer and also the consumer of milk, milk-based products in the world. In this paper, we have attempted to the replace the human expert system and to develop an artificial expert system prototype to increase the speed and accuracy of decision making dairy farming credit risk evaluation. Fuzzy logic is used for dealing with uncertainty, vague and acquired knowledge, fuzzy rule base method is used for representing this knowledge for building an effective expert system.

Keywords: expert system, fuzzy logic, knowledge base, dairy farming, credit risk

Procedia PDF Downloads 362
35150 Stability of a Self-Excited Machine Due to the Mechanical Coupling

Authors: M. Soltan Rezaee, M. R. Ghazavi, A. Najafi, W.-H. Liao

Abstract:

Generally, different rods in shaft systems can be misaligned based on the mechanical system usages. These rods can be linked together via U-coupling easily. The system is self-stimulated and may cause instabilities due to the inherent behavior of the coupling. In this study, each rod includes an elastic shaft with an angular stiffness and structural damping. Moreover, the mass of shafts is considered via attached solid disks. The impact of the system architecture and shaft mass on the instability of such mechanism are studied. Stability charts are plotted via a method based on Floquet theory. Eventually, the unstable points have been found and analyzed in detail. The results show that stabilizing the driveline is feasible by changing the system characteristics which include shaft mass and architecture.

Keywords: coupling, mechanical systems, oscillations, rotating shafts

Procedia PDF Downloads 181
35149 Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers

Authors: Matej Komanec, Jan Bohata, Stanislav Zvanovec, Tomas Nemecek, Jan Broucek, Josef Beran

Abstract:

With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections.

Keywords: optical fiber, multi-mode, data centers, encircled flux

Procedia PDF Downloads 375
35148 Climate Physical Processes Mathematical Modeling for Dome-Like Traditional Residential Building

Authors: Artem Sedov, Aigerim Uyzbayeva, Valeriya Tyo

Abstract:

The presented article is showing results of dynamic modeling with Mathlab software of optimal automatic room climate control system for two experimental houses in Astana, one of which has circle plan and the other one has square plan. These results are showing that building geometry doesn't influence on climate system PID-controls configuring. This confirms theoretical implication that optimal automatic climate control system parameters configuring should depend on building's internal space volume, envelope heat transfer, number of people inside, supply ventilation air flow and outdoor temperature.

Keywords: climate control system, climate physics, dome-like building, mathematical modeling

Procedia PDF Downloads 366
35147 Comparison of E-Waste Management in Switzerland and in Australia: A Qualitative Content Analysis

Authors: Md Tasbirul Islam, Pablo Dias, Nazmul Huda

Abstract:

E-waste/Waste electrical and electronic equipment (WEEE) is one of the fastest growing waste streams across the globe. This paper aims to compare the e-waste management system in Switzerland and Australia in terms of four features - legislative initiatives, disposal practice, collection and financial mechanisms. The qualitative content analysis is employed as a research method in the study. Data were collected from various published academic research papers, industry reports, and web sources. In addition, a questionnaire survey is conducted in Australia to understand the public awareness and opinions on the features. The results of the study provide valuable insights to policymakers in Australia developing better e-waste management system in conjunction with the public consensus, and the state-of-the-art operational strategies currently being practiced in Switzerland.

Keywords: E-waste management, WEEE, awareness, pro-environmental behavior, Australia, Switzerland

Procedia PDF Downloads 281
35146 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 187
35145 Effect of MPPT and THD in Grid-Connected Photovoltaic System

Authors: Sajjad Yahaghifar

Abstract:

From the end of the last century, the importance and use of renewable energy sources have gained prominence, due not only by the fossil fuels dependence reduction, but mainly by environmental reasons related to climate change and the effects to the humanity. Consequently, solar energy has been arousing interest in several countries for being a technology considered clean, with reduced environmental impact. The output power of photo voltaic (PV) arrays is always changing with weather conditions,i.e., solar irradiation and atmospheric temperature. Therefore, maximum power point tracking (MPPT) control to extract maximum power from the PV arrays at real time becomes indispensable in PV generation system. This paper Study MPPT and total harmonic distortion (THD) in the city of Tabriz, Iran with the grid-connected PV system as distributed generation.

Keywords: MPPT, THD, grid-connected, PV system

Procedia PDF Downloads 398
35144 Cross Project Software Fault Prediction at Design Phase

Authors: Pradeep Singh, Shrish Verma

Abstract:

Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.

Keywords: software metrics, fault prediction, cross project, within project.

Procedia PDF Downloads 344
35143 Challenges in Anti-Counterfeiting of Cyber-Physical Systems

Authors: Daniel Kliewe, Arno Kühn, Roman Dumitrescu, Jürgen Gausemeier

Abstract:

This paper examines the system protection for cyber-physical systems (CPS). CPS are particularly characterized by their networking system components. This means they are able to adapt to the needs of their users and its environment. With this ability, CPS have new, specific requirements on the protection against anti-counterfeiting, know-how loss and manipulation. They increase the requirements on system protection because piracy attacks can be more diverse, for example because of an increasing number of interfaces or through the networking abilities. The new requirements were identified and in a next step matched with existing protective measures. Due to the found gap the development of new protection measures has to be forced to close this gap. Moreover a comparison of the effectiveness between selected measures was realized and the first results are presented in the paper.

Keywords: anti-counterfeiting, cyber physical systems, intellectual property (IP), knowledge management, system protection

Procedia PDF Downloads 498
35142 Health Payments and Household Wellbeing in India: Examining the Role of Health Policy Interventions

Authors: Shailender Kumar

Abstract:

Current health policy pronouncements in India advocate for insurance-based financing mechanism to achieve universal health coverage (UHC), while undermine the role of comprehensive healthcare provision system. UHC is achieved when all people receive the health services they need without suffering financial hardship. This study, using 68th & 71st NSS rounds data, examines their relative and combined strength in achieving the above objective. Health-insurance has been unsuccessful in reducing prevalence and catastrophic effects of out-of-pocket payment and even dismantle the effectiveness of traditional way of health financing system. Healthcare provision is the best way forward to enhance health and well-being of households in condition if India removes existing inadequacies and inequalities in service provision across districts/states and ensure free/low cost medicines/diagnostics to the citizens.

Keywords: health policy, demand-side financing, supply-side financing, incidence of health payment

Procedia PDF Downloads 259
35141 Optimizing Inanda Dam Using Water Resources Models

Authors: O. I. Nkwonta, B. Dzwairo, J. Adeyemo, A. Jaiyola, N. Sawyerr, F. Otieno

Abstract:

The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, Water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.

Keywords: complex, water resources, planning, cost effective and management

Procedia PDF Downloads 573
35140 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso

Abstract:

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Keywords: interferometry, MIMO RADAR, SAR, tomography

Procedia PDF Downloads 195
35139 Web-Based Paperless Campus: An Approach to Reduce the Cost and Complexity of Education Administration

Authors: Yekini N. Asafe, Haastrup A. Victor, Lawal N. Olawale, Okikiola F. Mercy

Abstract:

Recent increase in access to personal computer and networking systems have made it feasible to perform much of cumbersome and costly paper-based administration in all organization. Desktop computers, networking systems, high capacity storage devices and telecommunications system is currently allowing the transfer of various format of data to be processed, stored and dissemination for the purpose of decision making. Going paperless is more of benefits compare to full paper-based office. This paper proposed a model for design and implementation of e-administration system (paperless campus) for an institution of learning. If this model is design and implemented it will reduced cost and complexity of educational administration also eliminate menaces and environmental hazards attributed to paper-based administration within schools and colleges.

Keywords: e-administration, educational administration, paperless campus, paper-based administration

Procedia PDF Downloads 380
35138 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic

Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato

Abstract:

Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.

Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security

Procedia PDF Downloads 369
35137 Monitoring Blood Pressure Using Regression Techniques

Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim

Abstract:

Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.

Keywords: blood pressure, noninvasive optical system, principal component analysis, PCA, continuous monitoring

Procedia PDF Downloads 161
35136 Cryptosystems in Asymmetric Cryptography for Securing Data on Cloud at Various Critical Levels

Authors: Sartaj Singh, Amar Singh, Ashok Sharma, Sandeep Kaur

Abstract:

With upcoming threats in a digital world, we need to work continuously in the area of security in all aspects, from hardware to software as well as data modelling. The rise in social media activities and hunger for data by various entities leads to cybercrime and more attack on the privacy and security of persons. Cryptography has always been employed to avoid access to important data by using many processes. Symmetric key and asymmetric key cryptography have been used for keeping data secrets at rest as well in transmission mode. Various cryptosystems have evolved from time to time to make the data more secure. In this research article, we are studying various cryptosystems in asymmetric cryptography and their application with usefulness, and much emphasis is given to Elliptic curve cryptography involving algebraic mathematics.

Keywords: cryptography, symmetric key cryptography, asymmetric key cryptography

Procedia PDF Downloads 124
35135 Sliding Mode Controlled Quadratic Boost Converter

Authors: Viji Vijayakumar, R. Divya, A. Vivek

Abstract:

This paper deals with a quadratic boost converter which belongs to cascade boost family, controlled by sliding mode controller. In the cascade boost family, quadratic boost converter is the best trade-off when circuit complexity and modulator saturation is considered. Sliding mode control being a nonlinear control results in a robust and stable system when applied to switching converters which are inherently variable structured systems. The stability of this system is analyzed through Lyapunov’s approach. Analysis is done for load regulation, line regulation and step response of the system. Also these results are compared with that of PID controller based system.

Keywords: DC-DC converter, quadratic boost converter, sliding mode control, PID control

Procedia PDF Downloads 993
35134 Design of Ternary Coatings System to Minimize the Residual Solvent in Polymeric Coatings

Authors: Jyoti Sharma, Raj Kumar Arya

Abstract:

The coatings of homogeneous ternary solution of Poly(styrene)(PS)-Poly(ethyleneglycol)-6000(PEG) Chlorobenzene (CLB) of two different concentrations (5.05%-4.98%-89.97% and 10.05%-5.12%-84.82%) were studied and dried under quiescent conditions. Residual solvent percentage and coatings thickness were calculated by gravimetric weight loss data. Residual solvent remained lower in case of the single thick layer as compared to layer-by-layer assembly technique. The Results suggests the effectiveness of the single thick layer for minimizing the residual solvent. A single thick layer had an initial coating thickness of 1098 µm and the final thickness of 106 µm which is lower as compared to the dried coatings of nearly the same final thickness by layer-by-layer assembly technique.

Keywords: films, layer-by-layer assembly, polymeric coatings, ternary system

Procedia PDF Downloads 182
35133 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis

Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed

Abstract:

This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.

Keywords: gas turbine, optimization, ANFIS, performance, operating conditions

Procedia PDF Downloads 425
35132 Retrospective Study of Positive Blood Cultures Carried out in the Microbiology Department of General Hospital of Ioannina in 2017

Authors: M. Gerasimou, S. Mantzoukis, P. Christodoulou, N. Varsamis, G. Kolliopoulou, N. Zotos

Abstract:

Purpose: Microbial infection of the blood is a serious condition where bacteria invade the bloodstream and cause systemic disease. In such cases, blood cultures are performed. Blood cultures are a key diagnostic test for intensive care unit (ICU) patients. Material and method: The BacT/Alert system, which measures the production of carbon dioxide with metabolic organisms, is used. The positive result in the BacT/Alert system is followed by culture in the following selective media: Blood, Mac Conkey No 2, Chocolate, Mueller Hinton, Chapman and Sabaureaud agar. Gram staining method was used to differentiate bacterial species. The microorganisms were identified by biochemical techniques in the automated Microscan (Siemens) system and followed by a sensitivity test on the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by a Kirby Bauer-based test. Results: In 2017 the Laboratory of Microbiology received 3347 blood cultures. Of these, 170 came from the ICU. 116 found positive. Of these S. epidermidis was identified in 42, A. baumannii in 27, K. pneumoniae in 12 (4 of these KPC ‘Klebsiella pneumoniae carbapenemase’), S. hominis in 8, E. faecium in 7, E. faecalis in 5, P. aeruginosa in 3, C. albicans in 3, S. capitis in 2, K. oxytoca in 2, P. mirabilis in 2, E. coli in 1, S. intermidius in 1 and S. lugdunensis in 1. Conclusions: The study of epidemiological data and microbial resistance phenotypes is essential for the choice of therapeutic regimen for the early treatment and limitation of multivalent strains, while it is a crucial factor to solve diagnostic problems.

Keywords: blood culture, bloodstream, infection, intensive care unit

Procedia PDF Downloads 150
35131 Neuroplasticity: A Fresh Begining for Life

Authors: Leila Maleki, Ezatollah Ahmadi

Abstract:

Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.

Keywords: neuroplasticity, cognitive plasticity, plasticity theories, plasticity mechanisms

Procedia PDF Downloads 496
35130 Neuroplasticity: A Fresh Beginning for Life

Authors: Leila Maleki, Ezatollah Ahmadi

Abstract:

Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The. present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.

Keywords: neuroplasticity, cognitive plasticity, plasticity theories, plasticity mechanisms

Procedia PDF Downloads 452
35129 Family Cohesion, Interpersonal Difficulties and Mental Health Problems in University Students

Authors: Narmeen Ali, Muhammad Arshad

Abstract:

Cohesion has an exact association with family functioning and enmeshment (togetherness) on one side and disengagement (separateness) on the other. Family cohesion can apprehend as a concerned association that family members have with each other and an affirmation of association inside the family. Family cohesion, assigned as the level of congruity or sympathetic or emotional attachment that relatives have toward each other, and it was seen to be associated with relational well-being and feeling of comfort in the young generation. The cross-sectional research design was used by the researcher to answer the research questions. A stratified sampling technique was used to collect the data from the participants. The data was collected equally from the males and females of different universities and different departments of Lahore, Pakistan. A self-report questionnaire was developed of given literature and which were found to be associated with family cohesion, interpersonal difficulties and mental health problems of university students. The demographic information included age, gender, university’s name, class, family system, parent’s education, parent’s profession, number of siblings and birth order. Correlation shows the negative relation between balanced cohesion and interpersonal difficulties, while interpersonal difficulties have a highly positive relationship with mental health problems. Mental health problems also have a negative correlation with the balanced family cohesion. Gender, family system, depression and anxiety are the significant predictors of interpersonal difficulties scale in university students. And gender showed a significant difference regarding family cohesion and interpersonal difficulty scale, as women reported more interpersonal difficulties than men.

Keywords: family cohesion, interpersonal difficulties, mental health problems, university students

Procedia PDF Downloads 127
35128 The Problem of the Use of Learning Analytics in Distance Higher Education: An Analytical Study of the Open and Distance University System in Mexico

Authors: Ismene Ithai Bras-Ruiz

Abstract:

Learning Analytics (LA) is employed by universities not only as a tool but as a specialized ground to enhance students and professors. However, not all the academic programs apply LA with the same goal and use the same tools. In fact, LA is formed by five main fields of study (academic analytics, action research, educational data mining, recommender systems, and personalized systems). These fields can help not just to inform academic authorities about the situation of the program, but also can detect risk students, professors with needs, or general problems. The highest level applies Artificial Intelligence techniques to support learning practices. LA has adopted different techniques: statistics, ethnography, data visualization, machine learning, natural language process, and data mining. Is expected that any academic program decided what field wants to utilize on the basis of his academic interest but also his capacities related to professors, administrators, systems, logistics, data analyst, and the academic goals. The Open and Distance University System (SUAYED in Spanish) of the University National Autonomous of Mexico (UNAM), has been working for forty years as an alternative to traditional programs; one of their main supports has been the employ of new information and communications technologies (ICT). Today, UNAM has one of the largest network higher education programs, twenty-six academic programs in different faculties. This situation means that every faculty works with heterogeneous populations and academic problems. In this sense, every program has developed its own Learning Analytic techniques to improve academic issues. In this context, an investigation was carried out to know the situation of the application of LA in all the academic programs in the different faculties. The premise of the study it was that not all the faculties have utilized advanced LA techniques and it is probable that they do not know what field of study is closer to their program goals. In consequence, not all the programs know about LA but, this does not mean they do not work with LA in a veiled or, less clear sense. It is very important to know the grade of knowledge about LA for two reasons: 1) This allows to appreciate the work of the administration to improve the quality of the teaching and, 2) if it is possible to improve others LA techniques. For this purpose, it was designed three instruments to determinate the experience and knowledge in LA. These were applied to ten faculty coordinators and his personnel; thirty members were consulted (academic secretary, systems manager, or data analyst, and coordinator of the program). The final report allowed to understand that almost all the programs work with basic statistics tools and techniques, this helps the administration only to know what is happening inside de academic program, but they are not ready to move up to the next level, this means applying Artificial Intelligence or Recommender Systems to reach a personalized learning system. This situation is not related to the knowledge of LA, but the clarity of the long-term goals.

Keywords: academic improvements, analytical techniques, learning analytics, personnel expertise

Procedia PDF Downloads 128
35127 Analyzing the Programme for International Student Assessment (PISA) Results in Uzbekistan: Insights from Organisation for Economic Co-operation and Development (OECD) Assessments

Authors: Nukarova Marjona Kayimovna

Abstract:

This article examines Uzbekistan's participation in the Programme for International Student Assessment (PISA) 2022, as the country took part in the assessment for the first time. The analysis delves into the initial results and performance metrics reported by the Organisation for Economic Co-operation and Development (OECD). By exploring Uzbekistan's data, the article highlights key findings, trends, and areas of strength and improvement. The aim is to provide a comprehensive understanding of how Uzbekistan's education system compares on the international stage and to offer insights into potential implications for future educational policies and reforms.

Keywords: PISA, OECD, data analysis of Uzbekistan, results, critical thinking.

Procedia PDF Downloads 11