Search results for: Single Throw Mechanical Equipment (STME)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9457

Search results for: Single Throw Mechanical Equipment (STME)

7177 Analysis of a Discrete-time Geo/G/1 Queue Integrated with (s, Q) Inventory Policy at a Service Facility

Authors: Akash Verma, Sujit Kumar Samanta

Abstract:

This study examines a discrete-time Geo/G/1 queueing-inventory system attached with (s, Q) inventory policy. Assume that the customers follow the Bernoulli process on arrival. Each customer demands a single item with arbitrarily distributed service time. The inventory is replenished by an outside supplier, and the lead time for the replenishment is determined by a geometric distribution. There is a single server and infinite waiting space in this facility. Demands must wait in the specified waiting area during a stock-out period. The customers are served on a first-come-first-served basis. With the help of the embedded Markov chain technique, we determine the joint probability distributions of the number of customers in the system and the number of items in stock at the post-departure epoch using the Matrix Analytic approach. We relate the system length distribution at post-departure and outside observer's epochs to determine the joint probability distribution at the outside observer's epoch. We use probability distributions at random epochs to determine the waiting time distribution. We obtain the performance measures to construct the cost function. The optimum values of the order quantity and reordering point are found numerically for the variety of model parameters.

Keywords: discrete-time queueing inventory model, matrix analytic method, waiting-time analysis, cost optimization

Procedia PDF Downloads 43
7176 Benefits of Hybrid Mix in Renewable Energy and Integration with E-Efficient Compositions

Authors: Ahmed Khalil

Abstract:

Increased energy demands around the world have led to the raise in power production which has resulted with more greenhouse gas emissions through fossil sources. These fossil sources and emissions cause deterioration in echo-system. Therefore, renewable energy sources come to the scene as echo-friendly and clean energy sourcing, whereas the electrical devices and energy needs decrease in the timeline. Each of these renewable energy sources contribute to the reduction of greenhouse gases and mitigate environmental deterioration. However, there are also some general and source-specific challenges, which influence the choice of the investors. The most prominent general challenge that effects end-users’ comfort and reliability is usually determined as the intermittence which derives from the diversions of source conditions, due to nature dynamics and uncontrolled periodic changes. Research and development professionals strive to mitigate intermittence challenge through material improvement for each renewable source whereas hybrid source mix stand as a solution. This solution prevails well, when single renewable technologies are upgraded further. On the other hand, integration of energy efficient devices and systems, raise the affirmative effect of such solution in means of less energy requirement in sustainability composition or scenario. This paper provides a glimpse on the advantages of composing renewable source mix versus single usage, with contribution of sampled e-efficient systems and devices. Accordingly it demonstrates the extended benefits, through planning and predictive estimation stages of Ahmadi Town Projects in Kuwait.

Keywords: e-efficient systems, hybrid source, intermittence challenge, renewable energy

Procedia PDF Downloads 136
7175 Intelligent Diagnostic System of the Onboard Measuring Devices

Authors: Kyaw Zin Htut

Abstract:

In this article, the synthesis of the efficiency of intelligent diagnostic system in the aircraft measuring devices is described. The technology developments of the diagnostic system are considered based on the model errors of the gyro instruments, which are used to measure the parameters of the aircraft. The synthesis of the diagnostic intelligent system is considered on the example of the problem of assessment and forecasting errors of the gyroscope devices on the onboard aircraft. The result of the system is to detect of faults of the aircraft measuring devices as well as the analysis of the measuring equipment to improve the efficiency of its work.

Keywords: diagnostic, dynamic system, errors of gyro instruments, model errors, assessment, prognosis

Procedia PDF Downloads 400
7174 Application of Lattice Boltzmann Method to Different Boundary Conditions in a Two Dimensional Enclosure

Authors: Jean Yves Trepanier, Sami Ammar, Sagnik Banik

Abstract:

Lattice Boltzmann Method has been advantageous in simulating complex boundary conditions and solving for fluid flow parameters by streaming and collision processes. This paper includes the study of three different test cases in a confined domain using the method of the Lattice Boltzmann model. 1. An SRT (Single Relaxation Time) approach in the Lattice Boltzmann model is used to simulate Lid Driven Cavity flow for different Reynolds Number (100, 400 and 1000) with a domain aspect ratio of 1, i.e., square cavity. A moment-based boundary condition is used for more accurate results. 2. A Thermal Lattice BGK (Bhatnagar-Gross-Krook) Model is developed for the Rayleigh Benard convection for both test cases - Horizontal and Vertical Temperature difference, considered separately for a Boussinesq incompressible fluid. The Rayleigh number is varied for both the test cases (10^3 ≤ Ra ≤ 10^6) keeping the Prandtl number at 0.71. A stability criteria with a precise forcing scheme is used for a greater level of accuracy. 3. The phase change problem governed by the heat-conduction equation is studied using the enthalpy based Lattice Boltzmann Model with a single iteration for each time step, thus reducing the computational time. A double distribution function approach with D2Q9 (density) model and D2Q5 (temperature) model are used for two different test cases-the conduction dominated melting and the convection dominated melting. The solidification process is also simulated using the enthalpy based method with a single distribution function using the D2Q5 model to provide a better understanding of the heat transport phenomenon. The domain for the test cases has an aspect ratio of 2 with some exceptions for a square cavity. An approximate velocity scale is chosen to ensure that the simulations are within the incompressible regime. Different parameters like velocities, temperature, Nusselt number, etc. are calculated for a comparative study with the existing works of literature. The simulated results demonstrate excellent agreement with the existing benchmark solution within an error limit of ± 0.05 implicates the viability of this method for complex fluid flow problems.

Keywords: BGK, Nusselt, Prandtl, Rayleigh, SRT

Procedia PDF Downloads 128
7173 A Nanofi Brous PHBV Tube with Schwann Cell as Artificial Nerve Graft Contributing to Rat Sciatic Nerve Regeneration across a 30-Mm Defect Bridge

Authors: Esmaeil Biazar

Abstract:

A nanofibrous PHBV nerve conduit has been used to evaluate its efficiency based on the promotion of nerve regeneration in rats. The designed conduits were investigated by physical, mechanical and microscopic analyses. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the regenerated nerves were evaluated by macroscopic assessments and histology. This polymeric conduit had sufficiently high mechanical properties to serve as a nerve guide. The results demonstrated that in the nanofibrous graft with cells, the sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. For the grafts especially the nanofibrous conduits with cells, muscle cells of gastrocnemius on the operated side were uniform in their size and structures. This study proves the feasibility of artificial conduit with Schwann cells for nerve regeneration by bridging a longer defect in a rat model.

Keywords: sciatic regeneration, Schwann cell, artificial conduit, nanofibrous PHBV, histological assessments

Procedia PDF Downloads 323
7172 Death Anxiety, Quality of Life, and Self-Esteem of the Elderly in Surat Thani Province, Thailand

Authors: W. Phokhwang-Just, A. Saraketrin, P. Thongpet, J. Udomkitpipat, J. Kaewsakulthong

Abstract:

The more people get older and live longer, the more health problems they may have. This cross-sectional study aims to study a correlation between death anxiety, quality of life, and self-esteem as well as factors affecting these variables in the elderly living in Surat Thani Province, Thailand. Of 382 elderly people, who were proportionally sampled from 19 districts in Surat Thani Province, 256 (67%) already returned the questionnaires. The Thai version of Templer’s Death Anxiety, Quality of Life (WHO-BREF), and of Rosenberg’s Self-Esteem Questionnaires were employed. The result showed that the samples had a mean age of 72 years old, 53% were female, 62% were married, 61% graduated with primary-school, and 61% had at least one chronic disease Approximately, 19% of them had 3 diseases. The quality of life (QOL), self-esteem (SE), and death anxiety (DA) of samples were in moderate (n= 91, mean = 86.89, SD = 15.47), high (n = 138, mean = 29.33, SD=4.77), and low level (n= 85, mean = 6.23, SD= 3.65), respectively. The QOL was not significantly different between male and female as well as among different marital status. The female elderly had more DA and less SE than male (t= 2.095, df = 83; t =-3.258, df =135, respectively, p < 0.05). The female elderly, who were separated or widow, had a higher level of DA than did the married elderly (LSD: p < 0.05). The married elderly had a higher level of SE than did the separated, widowed (Tukey HSD, LSD: p < 0.05), or single elderly (LSD: p < 0.05). The more diseases the elderly got, the lower level of QOL they had (r = -0.335, p < 0.05). The QOL was significantly correlated with SE (r =0.434, p < 0.05), but not significantly related to DA (r = -0.200, p = 0.069). The lower level of SE the elderly had, the higher level of DA they become (r = -2.71, p < 0.05). In order to promote the QOL, the SE of the elderly should be enhanced. Consequently, the DA can be minimized. Healthcare providers should provide care that promotes QOL, SE, and reduces DA of the elderly, especially those, who are female, single, and separated or widowed as well as those, who have more diseases than the others

Keywords: death anxiety, quality of life, self-esteem, elderly

Procedia PDF Downloads 308
7171 Determination of the Informativeness of Instrumental Research Methods in Assessing Risk Factors for the Development of Renal Dysfunction in Elderly Patients with Chronic Ischemic Heart Disease

Authors: Aksana N. Popel, Volha A. Sujayeva, Olga V. Kоshlataja, Irеna S. Karpava

Abstract:

Introduction: It is a known fact that cardiovascular pathology and its complications cause a more severe course and worse prognosis in patients with comorbid kidney pathology. Chronic kidney disease (CKD) is associated with inflammation, endothelial dysfunction, and increased activity of the sympathoadrenal system. This circumstance increases the risk of cardiovascular diseases and the progression of kidney pathology. The above determines the need to identify cardiorenal changes at early stages to reduce the risks of cardiovascular complications and the progression of CKD. Objective: To identify risk factors (RF) for the development of CKD in elderly patients with chronic ischemic heart disease (CIHD). Methods: The study included 64 patients (40 women and 24 men) with a mean age of 74.4±4.5 years with coronary heart disease, without a history of structural kidney pathology and CKD. All patients underwent transthoracic echocardiography (TTE) and kidney ultrasound (KU) using GE Vivid 9 equipment (GE HealthCare, USA), and cardiac computed tomography (CCT) using Siemens Somatom Force equipment (Siemens Healthineers AG, Germany) in 3 months and in 1 year. Data obtained were analyzed using multiple regression analysis and nonparametric Mann-Whitney test. Statistical analysis was performed using the STATISTICA 12.0 program (StatSoft Inc.). Results: Initially, CKD was not diagnosed in all patients. In 3 months, CKD was diagnosed: stage C1 had 11 people (18%), stage C2 had 4 people (6%), stage C3A had 11 people (18%), stage C3B had 2 people (3%). After 1 year, CKD was diagnosed: stage C1 had 22 people (35%), stage C2 had 5 people (8%), stage C3A had 17 people (27%), stage C3B had 10 people (15%). In 3 months, statistically significant (p<0.05) risk factors were: 1) according to TTE: mitral peak E-wave velocity (U=678, p=0.039), mitral E-velocity DT (U=514, p=0.0168), mitral peak A-wave velocity (U=682, p=0.013). In 1 year, statistically significant (p<0.05) risk factors were: according to TTE: left ventricular (LV) end-systolic volume in B-mode (U=134, p=0.006), LV end-diastolic volume in B-mode (U=177, p=0.04), LV ejection fraction in B-mode (U=135, p=0.006), left atrial volume (U=178, p=0.021), LV hypertrophy (U=294, p=0.04), mitral valve (MV) fibrosis (U=328, p=0.01); according CCT: epicardial fat thickness (EFT) on the right ventricle (U=8, p=0.015); according to KU: interlobar renal artery resistance index (RI) (U=224, p=0.02), segmental renal artery RI (U=409, p=0.016). Conclusions: Both TTE and KU are very informative methods to determine the additional risk factors of CKD development and progression. The most informative risk factors were LV global systolic and diastolic functions, LV and LA volumes. LV hypertrophy, MV fibrosis, interlobar renal artery and segmental renal artery RIs, EFT.

Keywords: chronic kidney disease, ischemic heart disease, prognosis, risk factors

Procedia PDF Downloads 25
7170 A Future Technology: Solar Winged Autonomous Underwater Vehicle Design

Authors: Mohammad Moonesun

Abstract:

One of the most important future technologies is related to solar Autonomous Underwater Vehicles (AUVs). In this technical paper, some aspects of solar winged AUV design are mentioned. The case study is for Arya project. The submarine movement cyclograms, weight quotas for internal equipment, hydrodynamic test results are mentioned, and some other technical notes are discussed here. The main body is the SUBOFF type and has two hydroplanes on the both sides of the body with the NACA0015 cross section. On these two hydroplanes, two 50-W photovoltaic panel will be mounted. Four small hydroplanes with the same cross section of the NACA0015 are arranged at the stern of the body at a 90° angle to each other. This test is performed in National Iranian Marine Laboratory with the length of 402 m.

Keywords: AUV, solar, model test, hydrodynamic resistance

Procedia PDF Downloads 131
7169 Challenges in Early Diagnosis of Enlarged Vestibular Aqueduct (EVA) in Pediatric Population: A Single Case Report

Authors: Asha Manoharan, Sooraj A. O, Anju K. G

Abstract:

Enlarged vestibular aqueduct (EVA) refers to the presence of congenital sensorineural hearing loss with an enlarged vestibular aqueduct. The Audiological symptoms of EVA are fluctuating and progressive in nature and the diagnosis of EVAS can be confirmed only with radiological evaluation. Hence it is difficult to differentiate EVA from conditions like Meniere’s disease, semi-circular dehiscence, etc based on audiological findings alone. EVA in adults is easy to identify due to distinct vestibular symptoms. In children, EVA can remain either unidentified or misdiagnosed until the vestibular symptoms are evident. Motor developmental delay, especially the ones involving a change of body alignment, has been reported in the pediatric population with EVA. So, it should be made mandatory to recommend radiological evaluation in young children with fluctuating hearing loss reporting with motor developmental delay. This single case study of a baby with Enlarged Vestibular Aqueduct (EVA) primarily aimed to address the following: a) Challenges while diagnosing young patients with EVA and fluctuating hearing loss, b) Importance of radiological evaluation in audiological diagnosis in the pediatric population, c) Need for regular monitoring of hearing, hearing aid performance, and cochlear implant mapping closely for potential fluctuations in such populations, d) Importance of reviewing developmental, language milestones in very young children with fluctuating hearing loss.

Keywords: enlarged vestibular aqueduct (EVA), motor delay, radiological evaluation, fluctuating hearing loss, cochlear implant

Procedia PDF Downloads 167
7168 Thermo-Hydro-Mechanical-Chemical Coupling in Enhanced Geothermal Systems: Challenges and Opportunities

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Geothermal reservoirs (GTRs) have garnered global recognition as a sustainable energy source. The Thermo-Hydro-Mechanical-Chemical (THMC) integration coupling proves to be a practical and effective method for optimizing production in GTRs. The study outcomes demonstrate that THMC coupling serves as a versatile and valuable tool, offering in-depth insights into GTRs and enhancing their operational efficiency. This is achieved through temperature analysis and pressure changes and their impacts on mechanical properties, structural integrity, fracture aperture, permeability, and heat extraction efficiency. Moreover, THMC coupling facilitates potential benefits assessment and risks associated with different geothermal technologies, considering the complex thermal, hydraulic, mechanical, and chemical interactions within the reservoirs. However, THMC-coupling utilization in GTRs presents a multitude of challenges. These challenges include accurately modeling and predicting behavior due to the interconnected nature of processes, limited data availability leading to uncertainties, induced seismic events risks to nearby communities, scaling and mineral deposition reducing operational efficiency, and reservoirs' long-term sustainability. In addition, material degradation, environmental impacts, technical challenges in monitoring and control, accurate assessment of resource potential, and regulatory and social acceptance further complicate geothermal projects. Addressing these multifaceted challenges is crucial for successful geothermal energy resources sustainable utilization. This paper aims to illuminate the challenges and opportunities associated with THMC coupling in enhanced geothermal systems. Practical solutions and strategies for mitigating these challenges are discussed, emphasizing the need for interdisciplinary approaches, improved data collection and modeling techniques, and advanced monitoring and control systems. Overcoming these challenges is imperative for unlocking the full potential of geothermal energy making a substantial contribution to the global energy transition and sustainable development.

Keywords: geothermal reservoirs, THMC coupling, interdisciplinary approaches, challenges and opportunities, sustainable utilization

Procedia PDF Downloads 69
7167 Mechanical Prosthesis Controlled by Brain-Computer Interface

Authors: Tianyu Cao, KIRA (Ruizhi Zhao)

Abstract:

The purpose of our research is to study the possibility of people with physical disabilities manipulating mechanical prostheses through brain-computer interface (BCI) technology. The brain-machine interface (BCI) of the neural prosthesis records signals from neurons and uses mathematical modeling to decode them, converting desired movements into body movements. In order to improve the patient's neural control, the prosthesis is given a natural feeling. It records data from sensitive areas from the body to the prosthetic limb and encodes signals in the form of electrical stimulation to the brain. In our research, the brain-computer interface (BCI) is a bridge connecting patients’ cognition and the real world, allowing information to interact with each other. The efficient work between the two is achieved through external devices. The flow of information is controlled by BCI’s ability to record neuronal signals and decode signals, which are converted into device control. In this way, we could encode information and then send it to the brain through electrical stimulation, which has significant medical application.

Keywords: biomedical engineering, brain-computer interface, prosthesis, neural control

Procedia PDF Downloads 181
7166 Hot Deformability of Si-Steel Strips Containing Al

Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar

Abstract:

The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a  was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.

Keywords: si- steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.

Procedia PDF Downloads 245
7165 Development of a Bus Information Web System

Authors: Chiyoung Kim, Jaegeol Yim

Abstract:

Bus service is often either main or the only public transportation available in cities. In metropolitan areas, both subways and buses are available whereas in the medium sized cities buses are usually the only type of public transportation available. Bus Information Systems (BIS) provide current locations of running buses, efficient routes to travel from one place to another, points of interests around a given bus stop, a series of bus stops consisting of a given bus route, and so on to users. Thanks to BIS, people do not have to waste time at a bus stop waiting for a bus because BIS provides exact information on bus arrival times at a given bus stop. Therefore, BIS does a lot to promote the use of buses contributing to pollution reduction and saving natural resources. BIS implementation costs a huge amount of budget as it requires a lot of special equipment such as road side equipment, automatic vehicle identification and location systems, trunked radio systems, and so on. Consequently, medium and small sized cities with a low budget cannot afford to install BIS even though people in these cities need BIS service more desperately than people in metropolitan areas. It is possible to provide BIS service at virtually no cost under the assumption that everybody carries a smartphone and there is at least one person with a smartphone in a running bus who is willing to reveal his/her location details while he/she is sitting in a bus. This assumption is usually true in the real world. The smartphone penetration rate is greater than 100% in the developed countries and there is no reason for a bus driver to refuse to reveal his/her location details while driving. We have developed a mobile app that periodically reads values of sensors including GPS and sends GPS data to the server when the bus stops or when the elapsed time from the last send attempt is greater than a threshold. This app detects the bus stop state by investigating the sensor values. The server that receives GPS data from this app has also been developed. Under the assumption that the current locations of all running buses collected by the mobile app are recorded in a database, we have also developed a web site that provides all kinds of information that most BISs provide to users through the Internet. The development environment is: OS: Windows 7 64bit, IDE: Eclipse Luna 4.4.1, Spring IDE 3.7.0, Database: MySQL 5.1.7, Web Server: Apache Tomcat 7.0, Programming Language: Java 1.7.0_79. Given a start and a destination bus stop, it finds a shortest path from the start to the destination using the Dijkstra algorithm. Then, it finds a convenient route considering number of transits. For the user interface, we use the Google map. Template classes that are used by the Controller, DAO, Service and Utils classes include BUS, BusStop, BusListInfo, BusStopOrder, RouteResult, WalkingDist, Location, and so on. We are now integrating the mobile app system and the web app system.

Keywords: bus information system, GPS, mobile app, web site

Procedia PDF Downloads 216
7164 The Effect of Manure Loaded Biochar on Soil Microbial Communities

Authors: T. Weber, D. MacKenzie

Abstract:

The script in this paper describes the use of advanced simulation environment using electronic systems (microcontroller, operational amplifiers, and FPGA). The simulation was used for non-linear dynamic systems behaviour with required observer structure working with parallel real-time simulation based on state-space representation. The proposed deposited model was used for electrodynamic effects including ionising effects and eddy current distribution also. With the script and proposed method, it is possible to calculate the spatial distribution of the electromagnetic fields in real-time and such systems. For further purpose, the spatial temperature distribution may also be used. With upon system, the uncertainties and disturbances may be determined. This provides the estimation of the more precise system states for the required system and additionally the estimation of the ionising disturbances that arise due to radiation effects in space systems. The results have also shown that a system can be developed specifically with the real-time calculation (estimation) of the radiation effects only. Electronic systems can take damage caused by impacts with charged particle flux in space or radiation environment. TID (Total Ionising Dose) of 1 Gy and Single Effect Transient (SET) free operation up to 50 MeVcm²/mg may assure certain functions. Single-Event Latch-up (SEL) results on the placement of several transistors in the shared substrate of an integrated circuit; ionising radiation can activate an additional parasitic thyristor. This short circuit between semiconductor-elements can destroy the device without protection and measurements. Single-Event Burnout (SEB) on the other hand, increases current between drain and source of a MOSFET and destroys the component in a short time. A Single-Event Gate Rupture (SEGR) can destroy a dielectric of semiconductor also. In order to be able to react to these processes, it must be calculated within a shorter time that ionizing radiation and dose is present. For this purpose, sensors may be used for the realistic evaluation of the diffusion and ionizing effects of the test system. For this purpose, the Peltier element is used for the evaluation of the dynamic temperature increases (dT/dt), from which a measure of the ionization processes and thus radiation will be detected. In addition, the piezo element may be used to record highly dynamic vibrations and oscillations to absorb impacts of charged particle flux. All available sensors shall be used to calibrate the spatial distributions also. By measured value of size and known location of the sensors, the entire distribution in space can be calculated retroactively or more accurately. With the formation, the type of ionisation and the direct effect to the systems and thus possible prevent processes can be activated up to the shutdown. The results show possibilities to perform more qualitative and faster simulations independent of space-systems and radiation environment also. The paper gives additionally an overview of the diffusion effects and their mechanisms.

Keywords: cattle, biochar, manure, microbial activity

Procedia PDF Downloads 103
7163 Ultra-Sensitive Point-Of-Care Detection of PSA Using an Enzyme- and Equipment-Free Microfluidic Platform

Authors: Ying Li, Rui Hu, Shizhen Chen, Xin Zhou, Yunhuang Yang

Abstract:

Prostate cancer is one of the leading causes of cancer-related death among men. Prostate-specific antigen (PSA), a specific product of prostatic epithelial cells, is an important indicator of prostate cancer. Though PSA is not a specific serum biomarker for the screening of prostate cancer, it is recognized as an indicator for prostate cancer recurrence and response to therapy for patient’s post-prostatectomy. Since radical prostatectomy eliminates the source of PSA production, serum PSA levels fall below 50 pg/mL, and may be below the detection limit of clinical immunoassays (current clinical immunoassay lower limit of detection is around 10 pg/mL). Many clinical studies have shown that intervention at low PSA levels was able to improve patient outcomes significantly. Therefore, ultra-sensitive and precise assays that can accurately quantify extremely low levels of PSA (below 1-10 pg/mL) will facilitate the assessment of patients for the possibility of early adjuvant or salvage treatment. Currently, the commercially available ultra-sensitive ELISA kit (not used clinically) can only reach a detection limit of 3-10 pg/mL. Other platforms developed by different research groups could achieve a detection limit as low as 0.33 pg/mL, but they relied on sophisticated instruments to get the final readout. Herein we report a microfluidic platform for point-of-care (POC) detection of PSA with a detection limit of 0.5 pg/mL and without the assistance of any equipment. This platform is based on a previously reported volumetric-bar-chart chip (V-Chip), which applies platinum nanoparticles (PtNPs) as the ELISA probe to convert the biomarker concentration to the volume of oxygen gas that further pushes the red ink to form a visualized bar-chart. The length of each bar is used to quantify the biomarker concentration of each sample. We devised a long reading channel V-Chip (LV-Chip) in this work to achieve a wide detection window. In addition, LV-Chip employed a unique enzyme-free ELISA probe that enriched PtNPs significantly and owned 500-fold enhanced catalytic ability over that of previous V-Chip, resulting in a significantly improved detection limit. LV-Chip is able to complete a PSA assay for five samples in 20 min. The device was applied to detect PSA in 50 patient serum samples, and the on-chip results demonstrated good correlation with conventional immunoassay. In addition, the PSA levels in finger-prick whole blood samples from healthy volunteers were successfully measured on the device. This completely stand-alone LV-Chip platform enables convenient POC testing for patient follow-up in the physician’s office and is also useful in resource-constrained settings.

Keywords: point-of-care detection, microfluidics, PSA, ultra-sensitive

Procedia PDF Downloads 110
7162 Device to Alert and Fire Prevention through Temperature Monitoring and Gas Detection

Authors: Dêivisson Alves Anjos, Blenda Fonseca Aires Teles, Queitiane Castro Costa

Abstract:

Fire is one of the biggest dangers for factories, warehouses, mills, among other places, causing unimaginable damage, because besides the material damage also directly affects the lives of workers who are likely to suffer death or very serious consequences. This protection of the lives of these people should be taken seriously, always seeking safety. Thus investment in security and monitoring equipment must be high, so you can prevent or reduce the impacts of a possible fire. Our device, made in PIC micro controller monitors the temperature and the presence of gas in the environment, it sends the data via Bluetooth device to a developed in LabVIEW interface saves these data continuously and alert if the temperature exceeds the allowed or some gas is detected. Currently the device is in operation and can perform several tests, as well as use in different areas for which you need anti-fire protection.

Keywords: pic, bluetooth, fire, temperature, gas, LabVIEW

Procedia PDF Downloads 532
7161 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion

Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao

Abstract:

Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.

Keywords: erosion, prediction, elbow, computational fluid dynamics

Procedia PDF Downloads 157
7160 Mechanical Properties and Microstructural Analysis of Al6061-Red Mud Composites

Authors: M. Gangadharappa, M. Ravi Kumar, H. N. Reddappa

Abstract:

The mechanical properties and morphological analysis of Al6061-Red mud particulate composites were investigated. The compositions of the composite include a matrix of Al6061 and the red mud particles of 53-75 micron size as reinforcement ranging from 0% to 12% at an interval of 2%. Stir casting technique was used to fabricate Al6061-Red mud composites. Density measurement, estimation of percentage porosity, tensile properties, fracture toughness, hardness value, impact energy, percentage elongation and percentage reduction in area. Further, the microstructures and SEM examinations were investigated to characterize the composites produced. The result shows that a uniform dispersion of the red mud particles along the grain boundaries of the Al6061 alloy. The tensile strength and hardness values increases with the addition of Red mud particles, but there is a slight decrease in the impact energy values, values of percentage elongation and percentage reduction in area as the reinforcement increases. From these results of investigation, we concluded that the red mud, an industrial waste can be used to enhance the properties of Al6061 alloy for engineering applications.

Keywords: Al6061, red mud, tensile strength, hardness and microstructures

Procedia PDF Downloads 563
7159 A Flexible Piezoelectric - Polymer Composite for Non-Invasive Detection of Multiple Vital Signs of Human

Authors: Sarah Pasala, Elizabeth Zacharias

Abstract:

Vital sign monitoring is crucial for both everyday health and medical diagnosis. A significant factor in assessing a human's health is their vital signs, which include heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings. Vital sign monitoring has been the focus of many system and method innovations recently. Piezoelectrics are materials that convert mechanical energy into electrical energy and can be used for vital sign monitoring. Piezoelectric energy harvesters that are stretchable and flexible can detect very low frequencies like airflow, heartbeat, etc. Current advancements in piezoelectric materials and flexible sensors have made it possible to create wearable and implantable medical devices that can continuously monitor physiological signals in humans. But because of their non-biocompatible nature, they also produce a large amount of e-waste and require another surgery to remove the implant. This paper presents a biocompatible and flexible piezoelectric composite material for wearable and implantable devices that offers a high-performance platform for seamless and continuous monitoring of human physiological signals and tactile stimuli. It also addresses the issue of e-waste and secondary surgery. A Lead-free piezoelectric, SrBi4Ti4O15, is found to be suitable for this application because the properties can be tailored by suitable substitutions and also by varying the synthesis temperature protocols. In the present work, SrBi4Ti4O15 modified by rare-earth has been synthesized and studied. Coupling factors are calculated from resonant (fr) and anti-resonant frequencies (fa). It is observed that Samarium substitution in SBT has increased the Curie temperature, dielectric and piezoelectric properties. From impedance spectroscopy studies, relaxation, and non-Debye type behaviour are observed. The composite of bioresorbable poly(l-lactide) and Lead-free rare earth modified Bismuth Layered Ferroelectrics leads to a flexible piezoelectric device for non-invasive measurement of vital signs, such as heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings and also artery pulse signals in near-surface arteries. These composites are suitable to detect slight movement of the muscles and joints. This Lead-free rare earth modified Bismuth Layered Ferroelectrics – polymer composite is synthesized using a ball mill and the solid-state double sintering method. XRD studies indicated the two phases in the composite. SEM studies revealed the grain size to be uniform and in the range of 100 nm. The electromechanical coupling factor is improved. The elastic constants are calculated and the mechanical flexibility is found to be improved as compared to the single-phase rare earth modified Bismuth Latered piezoelectric. The results indicate that this composite is suitable for the non-invasive detection of multiple vital signs of humans.

Keywords: composites, flexible, non-invasive, piezoelectric

Procedia PDF Downloads 37
7158 Fabrication and Characterisation of Additive Manufactured Ti-6Al-4V Parts by Laser Powder Bed Fusion Technique

Authors: Norica Godja, Andreas Schindel, Luka Payrits, Zsolt Pasztor, Bálint Hegedüs, Petr Homola, Jan Horňas, Jiří Běhal, Roman Ruzek, Martin Holzleitner, Sascha Senck

Abstract:

In order to reduce fuel consumption and CO₂ emissions in the aviation sector, innovative solutions are being sought to reduce the weight of aircraft, including additive manufacturing (AM). Of particular importance are the excellent mechanical properties that are required for aircraft structures. Ti6Al4V alloys, with their high mechanical properties in relation to weight, can reduce the weight of aircraft structures compared to structures made of steel and aluminium. Currently, conventional processes such as casting and CNC machining are used to obtain the desired structures, resulting in high raw material removal, which in turn leads to higher costs and impacts the environment. Additive manufacturing (AM) offers advantages in terms of weight, lead time, design, and functionality and enables the realisation of alternative geometric shapes with high mechanical properties. However, there are currently technological shortcomings that have led to AM not being approved for structural components with high safety requirements. An assessment of damage tolerance for AM parts is required, and quality control needs to be improved. Pores and other defects cannot be completely avoided at present, but they should be kept to a minimum during manufacture. The mechanical properties of the manufactured parts can be further improved by various treatments. The influence of different treatment methods (heat treatment, CNC milling, electropolishing, chemical polishing) and operating parameters were investigated by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and measurements with a focused ion beam (FIB), taking into account surface roughness, possible anomalies in the chemical composition of the surface and possible cracks. The results of the characterisation of the constructed and treated samples are discussed and presented in this paper. These results were generated within the framework of the 3TANIUM project, which is financed by EU with the contract number 101007830.

Keywords: Ti6Al4V alloys, laser powder bed fusion, damage tolerance, heat treatment, electropolishing, potential cracking

Procedia PDF Downloads 85
7157 The Existential in a Practical Phenomenology Research: A Study on the Political Participation of Young Women

Authors: Amanda Aliende da Matta, Maria del Pilar Fogueiras Bertomeu, Valeria de Ormaechea Otalora, Maria Paz Sandin Esteban, Miriam Comet Donoso

Abstract:

This communication presents proposed questions about the existential in research on the political participation of young women. The study follows a qualitative methodology, in particular, the applied hermeneutic phenomenological (AHP) method, and the general objective of the research is to give an account of the experience of political participation as a young woman. The study participants are women aged 18 to 35 who have experience in political participation. The techniques of data collection are the descriptive story and the phenomenological interview. Hermeneutic phenomenology as a research approach is based on phenomenological philosophy and applied hermeneutics. The ultimate objective of HP is to gain access to the meaning structures of lived experience by appropriating them, clarifying them, and reflectively making them explicit. Human experiences are always lived through existential: fundamental themes that are useful in exploring meaningful aspects of our life worlds. Everyone experiences the world through the existential of lived relationships, the lived body, lived space, lived time, and lived things. The phenomenological research, then, also tacitly asks about the existential. Existentials are universal themes useful for exploring significant aspects of our life world and of the particular phenomena under study. Four main existentials prove especially helpful as guides for reflection in the research process: relationship, body, space, and time. For example, in our case, we may ask ourselves how can the existentials of relationship, body, space, and time guide us in exploring the structures of meaning in the lived experience of political participation as a woman and a young person. The study is still not finished, as we are currently conducting phenomenological thematic analysis on the collected stories of lived experience. Yet, we have already identified some fragments of texts that show the existential in their experiences, which we will transcribe below. 1) Relationality - The experienced I-Other. It regards how relationships are experienced in our narratives about political participation as young women. One example would be: “As we had known each other for a long time, we understood each other with our eyes; we were all a little bit on the same page, thinking the same thing.” 2) Corporeality - The lived body. It regards how the lived body is experienced in activities of political participation as a young woman. One example would be: “My blood was boiling, but it was not the time to throw anything in their face, we had to look for solutions.”; “I had a lump in my throat and I wanted to cry.”. 3) Spatiality - The lived space. It regards how one experiences the lived space in political participation activities as a young woman. One example would be: “And the feeling I got when I saw [it] it's like watching everybody going into a mousetrap.” 4) Temporality - Lived time. It regards how one experiences the lived time in political participation activities as a young woman. One example would be: “Then, there were also meetings that went on forever…”

Keywords: applied hermeneutic phenomenology, existentials, hermeneutics, phenomenology, political participation

Procedia PDF Downloads 93
7156 Effect of Strains and Temperature on the Twinning Behavior of High Purity Titanium Compressed by Split Hopkinson Pressure Bar

Authors: Ping Zhou, Dawu Xiao, Chunli Jiang, Ge Sang

Abstract:

Deformation twinning plays an important role in the mechanical properties of Ti which has high specific strength and excellent corrosion resistance ability. To investigate the twinning behavior of Ti under high strain rate compression, the split Hopkinson pressure bar (SHPB) was adopted to deform samples to different strains at room temperature. In addition, twinning behaviors under varied temperatures of 373K, 573K and 873K were also investigated. The cylindrical-shaped samples with purity 99.995% were annealed at 1073K for 1 hour in vacuum before compression. All the deformation twins were identified by electron backscatter diffraction (EBSD) techniques. The mechanical behavior showed three-stage work hardening in stress-strain curves for samples deformed at temperature 573K and 873K, while only two stages were observed for those deformed at room temperature. For samples compressed at room temperature, the predominant twin types are {10-12}<10-11> (E1), {11-21}<11-26> (E2) and {11-21}<11-23> (C1). The secondary and tertiary twinning was observed inside some E1, E2 and C1 twins. Most of the twin boundaries of E2 acted as the nucleate sites of E1. The densities of twins increase remarkably with increment of strains. For samples compressed at relatively higher temperatures, the migration of twin boundaries of E1, E2 and C1 was observed. All the twin lamellas shorten with temperature, and nearly disappeared at 873K except some remaining E1 twins. Polygonizations of grain boundaries were observed above 573K. The microstructure intended to have a texture with c-axes parallel to compression direction with temperature increment. Factors affecting the dynamic recovery and re-crystallization were discussed.

Keywords: deformation twins, EBSD, mechanical behavior, high strain rate, titanium

Procedia PDF Downloads 261
7155 Effects of Stiffness on Endothelial Cells Behavior

Authors: Forough Ataollahi, Sumit Pramanik, Belinda Pingguan-Murphy, Wan Abu Bakar Bin Wan Abas, Noor Azuan Bin Abu Osman

Abstract:

Endothelium proliferation is an important process in cardiovascular homeostasis and can be regulated by extracellular environment, as cells can actively sense mechanical environment. In this study, we evaluated endothelial cell proliferation on PDMS/alumina (Al2O3) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 5% and 10% Al2O3 at curing temperature 50˚C for 4 h and then characterized by mechanical, structural and morphological analyses. Higher stiffness was found in the composites compared to the pure PDMS substrate. Cell proliferation of the cultured bovine aortic endothelial cells on substrate materials were evaluated via Resazurin assay and 1, 1’-Dioctadecyl-1, 3, 3, 3’, 3’-Tetramethylindocarbocyanine Perchlorate-Acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The results revealed that stiffer substrates promote more endothelial cells proliferation to the less stiff substrates. Therefore, this study firmly hypothesizes that the stiffness elevates endothelial cells proliferation.

Keywords: stiffness, proliferation, bovine aortic endothelial cells, extra cellular matrix, vascular

Procedia PDF Downloads 343
7154 Optimum Drilling States in Down-the-Hole Percussive Drilling: An Experimental Investigation

Authors: Joao Victor Borges Dos Santos, Thomas Richard, Yevhen Kovalyshen

Abstract:

Down-the-hole (DTH) percussive drilling is an excavation method that is widely used in the mining industry due to its high efficiency in fragmenting hard rock formations. A DTH hammer system consists of a fluid driven (air or water) piston and a drill bit; the reciprocating movement of the piston transmits its kinetic energy to the drill bit by means of stress waves that propagate through the drill bit towards the rock formation. In the literature of percussive drilling, the existence of an optimum drilling state (Sweet Spot) is reported in some laboratory and field experimental studies. An optimum rate of penetration is achieved for a specific range of axial thrust (or weight-on-bit) beyond which the rate of penetration decreases. Several authors advance different explanations as possible root causes to the occurrence of the Sweet Spot, but a universal explanation or consensus does not exist yet. The experimental investigation in this work was initiated with drilling experiments conducted at a mining site. A full-scale drilling rig (equipped with a DTH hammer system) was instrumented with high precision sensors sampled at a very high sampling rate (kHz). Data was collected while two boreholes were being excavated, an in depth analysis of the recorded data confirmed that an optimum performance can be achieved for specific ranges of input thrust (weight-on-bit). The high sampling rate allowed to identify the bit penetration at each single impact (of the piston on the drill bit) as well as the impact frequency. These measurements provide a direct method to identify when the hammer does not fire, and drilling occurs without percussion, and the bit propagate the borehole by shearing the rock. The second stage of the experimental investigation was conducted in a laboratory environment with a custom-built equipment dubbed Woody. Woody allows the drilling of shallow holes few centimetres deep by successive discrete impacts from a piston. After each individual impact, the bit angular position is incremented by a fixed amount, the piston is moved back to its initial position at the top of the barrel, and the air pressure and thrust are set back to their pre-set values. The goal is to explore whether the observed optimum drilling state stems from the interaction between the drill bit and the rock (during impact) or governed by the overall system dynamics (between impacts). The experiments were conducted on samples of Calca Red, with a drill bit of 74 millimetres (outside diameter) and with weight-on-bit ranging from 0.3 kN to 3.7 kN. Results show that under the same piston impact energy and constant angular displacement of 15 degrees between impact, the average drill bit rate of penetration is independent of the weight-on-bit, which suggests that the sweet spot is not caused by intrinsic properties of the bit-rock interface.

Keywords: optimum drilling state, experimental investigation, field experiments, laboratory experiments, down-the-hole percussive drilling

Procedia PDF Downloads 89
7153 High Temperature Behaviour of Various Limestone Used in Heritage Buildings at Material and Block Scales

Authors: Ayoub Daoudi, Javad Eslami, Anne-Lise Beaucour, Martin Vigroux, Albert Noumowé

Abstract:

As a fact, many cultural heritage masonry buildings have undergone violent fires during their history. In order to investigate the high temperature behaviour of stone masonry, six French limestones were heated to 600 °C at a rate of 9 °C/min. The main focus is the comparison between the high temperature behaviour of stones at the material and at the structural scale. In order to evaluate the risk of spalling, the tests have been carried out on the stone blocks (12x30x30 cm) instrumented with thermocouples and subjected to an unidirectional heating on one face. Thereafter, visual assessments and non-destructive measurements (dynamic elastic modulus) performed on blocks demonstrate a different behaviour from what was observed at the material scale. Finally, a series of thermo-mechanical computations, using finite element method, allowed us to highlight the difference between the behaviour of stones at material and block scales.

Keywords: limestones, hight temperature behaviour, damage, thermo-mechanical modeling, material and blocks scales, color change

Procedia PDF Downloads 109
7152 Design and Assessment of Base Isolated Structures under Spectrum-Compatible Bidirectional Earthquakes

Authors: Marco Furinghetti, Alberto Pavese, Michele Rinaldi

Abstract:

Concave Surface Slider devices have been more and more used in real applications for seismic protection of both bridge and building structures. Several research activities have been carried out, in order to investigate the lateral response of such a typology of devices, and a reasonably high level of knowledge has been reached. If radial analysis is performed, the frictional force is always aligned with respect to the restoring force, whereas under bidirectional seismic events, a bi-axial interaction of the directions of motion occurs, due to the step-wise projection of the main frictional force, which is assumed to be aligned to the trajectory of the isolator. Nonetheless, if non-linear time history analyses have to be performed, standard codes provide precise rules for the definition of an averagely spectrum-compatible set of accelerograms in radial conditions, whereas for bidirectional motions different combinations of the single components spectra can be found. Moreover, nowadays software for the adjustment of natural accelerograms are available, which lead to a higher quality of spectrum-compatibility and to a smaller dispersion of results for radial motions. In this endeavor a simplified design procedure is defined, for building structures, base-isolated by means of Concave Surface Slider devices. Different case study structures have been analyzed. In a first stage, the capacity curve has been computed, by means of non-linear static analyses on the fixed-base structures: inelastic fiber elements have been adopted and different direction angles of lateral forces have been studied. Thanks to these results, a linear elastic Finite Element Model has been defined, characterized by the same global stiffness of the linear elastic branch of the non-linear capacity curve. Then, non-linear time history analyses have been performed on the base-isolated structures, by applying seven bidirectional seismic events. The spectrum-compatibility of bidirectional earthquakes has been studied, by considering different combinations of single components and adjusting single records: thanks to the proposed procedure, results have shown a small dispersion and a good agreement in comparison to the assumed design values.

Keywords: concave surface slider, spectrum-compatibility, bidirectional earthquake, base isolation

Procedia PDF Downloads 292
7151 Investigating the Mechanical Properties of Geopolymer Concrete Containing Microencapsulated Phase Change Materials

Authors: Shima Pilehvar, Vinh Duy Cao, Anna M. Szczotok, Anna-Lena Kjøniksen

Abstract:

Micro encapsulated phase change materials (MPCM) may be utilized to increase the energy efficiency of buildings by the addition of MPCM to concrete structures. However, addition of MPCM to Portland cement concrete is known to reduce the compressive strength of the concrete. Accordingly, it is interesting to also examine the effect of adding MPCM to geopolymer concrete. Geopolymer binder is synthesized by mixing aluminosilicate materials in amorphous form with a strong alkali activator, and have a much lower CO2 footprint than Portland cement concrete. In this study, the mechanical properties of fly ash-based geopolymer concrete with different types and contents of MPCM were investigated at different curing temperatures. The aim was to find the optimum amount of MPCM which still maintain the workability and compressive strength at an acceptable level. The results revealed that both workability and compressive strength of geopolymer concrete decrease after adding MPCM. Also, the percentage of strength reduction can be variable by different types of MPCM.

Keywords: compressive strength, concrete, curing, geopolymer, micro-encapsulated PCM

Procedia PDF Downloads 414
7150 Comparisonal Study of Succinylation and Glutarylation of Jute Fiber: Study of Mechanical Properties of Modified Fiber Reinforced Epoxy Composites

Authors: R. Vimal, K. Hari Hara Subramaniyan, C. Aswin, B. Logeshwaran, M. Ramesh

Abstract:

Due to several environmental concerns, natural fibers have greatly replaced the synthetic fibers as a reinforcing material in polymer matrix composites. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. In recent years, modification of plant fibers with range of chemicals to increase various mechanical and thermal properties has been focused greatly. Among that, some of the plant fibers were modified using succinic anhydride. In the present study, Jute fibers have been modified chemically by treatment with succinic anhydride and glutaric anhydride at different concentrations of 5%, 10%, 20%, 30% and 40%. The fiber modification was done under retting condition at various retention times of 3, 6, 12, 24, 36, and 48 hours. The modification of fiber structure in both the cases is confirmed with Infrared Spectroscopy. The degree of modification increases with increase in retention time, but higher retention time has damaged the fiber structure which is common in both the cases. Comparatively, treatment of fibers with glutaric anhydride has shown efficient output than that of succinic anhydride. The unmodified fibers, succinylated fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix at various volume fractions of fiber under room temperature. The composite made using unmodified fiber is used as a standard material. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of succinylated and unmodified fiber.

Keywords: flexural strength, glutarylation, jute fibers, succinylation, tensile strength

Procedia PDF Downloads 508
7149 Characterization of the Airtightness Level in School Classrooms in Mediterranean Climate

Authors: Miguel A. Campano, Jesica Fernández-Agüera, Samuel Domínguez-Amarillo, Juan J. Sendra

Abstract:

An analysis of the air tightness level is performed on a representative sample of school classrooms in Southern Spain, which allows knowing the infiltration level of these classrooms, mainly through its envelope, which can affect both energy demand and occupant's thermal comfort. By using a pressurization/depressurization equipment (Blower-Door test), a characterization of 45 multipurpose classrooms have been performed in nine non-university educational institutions of the main climate zones of Southern Spain. In spite of having two doors and a high ratio between glass surface and outer surface, it is possible to see in these classrooms that there is an adequate level of airtightness, since all the n50 values obtained are lower than 9.0 ACH, with an average value around 7.0 ACH.

Keywords: air infiltration, energy efficiency, school buildings, thermal comfort, indoor air quality, ventilation

Procedia PDF Downloads 478
7148 Mathematical Models for GMAW and FCAW Welding Processes for Structural Steels Used in the Oil Industry

Authors: Carlos Alberto Carvalho Castro, Nancy Del Ducca Barbedo, Edmilsom Otoni Côrrea

Abstract:

With increase the production oil and lines transmission gases that are in ample expansion, the industries medium and great transport they had to adapt itself to supply the demand manufacture in this fabrication segment. In this context, two welding processes have been more extensively used: the GMAW (Gas Metal Arc Welding) and the FCAW (Flux Cored Arc Welding). In this work, welds using these processes were carried out in flat position on ASTM A-36 carbon steel plates in order to make a comparative evaluation between them concerning to mechanical and metallurgical properties. A statistical tool based on technical analysis and design of experiments, DOE, from the Minitab software was adopted. For these analyses, the voltage, current, and welding speed, in both processes, were varied. As a result, it was observed that the welds in both processes have different characteristics in relation to the metallurgical properties and performance, but they present good weldability, satisfactory mechanical strength e developed mathematical models.

Keywords: Flux Cored Arc Welding (FCAW), Gas Metal Arc Welding (GMAW), Design of Experiments (DOE), mathematical models

Procedia PDF Downloads 560