Search results for: Quaternion offset linear canonical transform
2820 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation
Procedia PDF Downloads 3562819 Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling
Authors: M. Khalid, G. N. Singh
Abstract:
In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.Keywords: modified exponential estimator, successive sampling, random non-response, auxiliary variable, bias, mean square error
Procedia PDF Downloads 3532818 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm
Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma
Abstract:
In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA) is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.Keywords: balanced truncation, clustering, dominant pole, Hankel norm, model reduction
Procedia PDF Downloads 6002817 Influence Maximization in Dynamic Social Networks and Graphs
Authors: Gkolfo I. Smani, Vasileios Megalooikonomou
Abstract:
Social influence and influence diffusion have been studied in social networks. However, most existing tasks on this subject focus on static networks. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time, is studied. The DM algorithm is an extension of the MATI algorithm and solves the influence maximization (IM) problem in dynamic networks and is proposed under the linear threshold (LT) and independent cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.Keywords: influence maximization, dynamic social networks, diffusion, social influence, graphs
Procedia PDF Downloads 2432816 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing
Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao
Abstract:
The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.Keywords: bearing, force measurement, IoT, strain gauge
Procedia PDF Downloads 1512815 Material Chemistry Level Deformation and Failure in Cementitious Materials
Authors: Ram V. Mohan, John Rivas-Murillo, Ahmed Mohamed, Wayne D. Hodo
Abstract:
Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed.Keywords: cementitious materials, deformation, failure, material chemistry modeling
Procedia PDF Downloads 2912814 Experimental Evaluation of Most Sustainable Companies: Impact on Economic Growth, Return on Equity (ROE) and Methodological Comparison
Authors: Milena Serzante, Viktoriia Stankevich, Yousre Badir
Abstract:
Companies have a significant impact on the environment and society, and sustainability is important not only for ethical concerns but also for financial and economic reasons. The aim of the study is to analyze how the sustainable performance of the company impacts the economy and the business's economic performance. To achieve this goal, such methods as the Pearson correlation, Multiple Linear Regression, Cook's distance method, K-nearest neighbor and COPRAS technique were implemented. The results revealed that there is no significant correlation between different indicators of sustainable development of the company and both GDP and Return on Equity. It indicates that the methodology of evaluating sustainability causes the difference in ranking companies based on sustainable performance.Keywords: economic impact, sustainability evaluation, sustainable companies, economic indicators, sustainability, GDP, return on equity
Procedia PDF Downloads 962813 Plasma Levels of Collagen Triple Helix Repeat Containing 1 (CTHRC1) as a Potential Biomarker in Interstitial Lung Disease
Authors: Rijnbout-St.James Willem, Lindner Volkhard, Scholand Mary Beth, Ashton M. Tillett, Di Gennaro Michael Jude, Smith Silvia Enrica
Abstract:
Introduction: Fibrosing lung diseases are characterized by changes in the lung interstitium and are classified based on etiology: 1) environmental/exposure-related, 2) autoimmune-related, 3) sarcoidosis, 4) interstitial pneumonia, and 4) idiopathic. Among interstitial lung diseases (ILD) idiopathic forms, idiopathic pulmonary fibrosis (IPF) is the most severe. Pathogenesis of IPF is characterized by an increased presence of proinflammatory mediators, resulting in alveolar injury, where injury to alveolar epithelium precipitates an increase in collagen deposition, subsequently thickening the alveolar septum and decreasing gas exchange. Identifying biomarkers implicated in the pathogenesis of lung fibrosis is key to developing new therapies and improving the efficacy of existing therapies. The transforming growth factor-beta (TGF-B1), a mediator of tissue repair associated with WNT5A signaling, is partially responsible for fibroblast proliferation in ILD and is the target of Pirfenidone, one of the antifibrotic therapies used for patients with IPF. Canonical TGF-B signaling is mediated by the proteins SMAD 2/3, which are, in turn, indirectly regulated by Collagen Triple Helix Repeat Containing 1 (CTHRC1). In this study, we tested the following hypotheses: 1) CTHRC1 is more elevated in the ILD cohort compared to unaffected controls, and 2) CTHRC1 is differently expressed among ILD types. Material and Methods: CTHRC1 levels were measured by ELISA in 171 plasma samples from the deidentified University of Utah ILD cohort. Data represent a cohort of 131 ILD-affected participants and 40 unaffected controls. CTHRC1 samples were categorized by a pulmonologist based on affectation status and disease subtypes: IPF (n = 45), sarcoidosis (4), nonspecific interstitial pneumonia (16), hypersensitivity pneumonitis (n = 7), interstitial pneumonia (n=13), autoimmune (n = 15), other ILD - a category that includes undifferentiated ILD diagnoses (n = 31), and unaffected controls (n = 40). We conducted a single-factor ANOVA of plasma CTHRC1 levels to test whether CTHRC1 variance among affected and non-affected participants is statistically significantly different. In-silico analysis was performed with Ingenuity Pathway Analysis® to characterize the role of CTHRC1 in the pathway of lung fibrosis. Results: Statistical analyses of CTHRC1 in plasma samples indicate that the average CTHRC1 level is significantly higher in ILD-affected participants than controls, with the autoimmune ILD being higher than other ILD types, thus supporting our hypotheses. In-silico analyses show that CTHRC1 indirectly activates and phosphorylates SMAD3, which in turn cross-regulates TGF-B1. CTHRC1 also may regulate the expression and transcription of TGFB-1 via WNT5A and its regulatory relationship with CTNNB1. Conclusion: In-silico pathway analyses demonstrate that CTHRC1 may be an important biomarker in ILD. Analysis of plasma samples indicates that CTHRC1 expression is positively associated with ILD affectation, with autoimmune ILD having the highest average CTHRC1 values. While characterizing CTHRC1 levels in plasma can help to differentiate among ILD types and predict response to Pirfenidone, the extent to which plasma CTHRC1 level is a function of ILD severity or chronicity is unknown.Keywords: interstitial lung disease, CTHRC1, idiopathic pulmonary fibrosis, pathway analyses
Procedia PDF Downloads 1952812 A Compact Quasi-Zero Stiffness Vibration Isolator Using Flexure-Based Spring Mechanisms Capable of Tunable Stiffness
Authors: Thanh-Phong Dao, Shyh-Chour Huang
Abstract:
This study presents a quasi-zero stiffness (QZS) vibration isolator using flexure-based spring mechanisms which afford both negative and positive stiffness elements, which enable self-adjustment. The QZS property of the isolator is achieved at the equilibrium position. A nonlinear mathematical model is then developed, based on the pre-compression of the flexure-based spring mechanisms. The dynamics are further analyzed using the Harmonic Balance method. The vibration attention efficiency is illustrated using displacement transmissibility, which is then compared with the corresponding linear isolator. The effects of parameters on performance are also investigated by numerical solutions. The flexure-based spring mechanisms are subsequently designed using the concept of compliant mechanisms, with evaluation by ANSYS software, and simulations of the QZS isolator.Keywords: vibration isolator, quasi-zero stiffness, flexure-based spring mechanisms, compliant mechanism
Procedia PDF Downloads 4682811 Modelling of Hydric Behaviour of Textiles
Authors: A. Marolleau, F. Salaun, D. Dupont, H. Gidik, S. Ducept.
Abstract:
The goal of this study is to analyze the hydric behaviour of textiles which can impact significantly the comfort of the wearer. Indeed, fabrics can be adapted for different climate if hydric and thermal behaviors are known. In this study, fabrics are only submitted to hydric variations. Sorption and desorption isotherms obtained from the dynamic vapour sorption apparatus (DVS) are fitted with the parallel exponential kinetics (PEK), the Hailwood-Horrobin (HH) and the Brunauer-Emmett-Teller (BET) models. One of the major finding is the relationship existing between PEK and HH models. During slow and fast processes, the sorption of water molecules on the polymer can be in monolayer and multilayer form. According to the BET model, moisture regain, a physical property of textiles, show a linear correlation with the total amount of water taken in monolayer. This study provides potential information of the end uses of these fabrics according to the selected activity level.Keywords: comfort, hydric properties, modelling, underwears
Procedia PDF Downloads 1532810 Design Analysis of Tilting System for Spacecraft Transportation
Authors: P. Naresh, Amir Iqbal
Abstract:
Satellite transportation is inevitable step during the course of integration testing and launch. Large satellites are transported in horizontal mode due to constraints on commercially available cargo bay dimensions & on road obstacles. To facilitate transportation of bigger size spacecraft in horizontal mode a tilting system is released. This tilting system consists of tilt table, columns, hinge pin, angular contact bearings, slewing bearing and linear actuators. The tilting system is very compact and easy to use however it is also serves the purpose of a fixture so it is of immense interest to know the stress and fundamental frequency of the system in transportation configuration. This paper discusses design aspects and finite element analysis of tilting system-cum-fixture using Hypermesh/Nastran.Keywords: tilt table, column, slewing bearing, stress, modal analysis
Procedia PDF Downloads 5772809 Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger
Abstract:
The present work deals with the study of the heat transfer in a rectangular channel equipped with a metallic foam. The tested metallic foam sample is made from copper with 20 PPI (Pore per Inch Linear) and 93% of porosity and the working fluid used is the n-pentane. In the present work the independent variables are the velocity in the range from 0.02 to 0.06 m/s and a boiling heat flux rate varying between 30 and 70 kW/m2. The heat transfer coefficient is presented versus boiling heat flux, vapor quality and superheat ΔTsat. The thermal results are compared to those found for a plain tube for the same conditions. The comparison with the plain tube shows that the insert of a metallic foam enhances the heat transfer coefficient by a factor between 1.3 and 3.Keywords: boiling, metallic foam, heat transfer, plate heat exchanger
Procedia PDF Downloads 4792808 Tool Wear Monitoring of High Speed Milling Based on Vibratory Signal Processing
Authors: Hadjadj Abdechafik, Kious Mecheri, Ameur Aissa
Abstract:
The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the Root Mean Square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an online monitoring system. Although we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal, this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored.Keywords: flank wear, vibration, milling, signal processing, monitoring
Procedia PDF Downloads 6022807 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 1232806 Numerical Modelling of the Influence of Meteorological Forcing on Water-Level in the Head Bay of Bengal
Authors: Linta Rose, Prasad K. Bhaskaran
Abstract:
Water-level information along the coast is very important for disaster management, navigation, planning shoreline management, coastal engineering and protection works, port and harbour activities, and for a better understanding of near-shore ocean dynamics. The water-level variation along a coast attributes from various factors like astronomical tides, meteorological and hydrological forcing. The study area is the Head Bay of Bengal which is highly vulnerable to flooding events caused by monsoons, cyclones and sea-level rise. The study aims to explore the extent to which wind and surface pressure can influence water-level elevation, in view of the low-lying topography of the coastal zones in the region. The ADCIRC hydrodynamic model has been customized for the Head Bay of Bengal, discretized using flexible finite elements and validated against tide gauge observations. Monthly mean climatological wind and mean sea level pressure fields of ERA Interim reanalysis data was used as input forcing to simulate water-level variation in the Head Bay of Bengal, in addition to tidal forcing. The output water-level was compared against that produced using tidal forcing alone, so as to quantify the contribution of meteorological forcing to water-level. The average contribution of meteorological fields to water-level in January is 5.5% at a deep-water location and 13.3% at a coastal location. During the month of July, when the monsoon winds are strongest in this region, this increases to 10.7% and 43.1% respectively at the deep-water and coastal locations. The model output was tested by varying the input conditions of the meteorological fields in an attempt to quantify the relative significance of wind speed and wind direction on water-level. Under uniform wind conditions, the results showed a higher contribution of meteorological fields for south-west winds than north-east winds, when the wind speed was higher. A comparison of the spectral characteristics of output water-level with that generated due to tidal forcing alone showed additional modes with seasonal and annual signatures. Moreover, non-linear monthly mode was found to be weaker than during tidal simulation, all of which point out that meteorological fields do not cause much effect on the water-level at periods less than a day and that it induces non-linear interactions between existing modes of oscillations. The study signifies the role of meteorological forcing under fair weather conditions and points out that a combination of multiple forcing fields including tides, wind, atmospheric pressure, waves, precipitation and river discharge is essential for efficient and effective forecast modelling, especially during extreme weather events.Keywords: ADCIRC, head Bay of Bengal, mean sea level pressure, meteorological forcing, water-level, wind
Procedia PDF Downloads 2232805 Evaluation of Green Logistics Performance: An Application of Analytic Hierarchy Process Method for Ranking Environmental Indicators
Authors: Eduarda Dutra De Souza, Gabriela Hammes, Marina Bouzon, Carlos M. Taboada Rodriguez
Abstract:
The search for minimizing harmful impacts on the environment has become the focus of global society, affecting mainly how to manage organizations. Thus, companies have sought to transform their activities into environmentally friendly initiatives by applying green practices throughout their supply chains. In the logistics domain, the implementation of environmentally sound practices is still in its infancy in emerging countries such as Brazil. Given the need to reduce these environmental damages, this study aims to evaluate the performance of green logistics (GL) in the plastics industry sector in order to help to improve environmental performance within organizations and reduce the impact caused by their activities. The performance tool was based on theoretical research and the use of experts in the field. The Analytic Hierarchy Process (AHP) was used to prioritize green practices and assign weight to the indicators contained in the proposed tool. The tool also allows the co-production of a single indicator. The developed tool was applied in an industry of the plastic packaging sector. However, this tool may be applied in different industry sectors, and it is adaptable to different sizes of companies. Besides the contributions to the literature, this work also presents future paths of research in the field of green logistics.Keywords: AHP, green logistics, green supply chain, performance evaluation
Procedia PDF Downloads 1652804 Characterization of Fresh, Charcoal Flue Gas Treated and Boiled Beef Samples Using FTIR For Consumption Safety
Authors: Catherine W. Njeru, Clarence Murithi W., Isaac W. Mwangi, Ruth Wanjau, Grace N. Kiriro, Gerald W. Mbugua
Abstract:
Flesh from animals is one of the most nutritious food materials that is rich in Vitamin B12, B3 (Niacin), B6, iron, zinc, selenium, and plenty of other vitamins and minerals and a high content of fats Meat consumption projection indicates an increase from 5.5 to 13.3 million tons by 2025 and this demand has been associated with livestock revolution. This study used charcoal flue gases sourced from the combustion of charcoal briquettes to prolong beef shelf life. The FT-IR technique is based on the specific absorption of infrared radiation by carbon monoxide and carbon dioxide molecules. The characterization of the functional groups was done using Fourier transform infrared spectroscopy (Shimadzu IR Tracer-100). The fresh, treated and boiled beef was ground with potassium bromide (KBr) into pellets and analyzed using FT-IR at a range of 400-3600 cm-1. The reaction of fresh, charcoal flue gas treated and boiled beef samples are as shown in the FT-IR spectrums. The fresh and boiled beef spectrums are similar, while the charcoal flue-treated beef samples show distinct peaks at 2100 and 2290 cm-1, which correspond to carbon monoxide and carbon dioxide, respectively. The study proposes the use of FT-IR in the determination of beef for consumption quality studies.Keywords: FT-IR, charcoal flue gases, beef, charcoal flue gases
Procedia PDF Downloads 342803 Identification of Wiener Model Using Iterative Schemes
Authors: Vikram Saini, Lillie Dewan
Abstract:
This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model
Procedia PDF Downloads 4082802 Removal of Heavy Metals by Ultrafiltration Assisted with Chitosan or Carboxy-Methyl Cellulose
Authors: Boukary Lam, Sebastien Deon, Patrick Fievet, Nadia Crini, Gregorio Crini
Abstract:
Treatment of heavy metal-contaminated industrial wastewater has become a major challenge over the last decades. Conventional processes for the treatment of metal-containing effluents do not always simultaneously satisfy both legislative and economic criteria. In this context, coupling of processes can then be a promising alternative to the conventional approaches used by industry. The polymer-assisted ultrafiltration (PAUF) process is one of these coupling processes. Its principle is based on a sequence of steps with reaction (e.g., complexation) between metal ions and a polymer and a step involving the rejection of the formed species by means of a UF membrane. Unlike free ions, which can cross the UF membrane due to their small size, the polymer/ion species, the size of which is larger than pore size, are rejected. The PAUF process was deeply investigated herein in the case of removal of nickel ions by adding chitosan and carboxymethyl cellulose (CMC). Experiments were conducted with synthetic solutions containing 1 to 100 ppm of nickel ions with or without the presence of NaCl (0.05 to 0.2 M), and an industrial discharge water (containing several metal ions) with and without polymer. Chitosan with a molecular weight of 1.8×105 g mol⁻¹ and a degree of acetylation close to 15% was used. CMC with a degree of substitution of 0.7 and a molecular weight of 9×105 g mol⁻¹ was employed. Filtration experiments were performed under cross-flow conditions with a filtration cell equipped with a polyamide thin film composite flat-sheet membrane (3.5 kDa). Without the step of polymer addition, it was found that nickel rejection decreases from 80 to 0% with increasing metal ion concentration and salt concentration. This behavior agrees qualitatively with the Donnan exclusion principle: the increase in the electrolyte concentration screens the electrostatic interaction between ions and the membrane fixed the charge, which decreases their rejection. It was shown that addition of a sufficient amount of polymer (greater than 10⁻² M of monomer unit) can offset this decrease and allow good metal removal. However, the permeation flux was found to be somewhat reduced due to the increase in osmotic pressure and viscosity. It was also highlighted that the increase in pH (from 3 to 9) has a strong influence on removal performances: the higher pH value, the better removal performance. The two polymers have shown similar performance enhancement at natural pH. However, chitosan has proved more efficient in slightly basic conditions (above its pKa) whereas CMC has demonstrated very weak rejection performances when pH is below its pKa. In terms of metal rejection, chitosan is thus probably the better option for basic or strongly acid (pH < 4) conditions. Nevertheless, CMC should probably be preferred to chitosan in natural conditions (5 < pH < 8) since its impact on the permeation flux is less significant. Finally, ultrafiltration of an industrial discharge water has shown that the increase in metal ion rejection induced by the polymer addition is very low due to the competing phenomenon between the various ions present in the complex mixture.Keywords: carboxymethyl cellulose, chitosan, heavy metals, nickel ion, polymer-assisted ultrafiltration
Procedia PDF Downloads 1662801 Comparative Evaluation of Ultrasound Guided Internal Jugular Vein Cannulation Using Measured Guided Needle and Conventional Size Needle for Success and Complication of Cannulation
Authors: Devendra Gupta, Vikash Arya, Prabhat K. Singh
Abstract:
Background: Ultrasound guidance could be beneficial in placing central venous catheters by improving the success rate, reducing the number of needle passes, and decreasing complications. Central venous cannulation set has a single puncture needle of a fixed length of 6.4 cm. However, the average distance of midpoint of IJV to the skin is around 1 cm to 2 cm. The long length needle has tendency to go in depth more than required and this is very common during learning period of any individual. Therefore, we devised a long needle with a guard which can be adjusted according to the required length. Methods: After approval from the institute ethics committee and patient’s written informed consent, a prospective, randomized, single-blinded controlled study was conducted. Adult patient aged of both sexes with ASA grade 1-2 undergoing surgery requiring internal jugular venous (IJV) access was included. After intubation, the head was rotated to the contralateral side at 30 degree head rotation on the position of the right IJV. The transducer probe a 6.5 to 13-MHz linear transducer (Sonosite, USA) had been placed at the apex of triangle with minimal pressure to avoid IJV compression. The distance from skin to midpoint of the right IJV and skin to anterior wall of Common Carotid Artery (CCA) had been done using B-mode duplex sonography with a 6.5 to 13-MHz linear transducer. Depending upon the results of randomization 420 patients had been divided into two groups of equal numbers (n=210). Group 1. USG guided right sided IJV cannulation was done with conventional (6.4 cm) needle; and Group 2. USG guided right sided IJV cannulation was done with conventional (6.4 cm) needle with guard fixed to a required length (length between skin and midpoint of IJV) by an experienced anesthesiologist. Independent observer has noted the number of attempts and occurrence of complications (CCA puncture, pneumothorax or adjacent tissue damage). Results: Demographic data were similar in both the group. The groups were comparable when considered for relationship of IJV to CCA. There was no significant difference between groups as regard to distance of midpoint of IJV to the skin (p<0.05). IJV cannulation was successfully done in single attempts in 180 (85.7%), in two attempts in 27 (12.9%) and three attempts in 3 (1.4%) in group I, whereas in single attempt in 207 (98.6%) and second attempts in 3 (1.4%) in group II (p <0.000). Incidence of carotid artery puncture was significantly more in group I (7.1%) compared to group II (0%) (p<0.000). Incidence of adjacent tissue puncture was significantly more in group I (8.6%) compared to group II (0%) (p<0.000). Conclusion: Therefore IJV catheterization using guard over the needle at predefined length with the help of real-time ultrasound results in better success rates and lower immediate complications.Keywords: ultrasound guided, internal jugular vein cannulation, measured guided needle, common carotid artery puncture
Procedia PDF Downloads 2262800 Tectonic Setting of Hinterland and Foreland Basins According to Tectonic Vergence in Eastern Iran
Authors: Shahriyar Keshtgar, Mahmoud Reza Heyhat, Sasan Bagheri, Ebrahim Gholami, Seyed Naser Raiisosadat
Abstract:
Various tectonic interpretations have been presented by different researchers to explain the geological evolution of eastern Iran, but there are still many ambiguities and many disagreements about the geodynamic nature of the Paleogene mountain range of eastern Iran. The purpose of this research is to clarify and discuss the tectonic position of the foreland and hinterland regions of eastern Iran from the tectonic perspective of sedimentary basins. In the tectonic model of oceanic subduction crust under the Afghan block, the hinterland is located to the east and on the Afghan block, and the foreland is located on the passive margin of the Sistan open ocean in the west. After the collision of the two microcontinents, the foreland basin must be located somewhere on the passive margin of the Lut block. This basin can deposit thick Paleocene to Oligocene sediments on the Cretaceous and older sediments. Thrust faults here will move towards the west. If we accept the subduction model of the Sistan Ocean under the Lut Block, the hinterland is located to the west towards the Lut Block, and the foreland basin is located towards the Sistan Ocean in the east. After the collision of the two microcontinents, the foreland basin with Paleogene sediments should expand on the Sefidaba basin. Thrust faults here will move towards the east. If we consider the two-sided subduction model of the ocean crust under both Lut and Afghan continental blocks, the tectonic position of the foreland and hinterland basins will not change and will be similar to the one-sided subduction models. After the collision of two microcontinents, the foreland basin should develop in the central part of the eastern Iranian orogen. In the oroclinic buckling model, the foreland basin will continue not only in the east and west but continuously in the north as well. In this model, since there is practically no collision, the foreland basin is not developed, and the remnants of the Sistan Ocean ophiolites and their deep turbidite sediments appear in the axial part of the mountain range, where the Neh and Khash complexes are located. The structural data from this research in the northern border of the Sistan belt and the Lut block indicate the convergence of the tectonic vergence directions towards the interior of the Sistan belt (in the Ahangaran area towards the southwest, in the north of Birjand towards the south-southeast, in the Sechengi area to the southeast). According to this research, not only the general movement of thrust sheets do not follow the linear orogeny models, but the expected active foreland basins have not been formed in the mentioned places in eastern Iran. Therefore, these results do not follow previous tectonic models for eastern Iran (i.e., rifting of eastern Iran continental crust and subsequent linear collision of the Lut and Afghan blocks), but it seems that was caused by buckling model in the Late Eocene-Oligocene.Keywords: foreland, hinterland, tectonic vergence, orocline buckling, eastern Iran
Procedia PDF Downloads 722799 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients
Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim
Abstract:
The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter
Procedia PDF Downloads 1482798 Water-Repellent Finishing on Cotton Fabric by SF₆ Plasma
Authors: We'aam Alali, Ziad Saffour, Saker Saloum
Abstract:
Low-pressure, sulfur hexafluoride (SF₆) remote radio-frequency (RF) plasma, ignited in a hollow cathode discharge (HCD-L300) plasma system, has been shown to be a powerful method in cotton fabric finishing to achieve water-repellent property. This plasma was ignited at an SF6 flow rate of (200 cm), low pressure (0.5 mbar), and radio frequency (13.56 MHz) with a power of (300 W). The contact angle has been measured as a function of the plasma exposure period using the water contact angle measuring device (WCA), and the changes in the morphology, chemical structure, and mechanical properties as tensile strength and elongation at the break of the fabric have also been investigated using the scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflectance Fourier transform Infrared spectroscopy (ATR-FTIR), and tensile test device, respectively. In addition, weight loss of the fabric and the fastness of washing have been studied. It was found that the exposure period of the fabric to the plasma is an important parameter. Moreover, a good water-repellent cotton fabric can be obtained by treating it with SF₆ plasma for a short time (1 min) without degrading its mechanical properties. Regarding the modified morphology of the cotton fabric, it was found that grooves were formed on the surface of the fibers after treatment. Chemically, the fluorine atoms were attached to the surface of the fibers.Keywords: cotton fabric, SEM, SF₆ plasma, water-repellency
Procedia PDF Downloads 852797 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications
Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini
Abstract:
This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy
Procedia PDF Downloads 1122796 Level of Application of Integrated Talent Management According To IBM Institute for Business Value Case Study Palestinian Governmental Agencies in Gaza Strip
Authors: Iyad A. A. Abusahloub
Abstract:
This research aimed to measure the level of perception and application of Integrated Talent Management according to IBM standards, by the upper and middle categories in Palestinian government institutions in Gaza, using a descriptive-analytical method. Using a questionnaire based on the standards of the IBM Institute for Business Value, the researcher added a second section to measure the perception of integrated talent management, the sample was 248 managers. The SPSS package was used for statistical analysis. The results showed that government institutions in Gaza apply Integrated Talent Management according to IBM standards at a medium degree did not exceed 59.8%, there is weakness in the perception of integrated talent management at the level of 53.6%, and there is a strong correlation between (Integrated Talent Management) and (the perception of the integrated talent management) amounted to 92.9%, and 88.9% of the change in the perception of the integrated talent management is by (motivate and develop, deploy and manage, connect and enable, and transform and sustain) talents, and 11.1% is by other factors. Conclusion: This study concluded that the integrated talent management model presented by IBM with its six dimensions is an effective model to reach your awareness and understanding of talent management, especially that it must rely on at least four basic dimensions out of the six dimensions: 1- Stimulating and developing talent. 2- Organizing and managing talent. 3- Connecting with talent and empowering it. 4- Succession and sustainability of talent. Therefore, this study recommends the adoption of the integrated talent management model provided by IBM to any organization across the world, regardless of its specialization or size, to reach talent sustainability.Keywords: HR, talent, talent management, IBM
Procedia PDF Downloads 882795 Finite Element Modeling of Integral Abutment Bridge for Lateral Displacement
Authors: M. Naji, A. R. Khalim, M. Naji
Abstract:
Integral Abutment Bridges (IAB) are defined as simple or multiple span bridges in which the bridge deck is cast monolithically with the abutment walls. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings and less maintenance. However, the main issue related to the analysis of this type of structures is dealing with soil-structure interaction of the abutment walls and the supporting piles. A two-dimensional, non-linear finite element (FE) model of an integral abutment bridge has been developed to study the effect of lateral time history displacement loading on the soil system.Keywords: integral abutment bridge, soil structure interaction, finite element modeling, soil-pile interaction
Procedia PDF Downloads 2932794 A New Mathematical Model for Scheduling Preventive Maintenance and Renewal Projects of Multi-Unit Systems; Application to Railway Track
Authors: Farzad Pargar
Abstract:
We introduce the preventive maintenance and renewal scheduling problem for a multi-unit system over a finite and discretized time horizon. Given the latest possible time for carrying out the next maintenance and renewal projects after the previous ones and considering several common set-up costs, the introduced scheduling model tries to minimize the cost of projects by grouping them and simultaneously finding the optimal balance between doing maintenance and renewal. We present a 0-1 pure integer linear programming that determines which projects should be performed together on which location and in which period (e.g., week or month). We consider railway track as a case for our study and test the performance of the proposed model on a set of test problems. The experimental results show that the proposed approach performs well.Keywords: maintenance, renewal, scheduling, mathematical programming model
Procedia PDF Downloads 6912793 Soft Power Contestation in South Asia: Analyzing Bollywood and Chinese Cinema as Strategic Tools in the India-China Rivalry and Their Impact on Cultural Diplomacy and Regional Identity
Authors: Julia Mathew
Abstract:
This paper explores the use of Bollywood and Chinese movies as soft power instruments within the larger context of India-China contention in South Asia. As India and China compete for influence in South Asia, they have increasingly relied on cultural diplomacy, using cinema to change perceptions, promote goodwill, and build cultural linkages. Bollywood, with its long-standing popularity and cultural resonance, has been a powerful instrument for projecting Indian ideals and identity throughout South Asia. In contrast, China has made concerted attempts in recent years to promote its own films, showing Chinese culture and values in a positive manner to offset Bollywood’s effect. This study examines the ways in which Chinese and Bollywood films influence public opinion and appeal to South Asian audiences while also supporting their respective countries’ soft power goals. To learn about this, we take a mixed-methods approach that incorporates content analysis of popular Bollywood and Chinese films released in South Asia, focussing on issues such as cultural identity, nationalism, and social values. In addition, we use sentiment analysis and surveys to map how these two cinematic traditions are received in various South Asian countries. This study takes into account government activities and cultural policies that promote each country’s cinema industry as a diplomatic instrument. The present study uses case studies from Nepal, Sri Lanka, Bangladesh, and Bhutan to demonstrate the subtle ways in which Bollywood and Chinese movies influence regional attitudes. For example, in Nepal and Bangladesh, Bollywood’s deep cultural ties have historically given India an advantage, but China’s growing economic relations and media presence have presented Chinese cinema as an alternative cultural influence. In contrast, Sri Lanka exemplifies a complicated relationship in which Bollywood’s cultural attraction is strong, but Chinese state-backed media diplomacy is making inroads, altering the cultural landscape. Due to limited cultural interchange and Bhutan’s historical alignment with India, Chinese cinema has a small presence in the country. The findings highlight cinema’s significance as a soft power tool in India and China’s regional ambitions. Bollywood’s emotional resonance and cultural familiarity have long bolstered India’s prominence, but Chinese cinema’s expansion reflects China’s desire to shift cultural narratives in its favour. This paper closes by presenting insights into the broader implications of cultural diplomacy within the India-China competition, arguing that as India and China continue to compete for influence in South Asia, film will play an increasingly crucial role in defining the soft power environment.Keywords: soft power, China, India, Bollywood, Chinese cinema
Procedia PDF Downloads 242792 Simulation of Behaviour Dynamics and Optimization of the Energy System
Authors: Iva Dvornik, Sandro Božić, Žana Božić Brkić
Abstract:
System-dynamic simulating modelling is one of the most appropriate and successful scientific methods of the complex, non-linear, natural, technical and organizational systems. In the recent practice its methodology proved to be efficient in solving the problems of control, behavior, sensitivity and flexibility of the system dynamics behavior having a high degree of complexity, all these by computing simulation i.e. “under laboratory conditions” what means without any danger for observed realities. This essay deals with the research of the gas turbine dynamic process as well as the operating pump units and transformation of gas energy into hydraulic energy has been simulated. In addition, system mathematical model has been also researched (gas turbine- centrifugal pumps – pipeline pressure system – storage vessel).Keywords: system dynamics, modelling, centrifugal pump, turbine, gases, continuous and discrete simulation, heuristic optimisation
Procedia PDF Downloads 1112791 Photocatalytic Degradation of Methylene Blue Dye Using Pure and Ag-Doped SnO₂ Nanoparticles as Catalyst
Authors: M. S. Abd El-Sadek, Mahmoud A. Omar, Gharib M. Taha
Abstract:
Photodegradation of methylene blue in the presence of tin dioxide (SnO₂) nanoparticles under solar light irradiation are known to be an effective photocatalytic process. In this study, pure and silver (Ag) doped tin dioxide (SnO₂) nanoparticles were prepared at calcination temperature (800ºC) by a modified sol-gel method and studied for their photocatalytic activity with methylene blue as a test contaminant. The characterization of undoped and doped SnO₂ photocatalyst was studied by X-rays diffraction patterns (XRD), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Energy Dispersive X-ray Microanalysis (EDX). The catalytic degradation of methylene blue in aqueous media was studied using UV-Vis spectrophotometer to monitor the degradation process by measuring its absorption spectra. The main absorption peak of methylene blue is observed at λ= 664 nm. The change in the percent of silver in the catalyst affects the photoactivity of SnO₂ on the degradation of methylene blue. The photoactivity of pure SnO₂ was found to be a maximum at dose 0.2 gm of the catalyst with 100 ml of 5 ppm methylene blue in the water. Within 210 min of photodegradation (under sunlight) after leaving the reaction for 90 minutes in the dark to avoid the effect of adsorption, the pure SnO₂ at calcination temperature 800ºC exhibited the best photocatalytic degradation with removal percentage of 93.66% on methylene blue degradation under solar light.Keywords: SnO₂ nanoparticles, methylene blue degradation, photocatalysis, silver doped-SnO₂
Procedia PDF Downloads 145