Search results for: Network Time Protocol
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22334

Search results for: Network Time Protocol

20054 Implementation of Chlorine Monitoring and Supply System for Drinking Water Tanks

Authors: Ugur Fidan, Naim Karasekreter

Abstract:

Healthy and clean water should not contain disease-causing micro-organisms and toxic chemicals and must contain the necessary minerals in a balanced manner. Today, water resources have a limited and strategic importance, necessitating the management of water reserves. Water tanks meet the water needs of people and should be regularly chlorinated to prevent waterborne diseases. For this purpose, automatic chlorination systems placed in water tanks for killing bacteria. However, the regular operation of automatic chlorination systems depends on refilling the chlorine tank when it is empty. For this reason, there is a need for a stock control system, in which chlorine levels are regularly monitored and supplied. It has become imperative to take urgent measures against epidemics caused by the fact that most of our country is not aware of the end of chlorine. The aim of this work is to rehabilitate existing water tanks and to provide a method for a modern water storage system in which chlorination is digitally monitored by turning the newly established water tanks into a closed system. A sensor network structure using GSM/GPRS communication infrastructure has been developed in the study. The system consists of two basic units: hardware and software. The hardware includes a chlorine level sensor, an RFID interlock system for authorized personnel entry into water tank, a motion sensor for animals and other elements, and a camera system to ensure process safety. It transmits the data from the hardware sensors to the host server software via the TCP/IP protocol. The main server software processes the incoming data through the security algorithm and informs the relevant unit responsible (Security forces, Chlorine supply unit, Public health, Local Administrator) by e-mail and SMS. Since the software is developed base on the web, authorized personnel are also able to monitor drinking water tank and report data on the internet. When the findings and user feedback obtained as a result of the study are evaluated, it is shown that closed drinking water tanks are built with GRP type material, and continuous monitoring in digital environment is vital for sustainable health water supply for people.

Keywords: wireless sensor networks (WSN), monitoring, chlorine, water tank, security

Procedia PDF Downloads 164
20053 Gaining Insight into Body Esteem through Time Perspective

Authors: Anthony Schmiedeler

Abstract:

Reliable measurements for body esteem and time perspective have been constructed to acquire additional knowledge into these two distinct and personal domains of individuals. The Body Esteem Scale (BES) assesses the multidimensional body self-esteems of males and females and produces a particular score. A higher BES score indicates an individual has strong positive feelings relating to particular aspects of the individual’s body. The Zimbardo Time Perspective Inventory (ZTPI) measures individuals’ time perspectives and identifies their dominant time perspective profiles. Higher scores in a time perspective profile, such as Past Positive (i.e., nostalgically remembering the past), suggest an individuals’ inclination toward that specific way of orienting oneself with respect to time. Both scales rely on measurements that are similarly grounded in personality traits and reveal valuable insight into individuals’ personalities. Studying the two scales could provide insight into a possible relationship and allow for a better comprehension and more nuanced understanding of the utilities of the instruments. In a completed study, 69 adults completed both the ZTPI and BES. Analyses show that adult females’ higher BES scores positively correlate with higher scores of the Past Positive and Present Hedonistic time perspective profiles of the ZTPI. Male participants also had higher overall BES scores positively correlate with the Present Hedonistic profile in addition to the Positive Future time perspective profile. The results of this study suggest that individuals with certain body esteem scores have a pattern of corresponding with certain time orientations. These correlations could help in explaining the rationales behind individuals’ varying levels of body esteem. With a foundation for better understanding of body esteem by incorporating these time perspectives, future research could be conducted to develop instruments that more accurately reflect individuals’ body esteem measurements.

Keywords: BES, body esteem, time perspective, ZTPI

Procedia PDF Downloads 124
20052 Analysis of the Occurrence of Hydraulic Fracture Phenomena in Roudbar Lorestan Dam

Authors: Masoud Ghaemi, MohammadJafar Hedayati, Faezeh Yousefzadeh, Hoseinali Heydarzadeh

Abstract:

According to the statistics of the International Committee on Large Dams, internal erosion and piping (scour) are major causes of the destruction of earth-fill dams. If such dams are constructed in narrow valleys, the valley walls will increase the arching of the dam body due to the transfer of vertical and horizontal stresses, so the occurrence of hydraulic fracturing in these embankments is more likely. Roudbar Dam in Lorestan is a clay-core pebble earth-fill dam constructed in a relatively narrow valley in western Iran. Three years after the onset of impoundment, there has been a fall in dam behavior. Evaluation of the dam behavior based on the data recorded on the instruments installed inside the dam body and foundation confirms the occurrence of internal erosion in the lower and adjacent parts of the core on the left support (abutment). The phenomenon of hydraulic fracturing is one of the main causes of the onset of internal erosion in this dam. Accordingly, the main objective of this paper is to evaluate the validity of this hypothesis. To evaluate the validity of this hypothesis, the dam behavior during construction and impoundment has been first simulated with a three-dimensional numerical model. Then, using validated empirical equations, the safety factor of the occurrence of hydraulic fracturing phenomenon upstream of the dam score was calculated. Then, using the artificial neural network, the failure time of the given section was predicted based on the maximum stress trend created. The study results show that steep slopes of valley walls, sudden changes in coefficient, and differences in compressibility properties of dam body materials have caused considerable stress transfer from core to adjacent valley walls, especially at its lower levels. This has resulted in the coefficient of confidence of the occurrence of hydraulic fracturing in each of these areas being close to one in each of the empirical equations used.

Keywords: arching, artificial neural network, FLAC3D, hydraulic fracturing, internal erosion, pore water pressure

Procedia PDF Downloads 181
20051 Dynamic EEG Desynchronization in Response to Vicarious Pain

Authors: Justin Durham, Chanda Rooney, Robert Mather, Mickie Vanhoy

Abstract:

The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis.

Keywords: desynchronization, dynamical systems theory, electroencephalography (EEG), empathy, multifractal time series analysis, mu waveform, neurophysiology, pain simulation, social cognition

Procedia PDF Downloads 286
20050 Training Volume and Myoelectric Responses of Lower Body Muscles with Differing Foam Rolling Periods

Authors: Humberto Miranda, Haroldo G. Santana, Gabriel A. Paz, Vicente P. Lima, Jeffrey M. Willardson

Abstract:

Foam rolling is a practice that has increased in popularity before and after strength training. The purpose of this study was to compare the acute effects of different foam rolling periods for the lower body muscles on subsequent performance (total repetitions and training volume), myoelectric activity and rating of perceived exertion in trained men. Fourteen trained men (26.2 ± 3.2 years, 178 ± 0.04 cm height, 82.2 ± 10 kg weight and body mass index 25.9 ± 3.3kg/m2) volunteered for this study. Four repetition maximum (4-RM) loads were determined for hexagonal bar deadlift and 45º angled leg press during test and retest sessions over two nonconsecutive days. Five experimental protocols were applied in a randomized design, which included: a traditional protocol (control)—a resistance training session without prior foam rolling; or resistance training sessions performed following one (P1), two (P2), three (P3), or four (P4) sets of 30 sec. foam rolling for the lower extremity musculature. Subjects were asked to roll over the medial and lateral aspects of each muscle group with as much pressure as possible. All foam rolling was completed at a cadence of 50 bpm. These procedures were performed on both sides unilaterally as described below. Quadriceps: between the apex of the patella and the ASIS; Hamstring: between the gluteal fold and popliteal fossa; Triceps surae: between popliteal fossa and calcaneus tendon. The resistance training consisted of five sets with 4-RM loads and two-minute rest intervals between sets, and a four-minute rest interval between the hexagonal bar deadlift and the 45º angled leg press. The number of repetitions completed, the myoelectric activity of vastus lateralis (VL), vastus medialis oblique (VMO), semitendinosus (SM) and medial gastrocnemius (GM) were recorded, as well as the rating of perceived exertion for each protocol. There were no differences between the protocols in the total repetitions for the hexagonal bar deadlift (Control - 16.2 ± 5.9; P1 - 16.9 ± 5.5; P2 - 19.2 ± 5.7; P3 - 19.4 ± 5.2; P4 - 17.2 ± 8.2) (p > 0.05) and 45º angled leg press (Control - 23.3 ± 9.7; P1 - 25.9 ± 9.5; P2 - 29.1 ± 13.8; P3 - 28.0 ± 11.7; P4 - 30.2 ± 11.2) exercises. Similar results between protocols were also noted for myoelectric activity (p > 0.05) and rating of perceived exertion (p > 0.05). Therefore, the results of the present study indicated no deleterious effects on performance, myoelectric activity and rating of perceived exertion responses during lower body resistance training.

Keywords: self myofascial release, foam rolling, electromyography, resistance training

Procedia PDF Downloads 228
20049 Controlling the Process of a Chicken Dressing Plant through Statistical Process Control

Authors: Jasper Kevin C. Dionisio, Denise Mae M. Unsay

Abstract:

In a manufacturing firm, controlling the process ensures that optimum efficiency, productivity, and quality in an organization are achieved. An operation with no standardized procedure yields a poor productivity, inefficiency, and an out of control process. This study focuses on controlling the small intestine processing of a chicken dressing plant through the use of Statistical Process Control (SPC). Since the operation does not employ a standard procedure and does not have an established standard time, the process through the assessment of the observed time of the overall operation of small intestine processing, through the use of X-Bar R Control Chart, is found to be out of control. In the solution of this problem, the researchers conduct a motion and time study aiming to establish a standard procedure for the operation. The normal operator was picked through the use of Westinghouse Rating System. Instead of utilizing the traditional motion and time study, the researchers used the X-Bar R Control Chart in determining the process average of the process that is used for establishing the standard time. The observed time of the normal operator was noted and plotted to the X-Bar R Control Chart. Out of control points that are due to assignable cause were removed and the process average, or the average time the normal operator conducted the process, which was already in control and free form any outliers, was obtained. The process average was then used in determining the standard time of small intestine processing. As a recommendation, the researchers suggest the implementation of the standard time established which is with consonance to the standard procedure which was adopted from the normal operator. With that recommendation, the whole operation will induce a 45.54 % increase in their productivity.

Keywords: motion and time study, process controlling, statistical process control, X-Bar R Control chart

Procedia PDF Downloads 219
20048 Impact of Transportation on the Economic Growth of Nigeria

Authors: E. O. E. Nnadi

Abstract:

Transportation is a critical factor in the economic growth and development of any nation, region or state. Good transportation network supports every sector of the economy like the manufacturing, transportation and encourages investors thereby affect the overall economic prosperity. The paper evaluates the impact of transportation on the economic growth of Nigeria using south eastern states as a case study. The choice of the case study is its importance as the commercial and industrial nerve of the country. About 200 respondents who are of different professions such as dealers in goods, transporters, contractors, consultants, bankers were selected and a set of questionnaire were administered to using the systematic sampling technique in the five states of the region. Descriptive statistics and relative importance index (RII) technique was employed for the analysis of the data gathered. The findings of the analysis reveal that Nigeria has the least effective ratio per population in Africa of 949.91 km/Person. Conclusion was drawn to improve road network in the area and the country as a whole to enhance the economic activities of the people.

Keywords: economic growth, south-east, transportation, transportation cost, Nigeria

Procedia PDF Downloads 277
20047 Multi-Channel Charge-Coupled Device Sensors Real-Time Cell Growth Monitor System

Authors: Han-Wei Shih, Yao-Nan Wang, Ko-Tung Chang, Lung-Ming Fu

Abstract:

A multi-channel cell growth real-time monitor and evaluation system using charge-coupled device (CCD) sensors with 40X lens integrating a NI LabVIEW image processing program is proposed and demonstrated. The LED light source control of monitor system is utilizing 8051 microprocessor integrated with NI LabVIEW software. In this study, the same concentration RAW264.7 cells growth rate and morphology in four different culture conditions (DMEM, LPS, G1, G2) were demonstrated. The real-time cells growth image was captured and analyzed by NI Vision Assistant every 10 minutes in the incubator. The image binarization technique was applied for calculating cell doubling time and cell division index. The cells doubling time and cells division index of four group with DMEM, LPS, LPS+G1, LPS+G2 are 12.3 hr,10.8 hr,14.0 hr,15.2 hr and 74.20%, 78.63%, 69.53%, 66.49%. The image magnification of multi-channel CCDs cell real-time monitoring system is about 100X~200X which compares with the traditional microscope.

Keywords: charge-coupled device (CCD), RAW264.7, doubling time, division index

Procedia PDF Downloads 363
20046 A CMOS Capacitor Array for ESPAR with Fast Switching Time

Authors: Jin-Sup Kim, Se-Hwan Choi, Jae-Young Lee

Abstract:

A 8-bit CMOS capacitor array is designed for using in electrically steerable passive array radiator (ESPAR). The proposed capacitor array shows the fast response time in rising and falling characteristics. Compared to other works in silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) technologies, it shows a comparable tuning range and switching time with low power consumption. Using the 0.18um CMOS, the capacitor array features a tuning range of 1.5 to 12.9 pF at 2.4GHz. Including the 2X4 decoder for control interface, the Chip size is 350um X 145um. Current consumption is about 80 nA at 1.8 V operation.

Keywords: CMOS capacitor array, ESPAR, SOI, SOS, switching time

Procedia PDF Downloads 593
20045 Analyzing the Street Pattern Characteristics on Young People’s Choice to Walk or Not: A Study Based on Accelerometer and Global Positioning Systems Data

Authors: Ebru Cubukcu, Gozde Eksioglu Cetintahra, Burcin Hepguzel Hatip, Mert Cubukcu

Abstract:

Obesity and overweight cause serious health problems. Public and private organizations aim to encourage walking in various ways in order to cope with the problem of obesity and overweight. This study aims to understand how the spatial characteristics of urban street pattern, connectivity and complexity influence young people’s choice to walk or not. 185 public university students in Izmir, the third largest city in Turkey, participated in the study. Each participant had worn an accelerometer and a global positioning (GPS) device for a week. The accelerometer device records data on the intensity of the participant’s activity at a specified time interval, and the GPS device on the activities’ locations. Combining the two datasets, activity maps are derived. These maps are then used to differentiate the participants’ walk trips and motor vehicle trips. Given that, the frequency of walk and motor vehicle trips are calculated at the street segment level, and the street segments are then categorized into two as ‘preferred by pedestrians’ and ‘preferred by motor vehicles’. Graph Theory-based accessibility indices are calculated to quantify the spatial characteristics of the streets in the sample. Six different indices are used: (I) edge density, (II) edge sinuosity, (III) eta index, (IV) node density, (V) order of a node, and (VI) beta index. T-tests show that the index values for the ‘preferred by pedestrians’ and ‘preferred by motor vehicles’ are significantly different. The findings indicate that the spatial characteristics of the street network have a measurable effect on young people’s choice to walk or not. Policy implications are discussed. This study is funded by the Scientific and Technological Research Council of Turkey, Project No: 116K358.

Keywords: graph theory, walkability, accessibility, street network

Procedia PDF Downloads 230
20044 Real-Time Detection of Space Manipulator Self-Collision

Authors: Zhang Xiaodong, Tang Zixin, Liu Xin

Abstract:

In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.

Keywords: space manipulator, collision detection, self-collision, the real-time collision detection

Procedia PDF Downloads 474
20043 A Study of Adult Lifelong Learning Consulting and Service System in Taiwan

Authors: Wan Jen Chang

Abstract:

Back ground: Taiwan's current adult lifelong learning services have expanded from vocational training to universal lifelong learning. However, both the professional knowledge training of learning guidance and consulting services and the provision of adult online learning consulting service systems still need to be established. Purpose: The purposes of this study are as follows: 1. Analyze the professional training mechanism for cultivating adult lifelong learning consultation and coaching; 2. Explore the feasibility of constructing a system that uses network technology to provide adult learning consultation services. Research design: This study conducts a literature analysis of counseling and coaching policy reports on lifelong learning in European countries and the United States. There are two focus discussions were conducted with 15 lifelong learning scholars, experts and practitioners as research subjects. The following two topics were discussed and suggested: 1. The current situation, needs and professional ability training mechanism of "Adult Lifelong Learning Consulting and Services"; 2. Strategies for establishing an "Adult Lifelong Learning Consulting and Service internet System". Conclusion: 1.Based on adult lifelong learning consulting and service needs, plan a professional knowledge training and certification system.2.Adult lifelong learning consulting and service professional knowledge and skills training should include the use of network technology to provide consulting service skills.3.To establish an adult lifelong learning consultation and service system, the Ministry of Education should promulgate policies and measures at the central level and entrust local governments or private organizations to implement them.4.The adult lifelong learning consulting and service system can combine the national qualifications framework, private sector and NPO to expand learning consulting service partners.

Keywords: adult lifelong learning, profesional knowledge, consulting and service, network system

Procedia PDF Downloads 70
20042 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid

Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani

Abstract:

As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.

Keywords: computational grid, job scheduling, learning automata, dynamic scheduling

Procedia PDF Downloads 349
20041 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor

Procedia PDF Downloads 347
20040 Deep Learning Approach for Chronic Kidney Disease Complications

Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia

Abstract:

Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.

Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis

Procedia PDF Downloads 141
20039 Genome-Wide Expression Profiling of Cicer arietinum Heavy Metal Toxicity

Authors: B. S. Yadav, A. Mani, S. Srivastava

Abstract:

Chickpea (Cicer arietinum L.) is an annual, self-pollinating, diploid (2n = 2x = 16) pulse crop that ranks second in world legume production after common bean (Phaseolus vulgaris). ICC 4958 flowers approximately 39 days after sowing under peninsular Indian conditions and the crop matures in less than 90 days in rained environments. The estimated collective yield losses due to abiotic stresses (6.4 million t) have been significantly higher than for biotic stresses (4.8 million t). Most legumes are known to be salt sensitive, and therefore, it is becoming increasingly important to produce cultivars tolerant to high-salinity in addition to other abiotic and biotic stresses for sustainable chickpea production. Our aim was to identify the genes that are involved in the defence mechanism against heavy metal toxicity in chickpea and establish the biological network of heavy metal toxicity in chickpea. ICC4958 variety of chick pea was taken and grown in normal condition and 150µM concentration of different heavy metal salt like CdCl₂, K₂Cr2O₇, NaAsO₂. At 15th day leave samples were collected and stored in RNA Later solution microarray was performed for checking out differential gene expression pattern. Our studies revealed that 111 common genes that involved in defense mechanism were up regulated and 41 genes were commonly down regulated during treatment of 150µM concentration of CdCl₂, K₂Cr₂O₇, and NaAsO₂. Biological network study shows that the genes which are differentially expressed are highly connected and having high betweenness and centrality.

Keywords: abiotic stress, biological network, chickpea, microarray

Procedia PDF Downloads 199
20038 Framework for Enhancing Water Literacy and Sustainable Management in Southwest Nova Scotia

Authors: Etienne Mfoumou, Mo Shamma, Martin Tango, Michael Locke

Abstract:

Water literacy is essential for addressing emerging water management challenges in southwest Nova Scotia (SWNS), where growing concerns over water scarcity and sustainability have highlighted the need for improved educational frameworks. Current approaches often fail to fully represent the complexity of water systems, focusing narrowly on the water cycle while neglecting critical aspects such as groundwater infiltration and the interconnectedness of surface and subsurface water systems. To address these gaps, this paper proposes a comprehensive framework for water literacy that integrates the physical dimensions of water systems with key aspects of understanding, including processes, energy, scale, and human dependency. Moreover, a suggested tool to enhance this framework is a real-time hydrometric data map supported by a network of water level monitoring devices deployed across the province. These devices, particularly for monitoring dug wells, would provide critical data on groundwater levels and trends, offering stakeholders actionable insights into water availability and sustainability. This real-time data would facilitate deeper understanding and engagement with local water issues, complementing the educational framework and empowering stakeholders to make informed decisions. By integrating this tool, the proposed framework offers a practical, interdisciplinary approach to improving water literacy and promoting sustainable water management in SWNS.

Keywords: water education, water literacy, water management, water systems, Southwest Nova Scotia

Procedia PDF Downloads 36
20037 Improving the Quality of Discussion and Documentation of Advance Care Directives in a Community-Based Resident Primary Care Clinic

Authors: Jason Ceavers, Travis Thompson, Juan Torres, Ramanakumar Anam, Alan Wong, Andrei Carvalho, Shane Quo, Shawn Alonso, Moises Cintron, Ricardo C. Carrero, German Lopez, Vamsi Garimella, German Giese

Abstract:

Introduction: Advance directives (AD) are essential for patients to communicate their wishes when they are not able to. Ideally, these discussions should not occur for the first time when a patient is hospitalized with an acute life-threatening illness. There is a large number of patients who do not have clearly documented ADs, resulting in the misutilization of resources and additional patient harm. This is a nationwide issue, and the Joint Commission has it as one of its national quality metrics. Presented here is a proposed protocol to increase the number of documented AD discussions in a community-based, internal medicine residency primary care clinic in South Florida. Methods: The SMART Aim for this quality improvement project is to increase documentation of AD discussions in the outpatient setting by 25% within three months in medicare patients. A survey was sent to stakeholders (clinic attendings, residents, medical assistants, front desk staff, and clinic managers), asking them for three factors they believed contributed most to the low documentation rate of AD discussions. The two most important factors were time constraints and systems issues (such as lack of a standard method to document ADs and ADs not being uploaded to the chart) which were brought up by 25% and 21.2% of the 32 survey responders, respectively. Pre-intervention data from clinic patients in 2020-2021 revealed 17.05% of patients had clear, actionable ADs documented. To address these issues, an AD pocket card was created to give to patients. One side of the card has a brief explanation of what ADs are. The other side has a column of interventions (cardiopulmonary resuscitation, mechanical ventilation, dialysis, tracheostomy, feeding tube) with boxes patients check off if they want the intervention done, do not want the intervention, do not want to discuss the topic, or need more information. These cards are to be filled out and scanned into their electronic chart to be reviewed by the resident before their appointment. The interventions that patients want more information on will be discussed by the provider. If any changes are made, the card will be re-scanned into their chart. After three months, we will chart review the patients seen in the clinic to determine how many medicare patients have a pocket card uploaded and how many have advance directives discussions documented in a progress note or annual wellness note. If there is not enough time for an AD discussion, a follow-up appointment can be scheduled for that discussion. Discussion: ADs are a crucial part of patient care, and failure to understand a patient’s wishes leads to improper utilization of resources, avoidable litigation, and patient harm. Time constraints and systems issues were identified as two major factors contributing to the lack of advance directive discussion in our community-based resident primary care clinic. Our project aims at increasing the documentation rate for ADs through a simple pocket card intervention. These are self-explanatory, easy to read and allow the patients to clearly express what interventions they desire or what they want to discuss further with their physician.

Keywords: advance directives, community-based, pocket card, primary care clinic

Procedia PDF Downloads 167
20036 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis and X-Ray Study of α-Aminophosphonates

Authors: Sarra Boughaba

Abstract:

The α-aminophosphonates have received considerable attention in organic and medicinal chemistry because of their structural resemblance with α-amino acids. They are used as antitumor agents, anti-inflammatory and antibiotics. As a result, a number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution caused by utilization of organic solvents, and expensive catalyst. On the other hand, thiazole components, particularly 2-aminothiazole is an important class of heterocyclic compounds. They appear in the structure of natural products and biologically actives compounds, thiamine (vitamin-B), and some antibiotics drugs (penicillin, micrococcin). In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this study, an efficient and eco-friendly process has been developed for the synthesis of α-aminophosphonates containing aminothiazole moiety via Kabachnik-Field reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of aromatic aldehydes, 2-aminothiazole and triethylphosphite under free conditions. The X-ray crystallographic data of obtained compounds were provided. The main advantages of our protocol include the absence of solvent in the reaction, easy work-up, short reaction time, atom-economy and reusability of catalyst without significant loss of its activity.

Keywords: aminophosphonates, green synthesis, H₆P₂W₁₈O₆₂.14H₂O catalyst, x-ray study

Procedia PDF Downloads 118
20035 Determinants of Consultation Time at a Family Medicine Center

Authors: Ali Alshahrani, Adel Almaai, Saad Garni

Abstract:

Aim of the study: To explore duration and determinants of consultation time at a family medicine center. Methodology: This study was conducted at the Family Medicine Center in Ahad Rafidah City, at the southwestern part of Saudi Arabia. It was conducted on the working days of March 2013. Trained nurses helped in filling in the checklist. A total of 459 patients were included. A checklist was designed and used in this study. It included patient’s age, sex, diagnosis, type of visit, referral and its type, psychological problems and additional work-up. In addition, number of daily bookings, physician`s experience and consultation time. Results: More than half of patients (58.39%) had less than 10 minutes’ consultation (Mean+SD: 12.73+9.22 minutes). Patients treated by physicians with shortest experience (i.e., ≤5 years) had the longest consultation time while those who were treated with physicians with the longest experience (i.e., > 10 years) had the shortest consultation time (13.94±10.99 versus 10.79±7.28, p=0.011). Regarding patients’ diagnosis, those with chronic diseases had the longest consultation time (p<0.001). Patients who did not need referral had significantly shorter consultation time compared with those who had routine or urgent referral (11.91±8.42,14.60±9.03 and 22.42±14.81 minutes, respectively, p<0.001). Patients with associated psychological problems needed significantly longer consultation time than those without associated psychological problems (20.06±13.32 versus 12.45±8.93, p<0.001). Conclusions: The average length of consultation time at Ahad Rafidah Family Medicine Center is approximately 13 minutes. Less-experienced physicians tend to spend longer consultation times with patients. Referred patients, those with psychological problems, those with chronic diseases tend to have longer consultation time. Recommendations: Family physicians should be encouraged to keep their optimal consultation time. Booking an adequate number of patients per shift would allow the family physician to provide enough consultation time for each patient.

Keywords: consultation, quality, medicine, clinics

Procedia PDF Downloads 288
20034 Universe at Zero Second and the Creation Process of the First Particle from the Absolute Void

Authors: Shivan Sirdy

Abstract:

In this study, we discuss the properties of absolute void space or the universe at zero seconds, and how these properties play a vital role in creating a mechanism in which the very first particle gets created simultaneously everywhere. We find the limit in which when the absolute void volume reaches will lead to the collapse that leads to the creation of the first particle. This discussion is made following the elementary dimensions theory study that was peer-reviewed at the end of 2020; everything in the universe is made from four elementary dimensions, these dimensions are the three spatial dimensions (X, Y, and Z) and the Void resistance as the factor of change among the four. Time itself was not considered as the fourth dimension. Rather time corresponds to a factor of change, and during the research, it was found out that the Void resistance is the factor of change in the absolute Void space, where time is a hypothetical concept that represents changes during certain events compared to a constant change rate event. Therefore, time does exist, but as a factor of change as the Void resistance: Time= factor of change= Void resistance.

Keywords: elementary dimensions, absolute void, time alternative, early universe, universe at zero second, Void resistant, Hydrogen atom, Hadron field, Lepton field

Procedia PDF Downloads 208
20033 The Friendship Network Stability of Preschool Children during One Pedagogical Season

Authors: Yili Wang, Jarmo Kinos, Tuire Palonen, Tarja-Riitta Hurme

Abstract:

This longitudinal study aims to examine how five- and six-year-old children’s peer relationships are formed and fostered during one preschool year in a southwestern Finnish preschool. All 16 kindergarteners participated in the study (at dyad level N=240; i.e., 16 x 15 relationships among the children). The children were divided into four daily groups, based on the table order during the daily routines, and four intervention groups, based on the teachers’ pedagogical plan. During the intervention, one iPad was given to each group in order to stimulate interaction among peers and, thus, enable the children to form new peer relationships. In the data gathering, sociometric nomination techniques were used to investigate the nature (i.e., stability and mutuality) of the peer relationships. The data was collected five times during the year to see what kind of peer relationship changes occurred at the dyad level and the group level, i.e., in establishing and losing friendship ties among the children. Social network analyses were used to analyze the data. The results indicate that the children’s preference for gender segregation was strong compared to age preference and intervention. In all, the number of reciprocal friendship ties and the mutual absence of friendship ties increased towards the end of the year, whereas the number of unilateral friendship ties decreased. This indicates that children’s nominations narrow down; thus, the group structure becomes more crystalized. Instead of extending their friendship networks, children seek stable and mutual relationships with their peers in their middle childhood years. The intervention only had a slightly negative influence on children’s peer relationships.

Keywords: intervention study, peer relationship, preschool education, social network analysis, sociometric ratings

Procedia PDF Downloads 276
20032 Generalized Rough Sets Applied to Graphs Related to Urban Problems

Authors: Mihai Rebenciuc, Simona Mihaela Bibic

Abstract:

Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, & c.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation - including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premier in this paper contribute to improved significantly the evaluation of k-connectivity. This rough set approach is based on generalized rough sets - basic facts are presented in this paper.

Keywords: (bi)digraphs, rough set theory, systems of interacting agents, complex systems

Procedia PDF Downloads 248
20031 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 110
20030 Temporal Conundrums: Navigating the Gravitational Time of Flow

Authors: Ogaeze Onyedikachukwu Francis

Abstract:

Let’s embark on a microcosmic exploration of the universe to delve into the gravitational time flow and its profound implications for manipulating temporal distances, ushering in the possibilities of time travel and inter-universe leaps with instantaneous teleportation. Envision the universe reduced to a minimalist scenario—two perfectly identical mass spheres intricately entwined in a manner where any alteration affecting one sphere instantaneously impacts the other. However, the complexity deepens: despite their indistinguishable nature, the gravitational pull between these spheres—coined the “gravitational Time of flow” in essence dynamics research—remains constant, ensuring universal stability. Consider now tampering with one of these spheres to test the veracity of their entanglement and sameness. Introducing a third body disrupts the equilibrium, complicating gravitational laws while maintaining their essence. This interference alters the gravitational time flow between the spheres, unraveling their initial entanglement as they diverge into distinct entities owing to the influence of the additional body. Yet, a reaffirmation of their initial entwined state becomes feasible by recalibrating the spatial arrangement and gravitational dynamics among the three bodies and beyond. This contemplation underscores the gravitational law as the linchpin connecting and anchoring the universe’s fabric, cocooning all within its omnipresent grasp. Our focal point—the gravitational time of flow—emerges as a gateway to unraveling the mysteries behind temporal distance manipulation, offering tantalizing prospects for traversing realms of time and space with unprecedented fluidity and expanding horizons in the realms of scientific inquiry and exploration.

Keywords: time, space, gravity, gravitational time flow, temporal leap, temporal-distance manipulation, multi-verse, teleportation, gravitational time flow device, time travel, distance

Procedia PDF Downloads 10
20029 Scheduling in a Single-Stage, Multi-Item Compatible Process Using Multiple Arc Network Model

Authors: Bokkasam Sasidhar, Ibrahim Aljasser

Abstract:

The problem of finding optimal schedules for each equipment in a production process is considered, which consists of a single stage of manufacturing and which can handle different types of products, where changeover for handling one type of product to the other type incurs certain costs. The machine capacity is determined by the upper limit for the quantity that can be processed for each of the products in a set up. The changeover costs increase with the number of set ups and hence to minimize the costs associated with the product changeover, the planning should be such that similar types of products should be processed successively so that the total number of changeovers and in turn the associated set up costs are minimized. The problem of cost minimization is equivalent to the problem of minimizing the number of set ups or equivalently maximizing the capacity utilization in between every set up or maximizing the total capacity utilization. Further, the production is usually planned against customers’ orders, and generally different customers’ orders are assigned one of the two priorities – “normal” or “priority” order. The problem of production planning in such a situation can be formulated into a Multiple Arc Network (MAN) model and can be solved sequentially using the algorithm for maximizing flow along a MAN and the algorithm for maximizing flow along a MAN with priority arcs. The model aims to provide optimal production schedule with an objective of maximizing capacity utilization, so that the customer-wise delivery schedules are fulfilled, keeping in view the customer priorities. Algorithms have been presented for solving the MAN formulation of the production planning with customer priorities. The application of the model is demonstrated through numerical examples.

Keywords: scheduling, maximal flow problem, multiple arc network model, optimization

Procedia PDF Downloads 408
20028 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 129
20027 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 112
20026 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: ANPR, CS, CNN, deep learning, NPL

Procedia PDF Downloads 311
20025 Delay-Dependent Passivity Analysis for Neural Networks with Time-Varying Delays

Authors: H. Y. Jung, Jing Wang, J. H. Park, Hao Shen

Abstract:

This brief addresses the passivity problem for neural networks with time-varying delays. The aim is focus on establishing the passivity condition of the considered neural networks.

Keywords: neural networks, passivity analysis, time-varying delays, linear matrix inequality

Procedia PDF Downloads 575