Search results for: Features of Bitcoin
1604 Response of Selected Echocardiographic Features to Aerobic Training in Obese Hypertensive Males
Authors: Abeer Ahmed Abdelhameed
Abstract:
The aim of this study was to investigate the effect of aerobic exercises on LV parameters, lipid profile, and anthropometric measurements in hypertensive middle aged male subjects. Thirty obese patients were recruited for the study from the outpatient clinic of National Heart Institute, Egypt. Their ages ranges from 40 to 60 years. All participants underwent an aerobic training program including regular aerobic sub-maximal exercises in the form of treadmill walking and abdominal exercises 3/week for four months, the exercise were individually tailored for each participant depending on the result of cardiopulmonary exercise test. The result showed no significant difference observed in both LVPWT and LVSWT data from pre-test values to post-test values in all subjects after 4 months, with a significant reduction in WHR, systolic blood pressure, TAG and LDL records. Result also revealed a significant increase in HDL, Eƒ, LVEDD and FS records for all participants. The significant improvement in ventricular functions in form of ejection fraction of electrical group more than exercise group after 4 months at the end of the study may be due to the beneficial effect of faradic stimulation in lipolysis of storage adipose tissues, stimulation of lean body mass and muscles and/or thermal effect that improves vascularization.Keywords: left ventricular parameters, aerobic training, electrical stimulation, lipid profile
Procedia PDF Downloads 2541603 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing
Procedia PDF Downloads 1881602 Growth and Anatomical Responses of Lycopersicon esculentum (Tomatoes) under Microgravity and Normal Gravity Conditions
Authors: Gbenga F. Akomolafe, Joseph Omojola, Ezekiel S. Joshua, Seyi C. Adediwura, Elijah T. Adesuji, Michael O. Odey, Oyinade A. Dedeke, Ayo H. Labulo
Abstract:
Microgravity is known to be a major abiotic stress in space which affects plants depending on the duration of exposure. In this work, tomatoes seeds were exposed to long hours of simulated microgravity condition using a one-axis clinostat. The seeds were sown on a 1.5% combination of plant nutrient and agar-agar solidified medium in three Petri dishes. One of the Petri dishes was mounted on the clinostat and allowed to rotate at the speed of 20 rpm for 72 hours, while the others were subjected to the normal gravity vector. The anatomical sections of both clinorotated and normal gravity plants were made after 72 hours and observed using a Phase-contrast digital microscope. The percentage germination, as well as the growth rate of the normal gravity seeds, was higher than the clinorotated ones. The germinated clinorotated roots followed different directions unlike the normal gravity ones which grew towards the direction of gravity vector. The clinostat was able to switch off gravistimulation. Distinct cellular arrangement was observed for tomatoes under normal gravity condition, unlike those of clinorotated ones. The root epidermis and cortex of normal gravity are thicker than the clinorotated ones. This implied that under long-term microgravity influence, plants do alter their anatomical features as a way of adapting to the stress condition.Keywords: anatomy, clinostat, germination, lycopersicon esculentum, microgravity
Procedia PDF Downloads 3221601 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning
Authors: Melody Yin
Abstract:
Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time
Procedia PDF Downloads 1681600 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)
Authors: Abdul Mannan Akhtar
Abstract:
In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection
Procedia PDF Downloads 4641599 Comparative Analysis of Single Versus Multi-IRS Assisted Multi-User Wireless Communication System
Authors: Ayalew Tadese Kibret, Belayneh Sisay Alemu, Amare Kassaw Yimer
Abstract:
Intelligent reflecting surfaces (IRSs) are considered to be a key enabling technology for sixth-generation (6G) wireless networks. IRSs are electromagnetic (EM) surfaces that are fabricated and have integrated electronics, electronically controlled processes, and particularly wireless communication features. IRSs operate without the need for complex signal processing and the encoding and decoding steps that improve the signal quality at the receiver. Improving vital performance parameters such as energy efficiency (EE) and spectral efficiency (SE) have frequently been the primary goals of research in order to meet the increasing requirements for advanced services in the future 6G communications. In this research, we conduct a comparative analysis on single and multi-IRS wireless communication networks using energy and spectrum efficiency. The energy efficiency versus user distance, energy efficiency versus signal to noise ratio, and spectral efficiency versus user distance are the basis for our result with 1, 2, 4, and 6 IRSs. According to the results of our simulation, in terms of energy and spectral efficiency, six IRS perform better than four, two, and single IRS. Overall, our results suggest that multi-IRS-assisted wireless communication systems outperform single IRS systems in terms of communication performance.Keywords: sixth-generation (6G), wireless networks, intelligent reflecting surfaces, energy efficiency, spectral efficiency
Procedia PDF Downloads 261598 3D Steady and Transient Centrifugal Pump Flow within Ansys CFX and OpenFOAM
Authors: Clement Leroy, Guillaume Boitel
Abstract:
This paper presents a comparative benchmarking review of a steady and transient three-dimensional (3D) flow computations in centrifugal pump using commercial (AnsysCFX) and open source (OpenFOAM) computational fluid dynamics (CFD) software. In centrifugal rotor-dynamic pump, the fluid enters in the impeller along to the rotating axis to be accelerated in order to increase the pressure, flowing radially outward into another stage, vaned diffuser or volute casing, from where it finally exits into a downstream pipe. Simulations are carried out at the best efficiency point (BEP) and part load, for single-phase flow with several turbulence models. The results are compared with overall performance report from experimental data. The use of CFD technology in industry is still limited by the high computational costs, and even more by the high cost of commercial CFD software and high-performance computing (HPC) licenses. The main objectives of the present study are to define OpenFOAM methodology for high-quality 3D steady and transient turbomachinery CFD simulation to conduct a thorough time-accurate performance analysis. On the other hand a detailed comparisons between computational methods, features on latest Ansys release 18 and OpenFOAM is investigated to assess the accuracy and industrial applications of those solvers. Finally an automated connected workflow (IoT) for turbine blade applications is presented.Keywords: benchmarking, CFX, internet of things, openFOAM, time-accurate, turbomachinery
Procedia PDF Downloads 2051597 Morphological Characteristics and Bioreactivity of Inhalable Particles during the Temple Fair in Kaifeng
Authors: Qiao Yushuang, Shao Longyi
Abstract:
This paper presents the result of plasmid assay of inhalable particulates PM10 and PM2.5 that were collected during the period of the 11th Hanyuan temple fair of ancestor worship in Kaifeng City. By use of a high-resolution Field Emission Scanning Electron Microscopy (FESEM) and image analysis (IA) technology, the morphological characteristics and Particle Size Distribution (PSD) of each were analyzed and the Bioreactivity of PM10 was evaluated by using plasmid DNA assay. The result shows that, as the dominant component of the samples taken in the urban area of Kaifeng City, the mineral particles, compared with the other components including the soot aggregates, coal ash, and unidentified particles, have a much greater amount and volume. The mineral particles exhibited a decentralized quantity - size distribution, whose presence could be available among the particles sizing 2.5μm or smaller. In contrast, the volume-size distribution of mineral particles is scattered in a relatively narrow range of between1μm and 2.5μm. According to the plasmid assay the TD50 (toxic dose of PM causing 50% of plasmid damage, expressed in μg/ml) of water-soluble PM10 and whole fraction of Kaifeng airborne PM10 was measured respectively at 220-208μg/ml and 300-400μg/ml versus 160μg/ml and 190μg/ml for PM2.5. It can be seen that the whole fraction of airborne particles caused more oxidative damage than the water-soluble fractions, and the PM2.5 has a greater oxidative capacity than the PM10.Keywords: inhalable particulates (PM10 and PM2.5), morphological features, bioreactivity, Kaifeng
Procedia PDF Downloads 1941596 Sociological Portrait of the Korean Diaspora in Kazakhstan
Authors: Yefrem Yefremov
Abstract:
In Kazakhstan, there are approximately 100,000 ethnic Koreans with the ethnonym "Koryo Saram". They are part of the global Korean diaspora around the world, deported to Kazakhstan by Stalin’s decree in 1937. Koryo Saram's diasporic identity is a composite of numerous identities based on a shared cultural heritage of the USSR and independent Kazakhstan and has mosaic character. The author has conducted a sociological survey to find out the main features of the identity of the Koryo Saram diaspora. The purpose of this paper is to depict the degree of ethnic, cultural, and diasporic identity of Koryo Saram and which effect on the preserving Korean diaspora in Kazakhstna do they have. The following elements impacting the above-mentioned identities were investigated in the survey: criteria by which Koryo Saram perceive themselves to be Korean, attitude of Koryo Saram to their ethnicity, degree of feeling of ethnocultural similarity between Koreans of Kazakhstan and Koreans of the Republic of Korea, degree of association of Koreans of Kazakhstan with other Koreans living in other CIS countries, degree of practicing Korean traditions Koryo Saram's attitudes towards interethnic marriages. The primary factor in defining the identity among the respondents is the factor of ethnic origin. Nationality is the second most significant component in establishing Koryo Saram’s identity. The maintenance of "Koreanness" of Koryo Sarams in the context of a multiethnic community, particularly in Kazakhstan, is based on genetic elements as well as the preservation of the culture. In conclusion, the high level of preserving Korean identity is being observed in the Korean Diaspora of Kazakhstan.Keywords: diasporic identity, diaspora, ethnic identity, identity markers, korean diaspora, koreans of kazakhstan, koryo saram, multiethnicity
Procedia PDF Downloads 1361595 Novel Hybrid Ceramic Nanocomposites Fabricated by Rapid Sintering Technology
Authors: Iftikhar Ahmad, Abulhakim Almajid
Abstract:
Alumina (Al2O3) is an attractive structural ceramic however; brittleness turns Al2O3 down for advanced applications. Development of multi-phase phase ceramics systems is promising to curtail the brittleness and the incorporation of strong/elastic graphene, as third phase, into dual phase (Al2O3-SiC) is striking for mechanical upgrading purpose. Thin graphene nanosheets (GNS) were prepared by thermal exfoliation process and reinforced into dual phase ceramic system. The hybrid nanocomposite was consolidated by novel HF-IH (high-frequency induction heating) sintering furnace at 1500 °C under 50 MPa in vacuum conditions. Structural features and grain size of the resulting nanocomposite were analyzed by SEM and TEM whilst the mechanical properties were assessed by microhardness and nanoindentation techniques. The fracture toughness of the hybrid nanocomposites was appraised by direct crack measurement method. Electron microscopic investigations confirmed the preparation of thin (< 10 nm) graphene nanosheets (GNS). HF-IH sintering route condensed the three-phase (GNS-Al2O3-SiC) hybrid nanocomposite system to > 99% relative densities. SEM of the hybrid nanocomposites fractured surfaces revealed even distribution of the nanocomposite constituents and changed in fracture-mode. Structurally, 88% grain reduction into hybrid nanocomposite was also obtained. Mechanically, enhanced fracture toughness (50%) and hardness (53%) were also achieved for hybrid nanocomposites were attained against bench marked monolithic Al2O3.Keywords: alumina, graphene, hybrid nanocomposites, rapid sintering
Procedia PDF Downloads 3781594 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 971593 Translation Quality Assessment in Fansubbed English-Chinese Swearwords: A Corpus-Based Study of the Big Bang Theory
Authors: Qihang Jiang
Abstract:
Fansubbing, the combination of fan and subtitling, is one of the main branches of Audiovisual Translation (AVT) having kindled more and more interest of researchers into the AVT field in recent decades. In particular, the quality of so-called non-professional translation seems questionable due to the non-transparent qualification of subtitlers in a huge community network. This paper attempts to figure out how YYeTs aka 'ZiMuZu', the largest fansubbing group in China, translates swearwords from English to Chinese for its fans of the prevalent American sitcom The Big Bang Theory, taking cultural, social and political elements into account in the context of China. By building a bilingual corpus containing both the source and target texts, this paper found that most of the original swearwords were translated in a toned-down manner, probably due to Chinese audiences’ cultural and social network features as well as the strict censorship under the Chinese government. Additionally, House (2015)’s newly revised model of Translation Quality Assessment (TQA) was applied and examined. Results revealed that most of the subtitled swearwords achieved their pragmatic functions and exerted a communicative effect for audiences. In conclusion, this paper enriches the empirical research concerning House’s new TQA model, gives a full picture of the subtitling of swearwords in AVT field and provides a practical guide for the practitioners in their career of subtitling.Keywords: corpus-based approach, fansubbing, pragmatic functions, swearwords, translation quality assessment
Procedia PDF Downloads 1431592 Building a Model for Information Literacy Education in School Settings
Authors: Tibor Koltay
Abstract:
Among varied new literacies, information literacy is not only the best-known one but displays numerous models and frameworks. Nonetheless, there is still a lack of its complex theoretical model that could be applied to information literacy education in public (K12) education, which often makes use of constructivist approaches. This paper aims to present the main features of such a model. To develop a complex model, the literature and practice of phenomenographic and sociocultural theories, as well as discourse analytical approaches to information literacy, have been reviewed. Besides these constructivist and expressive based educational approaches, the new model is intended to include the innovation of coupling them with a cognitive model that takes developing informational and operational knowledge into account. The convergences between different literacies (information literacy, media literacy, media and information literacy, and data literacy) were taken into account, as well. The model will also make use of a three-country survey that examined secondary school teachers’ attitudes to information literacy. The results of this survey show that only a part of the respondents feel properly prepared to teach information literacy courses, and think that they can teach information literacy skills by themselves, while they see a librarian as an expert in educating information literacy. The use of the resulting model is not restricted to enhancing theory. It is meant to raise the level of awareness about information literacy and related literacies, and the next phase of the model’s development will be a pilot study that verifies the usefulness of the methodology for practical information literacy education in selected Hungarian secondary schools.Keywords: communication, data literacy, discourse analysis, information literacy education, media and information literacy media literacy, phenomenography, public education, sociocultural theory
Procedia PDF Downloads 1471591 Circular Labour Migration and Its Consequences in Georgia
Authors: Manana Lobzhanidze
Abstract:
Introduction: The paper will argue that labor migration is the most important problem Georgia faces today. The structure of labor migration by age and gender of Georgia is analyzed. The main driving factors of circular labor migration during the last ten years are identified. While studying migration, it is necessary to discuss the interconnection of economic, social, and demographic features, also taking into consideration the policy of state regulations in terms of education and professional training. Methodology: Different research methods are applied in the presented paper: statistical, such as selection, grouping, observation, trend, and qualitative research methods, namely; analysis, synthesis, induction, deduction, comparison ones. Main Findings: Labour migrants are filling the labor market as a low salary worker. The main positive feedback of migration from developing countries is poverty eradication, but this process is accompanied by problems, such as 'Brain Drain'. The country loses an important part of its intellectual potential, and it is invested by households or state itself. Conclusions: Labor migration is characterized to be temporary, but socio-economic problems of the country often push the labor migration in the direction of longterm and illegal migration. Countries with developed economies try to stricter migration policy and fight illegal migration with different methods; circular migration helps solve this problem. Conclusions and recommendations are included about circular labor migration consequences in Georgia and its influence on the reduction of unemployment level.Keywords: migration, circular labor migration, labor migration employment, unemployment
Procedia PDF Downloads 1791590 Design of a Real Time Closed Loop Simulation Test Bed on a General Purpose Operating System: Practical Approaches
Authors: Pratibha Srivastava, Chithra V. J., Sudhakar S., Nitin K. D.
Abstract:
A closed-loop system comprises of a controller, a response system, and an actuating system. The controller, which is the system under test for us, excites the actuators based on feedback from the sensors in a periodic manner. The sensors should provide the feedback to the System Under Test (SUT) within a deterministic time post excitation of the actuators. Any delay or miss in the generation of response or acquisition of excitation pulses may lead to control loop controller computation errors, which can be catastrophic in certain cases. Such systems categorised as hard real-time systems that need special strategies. The real-time operating systems available in the market may be the best solutions for such kind of simulations, but they pose limitations like the availability of the X Windows system, graphical interfaces, other user tools. In this paper, we present strategies that can be used on a general purpose operating system (Bare Linux Kernel) to achieve a deterministic deadline and hence have the added advantages of a GPOS with real-time features. Techniques shall be discussed how to make the time-critical application run with the highest priority in an uninterrupted manner, reduced network latency for distributed architecture, real-time data acquisition, data storage, and retrieval, user interactions, etc.Keywords: real time data acquisition, real time kernel preemption, scheduling, network latency
Procedia PDF Downloads 1471589 An Improved Discrete Version of Teaching–Learning-Based Optimization for Supply Chain Network Design
Authors: Ehsan Yadegari
Abstract:
While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation
Procedia PDF Downloads 521588 Tunable Control of Therapeutics Release from the Nanochannel Delivery System (nDS)
Authors: Thomas Geninatti, Bruno Giacomo, Alessandro Grattoni
Abstract:
Nanofluidic devices have been investigated for over a decade as promising platforms for the controlled release of therapeutics. The nanochannel drug delivery system (nDS), a membrane fabricated with high precision silicon techniques, capable of zero-order release of drugs by exploiting diffusion transport at the nanoscale originated from the interactions between molecules with nanochannel surfaces, showed the flexibility of the sustained release in vitro and in vivo, over periods of time ranging from weeks to months. To improve the implantable bio nanotechnology, in order to create a system that possesses the key features for achieve the suitable release of therapeutics, the next generation of nDS has been created. Platinum electrodes are integrated by e-beam deposition onto both surfaces of the membrane allowing low voltage (<2 V) and active temporal control of drug release through modulation of electrostatic potentials at the inlet and outlet of the membrane’s fluidic channels. Hence, a tunable administration of drugs is ensured from the nanochannel drug delivery system. The membrane will be incorporated into a peek implantable capsule, which will include drug reservoir, control hardware and RF system to allow suitable therapeutic regimens in real-time. Therefore, this new nanotechnology offers tremendous potential solutions to manage chronic disease such as cancer, heart disease, circadian dysfunction, pain and stress.Keywords: nanochannel membrane, drug delivery, tunable release, personalized administration, nanoscale transport, biomems
Procedia PDF Downloads 3151587 Endometrial Thickness Cut-Off for Evacuation of Retained Product of Conception
Authors: Nambiar Ritu, Ali Ban, Munawar Farida, Israell Imelda, T. Farouk Eman Rasheeda, Jangalgi Renuka, S. Boma Nellie
Abstract:
Aim: To define the ultrasonographic endometrial thickness (USG ET) cutoff for evacuation of retained pieces of conception (ERPC). Background: Studies of conservative management of 1st trimester miscarriage have questioned the need for post miscarriage curettage. Therapeutic decision making with transvaginal scan post miscarriage endometrial thickness in patients clinically thought to be incomplete miscarriage is often not clear. Method: Retrospective analysis of all 1ST trimester ERPC at Al Rahba Hospital from June 2012 to July 2013 was done. Total of 164 patients underwent ERPC. All cases were reviewed for pre-operative USG ET and post ERPC histopathological examination. TVS was done to evaluate the maximum ET of the uterine cavity along the long axis of the uterus and features of retained products was noted. All cases without preoperative USG ET measurement were excluded from the study, therefore only 62 out of 164 cases were included in the study. The patients were divided into three groups: o Group A: have retained products within endometrial cavity. o Group B: endometrial thickness equal or more than 20 mm. o Group C: endometrial thickness equal or less than 19.9 mm. o Post ERPC product was sent for HPE and the results were compared. Transvaginal sonographic findings can be used as a deciding factor in the management of patients with 1st trimester miscarriage who need ERPC. Our proposed cutoff in clinically stable patients requiring ERPC is more than 20 mm.Keywords: ERPC, histopathological examination, long axis of the uterus, USG ET
Procedia PDF Downloads 2161586 Morphological Characterization and Gas Permeation of Commercially Available Alumina Membrane
Authors: Ifeyinwa Orakwe, Ngozi Nwogu, Edward Gobina
Abstract:
This work presents experimental results relating to the structural characterization of a commercially available alumina membrane. A γ-alumina mesoporous tubular membrane has been used. Nitrogen adsorption-desorption, scanning electron microscopy and gas permeability test has been carried out on the alumina membrane to characterize its structural features. Scanning electron microscopy (SEM) was used to determine the pore size distribution of the membrane. Pore size, specific surface area and pore size distribution were also determined with the use of the Nitrogen adsorption-desorption instrument. Gas permeation tests were carried out on the membrane using a variety of single and mixed gases. The permeabilities at different pressure between 0.05-1 bar and temperature range of 25-200oC were used for the single and mixed gases: nitrogen (N2), helium (He), oxygen (O2), carbon dioxide (CO2), 14%CO₂/N₂, 60%CO₂/N₂, 30%CO₂/CH4 and 21%O₂/N₂. Plots of flow rate verses pressure were obtained. Results got showed the effect of temperature on the permeation rate of the various gases. At 0.5 bar for example, the flow rate for N2 was relatively constant before decreasing with an increase in temperature, while for O2, it continuously decreased with an increase in temperature. In the case of 30%CO₂/CH4 and 14%CO₂/N₂, the flow rate showed an increase then a decrease with increase in temperature. The effect of temperature on the membrane performance of the various gases is presented and the influence of the trans membrane pressure drop will be discussed in this paper.Keywords: alumina membrane, Nitrogen adsorption-desorption, scanning electron microscopy, gas permeation, temperature
Procedia PDF Downloads 3231585 Epigenetic Drugs for Major Depressive Disorder: A Critical Appraisal of Available Studies
Authors: Aniket Kumar, Jacob Peedicayil
Abstract:
Major depressive disorder (MDD) is a common and important psychiatric disorder. Several clinical features of MDD suggest an epigenetic basis for its pathogenesis. Since epigenetics (heritable changes in gene expression not involving changes in DNA sequence) may underlie the pathogenesis of MDD, epigenetic drugs such as DNA methyltransferase inhibitors (DNMTi) and histone deactylase inhibitors (HDACi) may be useful for treating MDD. The available literature indexed in Pubmed on preclinical drug trials of epigenetic drugs for the treatment of MDD was investigated. The search terms we used were ‘depression’ or ‘depressive’ and ‘HDACi’ or ‘DNMTi’. Among epigenetic drugs, it was found that there were 3 preclinical trials using HDACi and 3 using DNMTi for the treatment of MDD. All the trials were conducted on rodents (mice or rats). The animal models of depression that were used were: learned helplessness-induced animal model, forced swim test, open field test, and the tail suspension test. One study used a genetic rat model of depression (the Flinders Sensitive Line). The HDACi that were tested were: sodium butyrate, compound 60 (Cpd-60), and valproic acid. The DNMTi that were tested were: 5-azacytidine and decitabine. Among the three preclinical trials using HDACi, all showed an antidepressant effect in animal models of depression. Among the 3 preclinical trials using DNMTi also, all showed an antidepressant effect in animal models of depression. Thus, epigenetic drugs, namely, HDACi and DNMTi, may prove to be useful in the treatment of MDD and merit further investigation for the treatment of this disorder.Keywords: DNA methylation, drug discovery, epigenetics, major depressive disorder
Procedia PDF Downloads 1881584 Traffic Prediction with Raw Data Utilization and Context Building
Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.Keywords: traffic prediction, raw data utilization, context building, data reduction
Procedia PDF Downloads 1281583 Neotectonic Features of the Fethiye-Burdur Fault Zone between Kozluca and Burdur, SW Anatolia, Turkey
Authors: Berkant Coşkuner, Rahmi Aksoy
Abstract:
The aim of this study is to present some preliminary stratigraphic and structural evidence for the Fethiye-Burdur fault zone between Kozluca and Burdur. The Fethiye-Burdur fault zone, the easternmost extension of the west Anatolian extensional province, extends from the Gulf of Fethiye northeastward through Burdur, a distance of about 300 km. The research area is located in the Burdur segment of the fault zone. Here, the fault zone includes several parallel to subparallel fault branching and en-echelon faults that lie within a linear belt, as much as 20 km in width. The direction of movement in the fault zone has been oblique-slip in the left lateral sense. The basement of the study area consists of the Triassic-Eocene Lycian Nappes, the Eocene-Oligocene molasse sediments and the lower Miocene marine rocks. The Burdur basin contains two basin infills. The ancient and deformed basin fill is composed of lacustrine sediments of the upper Miocene-lower Pliocene age. The younger and undeformed basin fill comprises Plio-Quaternary alluvial fan and recent basin-floor deposits and unconformably overlies the ancient basin infill. The Burdur basin is bounded by the NE-SW trending, left lateral oblique-slip normal faults, the Karakent fault on the northwest and the Burdur fault on the southeast. These faults played a key role in the development of the Burdur basin as a pull-apart basin.Keywords: Burdur basin, Fethiye-Burdur fault zone, left lateral oblique-slip fault, Western Anatolia
Procedia PDF Downloads 4091582 Double Negative Differential Resistance Features in Series AIN/GaN Double-Barrier Resonant Tunneling Diodes Vertically Integrated by Plasma-Assisted Molecular Beam Epitaxy
Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao
Abstract:
This study reports on the epitaxial growth of a GaN-based resonant tunneling diode (RTD) structure with stable and repeatable double negative differential resistance (NDR) characteristics at room temperature on a c-plane GaN-on-sapphire template using plasma-assisted molecular beam epitaxy (PA-MBE) technology. In this structure, two independent AlN/GaN RTDs are epitaxially connected in series in the vertical growth direction through a silicon-doped GaN layer. As the collector electrode bias voltage increases, the two RTDs respectively align the ground state energy level in the quantum well with the 2DEG energy level in the emitter accumulation well to achieve quantum resonant tunneling and then reach the negative differential resistance (NDR) region. The two NDR regions exhibit similar peak current densities and peak-to-valley current ratios, which are 230 kA/cm² and 249 kA/cm², 1.33 and 1.38, respectively, for a device with a collector electrode mesa diameter of 1 µm. The consistency of the NDR is much higher than the results of on-chip discrete RTD device interconnection, resulting from the smaller chip area, fewer interconnect parasitic parameters, and less process complexity. The methods and results presented in this paper show the brilliant prospects of GaN RTDs in the development of multi-value logic digital circuits.Keywords: MBE, AlN/GaN, RTDs, double NDR
Procedia PDF Downloads 631581 Flight School Perceptions of Electric Planes for Training
Authors: Chelsea-Anne Edwards, Paul Parker
Abstract:
Flight school members are facing a major disruption in the technologies available for them to fly as electric planes enter the aviation industry. The year 2020 marked a new era in aviation with the first type certification of an electric plane. The Pipistrel Velis Electro is a two-seat electric aircraft (e-plane) designed for flight training. Electric flight training has the potential to deeply reduce emissions, noise, and cost of pilot training. Though these are all attractive features, understanding must be developed on the perceptions of the essential actor of the technology, the pilot. This study asks student pilots, flight instructors, flight center managers, and other members of flight schools about their perceptions of e-planes. The questions were divided into three categories: safety and trust of the technology, expected costs in comparison to conventional planes, and interest in the technology, including their desire to fly electric planes. Participants were recruited from flight schools using a protocol approved by the Office of Research Ethics. None of these flight schools have an e-plane in their fleet so these views are based on perceptions rather than direct experience. The results revealed perceptions that were strongly positive with many qualitative comments indicating great excitement about the potential of the new electric aviation technology. Some concerns were raised regarding battery endurance limits. Overall, the flight school community is clearly in favor of introducing electric propulsion technology and reducing the environmental impacts of their industry.Keywords: electric planes, flight training, green aircraft, student pilots, sustainable aviation
Procedia PDF Downloads 1671580 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator
Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi
Abstract:
With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.Keywords: offshore wind generator, PMSM, PSO optimization, design optimization
Procedia PDF Downloads 1551579 A Method for Reconfigurable Manufacturing Systems Customization Measurement
Authors: Jesus Kombaya, Nadia Hamani, Lyes Kermad
Abstract:
The preservation of a company’s place on the market in such aggressive competition is becoming a survival challenge for manufacturers. In this context, survivors are only those who succeed to satisfy their customers’ needs as quickly as possible. The production system should be endowed with a certain level of flexibility to eliminate or reduce the rigidity of the production systems in order to facilitate the conversion and/or the change of system’s features to produce different products. Therefore, it is essential to guarantee the quality, the speed and the flexibility to survive in this competition. According to literature, this adaptability is referred to as the notion of "change". Indeed, companies are trying to establish a more flexible and agile manufacturing system through several reconfiguration actions. Reconfiguration contributes to the extension of the manufacturing system life cycle by modifying its physical, organizational and computer characteristics according to the changing market conditions. Reconfigurability is characterized by six key elements that are: modularity, integrability, diagnosability, convertibility, scalability and customization. In order to control the production systems, it is essential for manufacturers to make good use of this capability in order to be sure that the system has an optimal and adapted level of reconfigurability that allows it to produce in accordance with the set requirements. This document develops a measure of customization of reconfigurable production systems. These measures do not only impact the production system but also impact the product design and the process design, which can therefore serve as a guide for the customization of manufactured product. A case study is presented to show the use of the proposed approach.Keywords: reconfigurable manufacturing systems, customization, measure, flexibility
Procedia PDF Downloads 1281578 In Life: Space as Doppelganger in “The House of Usher”
Authors: Tuğçe Arslan
Abstract:
In the dark and gloomy times of the Middle Ages, high, majestic, and frightening structures were revealed in the architectural field. Thus, gothic architecture began to find a place for itself in different areas and spread its influence. Gothic has found its place in almost every literary genre and manages to show itself as the dominant genre in the works it enters. It has exploited many concepts, such as a chest full of bad feelings, and creates a gloomy, scary, frightening, and pessimistic mood in the story with these concepts. One of the essential concepts it uses while creating these feelings is the concept of “Doppelganger.” With this concept, the authors make sense of the uncanny; at this point, they allow the spaces to act like characters, just like the uncanny feeling Edgar Allan Poe creates in his story “The Fall of the House of the Usher.” In this story by Edgar Allan Poe, attention should be paid to the symbolic link between the two, as “House of Usher” refers to the family and the building. And indeed, it is possible to see this minor rift as representative of a breakdown in family unity, specifically between Madeline and Roderick. Because although the home is not alive, it has some supernatural features that make it look like a living, breathing being. Therefore, the remainder of this paper will argue that apart from the apparent twins, the house should also qualify as a Doppelganger in the story. This study will first explore the physical and mental disorders of the twins and their journey to complement each other; next, in an attempt to demonstrate how the house as a non-living needs to be considered as a Doppelganger of the twins, a close reading on the house depictions will be scrutinized.Keywords: Edgar Allan Poe, doppelganger, uncanny, gothic, space, home
Procedia PDF Downloads 1221577 A Palmprint Identification System Based Multi-Layer Perceptron
Authors: David P. Tantua, Abdulkader Helwan
Abstract:
Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator
Procedia PDF Downloads 3711576 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries
Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras
Abstract:
The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).Keywords: deep learning models, film industry, geospatial data management, location scouting
Procedia PDF Downloads 711575 The Interoperability between CNC Machine Tools and Robot Handling Systems Based on an Object-Oriented Framework
Authors: Pouyan Jahanbin, Mahmoud Houshmand, Omid Fatahi Valilai
Abstract:
A flexible manufacturing system (FMS) is a manufacturing system having the capability of handling the variations of products features that is the result of ever-changing customer demands. The flexibility of the manufacturing systems help to utilize the resources in a more effective manner. However, the control of such systems would be complicated and challenging. FMS needs CNC machines and robots and other resources for establishing the flexibility and enhancing the efficiency of the whole system. Also it needs to integrate the resources to reach required efficiency and flexibility. In order to reach this goal, an integrator framework is proposed in which the machining data of CNC machine tools is received through a STEP-NC file. The interoperability of the system is achieved by the information system. This paper proposes an information system that its data model is designed based on object oriented approach and is implemented through a knowledge-based system. The framework is connected to a database which is filled with robot’s control commands. The framework programs the robots by rules embedded in its knowledge based system. It also controls the interactions of CNC machine tools for loading and unloading actions by robot. As a result, the proposed framework improves the integration of manufacturing resources in Flexible Manufacturing Systems.Keywords: CNC machine tools, industrial robots, knowledge-based systems, manufacturing recourses integration, flexible manufacturing system (FMS), object-oriented data model
Procedia PDF Downloads 455