Search results for: prognosis prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2512

Search results for: prognosis prediction

262 Discharge Estimation in a Two Flow Braided Channel Based on Energy Concept

Authors: Amiya Kumar Pati, Spandan Sahu, Kishanjit Kumar Khatua

Abstract:

River is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. A river flow consisting of small and shallow channels sometimes divide and recombine numerous times because of the slow water flow or the built up sediments. The pattern formed during this process resembles the strands of a braid. Braided streams form where the sediment load is so heavy that some of the sediments are deposited as shifting islands. Braided rivers often exist near the mountainous regions and typically carry coarse-grained and heterogeneous sediments down a fairly steep gradient. In this paper, the apparent shear stress formulae were suitably modified, and the Energy Concept Method (ECM) was applied for the prediction of discharges at the junction of a two-flow braided compound channel. The Energy Concept Method has not been applied for estimating the discharges in the braided channels. The energy loss in the channels is analyzed based on mechanical analysis. The cross-section of channel is divided into two sub-areas, namely the main-channel below the bank-full level and region above the bank-full level for estimating the total discharge. The experimental data are compared with a wide range of theoretical data available in the published literature to verify this model. The accuracy of this approach is also compared with Divided Channel Method (DCM). From error analysis of this method, it is observed that the relative error is less for the data-sets having smooth floodplains when compared to rough floodplains. Comparisons with other models indicate that the present method has reasonable accuracy for engineering purposes.

Keywords: critical flow, energy concept, open channel flow, sediment, two-flow braided compound channel

Procedia PDF Downloads 126
261 Development of an Implicit Coupled Partitioned Model for the Prediction of the Behavior of a Flexible Slender Shaped Membrane in Interaction with Free Surface Flow under the Influence of a Moving Flotsam

Authors: Mahtab Makaremi Masouleh, Günter Wozniak

Abstract:

This research is part of an interdisciplinary project, promoting the design of a light temporary installable textile defence system against flood. In case river water levels increase abruptly especially in winter time, one can expect massive extra load on a textile protective structure in term of impact as a result of floating debris and even tree trunks. Estimation of this impulsive force on such structures is of a great importance, as it can ensure the reliability of the design in critical cases. This fact provides the motivation for the numerical analysis of a fluid structure interaction application, comprising flexible slender shaped and free-surface water flow, where an accelerated heavy flotsam tends to approach the membrane. In this context, the analysis on both the behavior of the flexible membrane and its interaction with moving flotsam is conducted by finite elements based solvers of the explicit solver and implicit Abacus solver available as products of SIMULIA software. On the other hand, a study on how free surface water flow behaves in response to moving structures, has been investigated using the finite volume solver of Star CCM+ from Siemens PLM Software. An automatic communication tool (CSE, SIMULIA Co-Simulation Engine) and the implementation of an effective partitioned strategy in form of an implicit coupling algorithm makes it possible for partitioned domains to be interconnected powerfully. The applied procedure ensures stability and convergence in the solution of these complicated issues, albeit with high computational cost; however, the other complexity of this study stems from mesh criterion in the fluid domain, where the two structures approach each other. This contribution presents the approaches for the establishment of a convergent numerical solution and compares the results with experimental findings.

Keywords: co-simulation, flexible thin structure, fluid-structure interaction, implicit coupling algorithm, moving flotsam

Procedia PDF Downloads 389
260 Self-rated Health as a Predictor of Hospitalizations in Patients with Bipolar Disorder and Major Depression: A Prospective Cohort Study of the United Kingdom Biobank

Authors: Haoyu Zhao, Qianshu Ma, Min Xie, Yunqi Huang, Yunjia Liu, Huan Song, Hongsheng Gui, Mingli Li, Qiang Wang

Abstract:

Rationale: Bipolar disorder (BD) and major depressive disorder (MDD), as severe chronic illnesses that restrict patients’ psychosocial functioning and reduce their quality of life, are both categorized into mood disorders. Emerging evidence has suggested that the reliability of self-rated health (SRH) was wellvalidated and that the risk of various health outcomes, including mortality and health care costs, could be predicted by SRH. Compared with other lengthy multi-item patient-reported outcomes (PRO) measures, SRH was proven to have a comparable predictive ability to predict mortality and healthcare utilization. However, to our knowledge, no study has been conducted to assess the association between SRH and hospitalization among people with mental disorders. Therefore, our study aims to determine the association between SRH and subsequent all-cause hospitalizations in patients with BD and MDD. Methods: We conducted a prospective cohort study on people with BD or MDD in the UK from 2006 to 2010 using UK Biobank touchscreen questionnaire data and linked administrative health databases. The association between SRH and 2-year all-cause hospitalizations was assessed using proportional hazard regression after adjustment for sociodemographics, lifestyle behaviors, previous hospitalization use, the Elixhauser comorbidity index, and environmental factors. Results: A total of 29,966 participants were identified, experiencing 10,279 hospitalization events. Among the cohort, the average age was 55.88 (SD 8.01) years, 64.02% were female, and 3,029 (10.11%), 15,972 (53.30%), 8,313 (27.74%), and 2,652 (8.85%) reported excellent, good, fair, and poor SRH, respectively. Among patients reporting poor SRH, 54.19% had a hospitalization event within 2 years compared with 22.65% for those having excellent SRH. In the adjusted analysis, patients with good, fair, and poor SRH had 1.31 (95% CI 1.21-1.42), 1.82 (95% CI 1.68-1.98), and 2.45 (95% CI 2.22, 2.70) higher hazards of hospitalization, respectively, than those with excellent SRH. Conclusion: SRH was independently associated with subsequent all-cause hospitalizations in patients with BD or MDD. This large study facilitates rapid interpretation of SRH values and underscores the need for proactive SRH screening in this population, which might inform resource allocation and enhance high-risk population detection.

Keywords: severe mental illnesses, hospitalization, risk prediction, patient-reported outcomes

Procedia PDF Downloads 161
259 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke

Abstract:

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.

Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform

Procedia PDF Downloads 309
258 Regeneration of Geological Models Using Support Vector Machine Assisted by Principal Component Analysis

Authors: H. Jung, N. Kim, B. Kang, J. Choe

Abstract:

History matching is a crucial procedure for predicting reservoir performances and making future decisions. However, it is difficult due to uncertainties of initial reservoir models. Therefore, it is important to have reliable initial models for successful history matching of highly heterogeneous reservoirs such as channel reservoirs. In this paper, we proposed a novel scheme for regenerating geological models using support vector machine (SVM) and principal component analysis (PCA). First, we perform PCA for figuring out main geological characteristics of models. Through the procedure, permeability values of each model are transformed to new parameters by principal components, which have eigenvalues of large magnitude. Secondly, the parameters are projected into two-dimensional plane by multi-dimensional scaling (MDS) based on Euclidean distances. Finally, we train an SVM classifier using 20% models which show the most similar or dissimilar well oil production rates (WOPR) with the true values (10% for each). Then, the other 80% models are classified by trained SVM. We select models on side of low WOPR errors. One hundred channel reservoir models are initially generated by single normal equation simulation. By repeating the classification process, we can select models which have similar geological trend with the true reservoir model. The average field of the selected models is utilized as a probability map for regeneration. Newly generated models can preserve correct channel features and exclude wrong geological properties maintaining suitable uncertainty ranges. History matching with the initial models cannot provide trustworthy results. It fails to find out correct geological features of the true model. However, history matching with the regenerated ensemble offers reliable characterization results by figuring out proper channel trend. Furthermore, it gives dependable prediction of future performances with reduced uncertainties. We propose a novel classification scheme which integrates PCA, MDS, and SVM for regenerating reservoir models. The scheme can easily sort out reliable models which have similar channel trend with the reference in lowered dimension space.

Keywords: history matching, principal component analysis, reservoir modelling, support vector machine

Procedia PDF Downloads 160
257 Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption

Authors: Umar Hayatu Sidik

Abstract:

Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents.

Keywords: adsorption, desorption, activated carbon, coconut shells, polyetheretherketone

Procedia PDF Downloads 67
256 Study the Multifaceted Therapeutic Properties of the IQGAP1shRNA Plasmid on Rat Liver Cancer Model

Authors: Khairy M. A. Zoheir, Nehma A. Ali, Ahmed M. Darwish, Mohamed S. Kishta, Ahmed A. Abd-Rabou, Mohamed A. Abdelhafez, Karima F. Mahrous

Abstract:

The study comprehensively investigated the multifaceted therapeutic properties of the IQGAP1shRNA plasmid, encompassing its hepatoprotective, immunomodulatory, and anticancer activities. The study employed a Prednisolone-induced immunosuppressed rat model to assess the hepatoprotective and immunomodulatory effects of IQGAP1shRNA plasmid. Using this model, IQGAP1shRNA plasmid was found to modulate haematopoiesis, improving RBC, platelet, and WBC counts, underscoring its potential in hematopoietic homeostasis. Organ atrophy, a hallmark of immunosuppression in spleen, heart, liver, ovaries, and kidneys, was reversed with IQGAP1shRNA plasmid treatment, reinforcing its hepatotrophic and organotropic capabilities. Elevated hepatic biomarkers (ALT, AST, ALP, LPO) indicative of hepatocellular injury and oxidative stress were reduced with GST, highlighting its hepatoprotective and antioxidative effects. IQGAP1shRNA plasmid also restored depleted antioxidants (GSH and SOD), emphasizing its potent antioxidative and free radical scavenging capabilities. Molecular insights into immune dysregulation revealed downregulation of IQGAP1, IQGAP3 interleukin-2 (IL-2), and interleukin-4 (IL-4) mRNA expression in the liver of immunosuppressed rats. IL-2 and IL-4 play pivotal roles in immune regulation, T-cell activation, and B-cell differentiation. Notably, treatment with IQGAP1shRNA plasmid exhibited a significant upregulation of IL-2 and IL-4 mRNA expression, thereby accentuating its immunomodulatory potential in orchestrating immune homeostasis. Additionally, immune dysregulation was associated with increased levels of TNF-α. However, treatment with IQGAP1shRNA plasmid effectively decreased the levels of TNF-α, further underscoring its role in modulating inflammatory responses and restoring immune balance in immunosuppressed rats. Additionally, pharmacokinetics, bioavailability, drug-likeness, and toxicity risk assessment prediction suggest its potential as a pharmacologically favourable agent with no serious adverse effects. In conclusion, this study confirms the therapeutic potential of the IQGAP1shRNA plasmid, showcasing its effectiveness against hepatotoxicity, oxidative stress, immunosuppression, and its notable anticancer activity.

Keywords: IQGAP1, shRNA, cancer, liver, rat

Procedia PDF Downloads 6
255 The Development of a Precision Irrigation System for Durian

Authors: Chatrabhuti Pipop, Visessri Supattra, Charinpanitkul Tawatchai

Abstract:

Durian is one of the top agricultural products exported by Thailand. There is the massive market potential for the durian industry. While the global demand for Thai durians, especially the demand from China, is very high, Thailand's durian supply is far from satisfying strong demand. Poor agricultural practices result in low yields and poor quality of fruit. Most irrigation systems currently used by the farmers are fixed schedule or fixed rates that ignore actual weather conditions and crop water requirements. In addition, the technologies emerging are too difficult and complex and prices are too high for the farmers to adopt and afford. Many farmers leave the durian trees to grow naturally. With improper irrigation and nutrient management system, durians are vulnerable to a variety of issues, including stunted growth, not flowering, diseases, and death. Technical development or research for durian is much needed to support the wellbeing of the farmers and the economic development of the country. However, there are a limited number of studies or development projects for durian because durian is a perennial crop requiring a long time to obtain the results to report. This study, therefore, aims to address the problem of durian production by developing an autonomous and precision irrigation system. The system is designed and equipped with an industrial programmable controller, a weather station, and a digital flow meter. Daily water requirements are computed based on weather data such as rainfall and evapotranspiration for daily irrigation with variable flow rates. A prediction model is also designed as a part of the system to enhance the irrigation schedule. Before the system was installed in the field, a simulation model was built and tested in a laboratory setting to ensure its accuracy. Water consumption was measured daily before and after the experiment for further analysis. With this system, the crop water requirement is precisely estimated and optimized based on the data from the weather station. Durian will be irrigated at the right amount and at the right time, offering the opportunity for higher yield and higher income to the farmers.

Keywords: Durian, precision irrigation, precision agriculture, smart farm

Procedia PDF Downloads 118
254 Hydrodynamic and Water Quality Modelling to Support Alternative Fuels Maritime Operations Incident Planning & Impact Assessments

Authors: Chow Jeng Hei, Pavel Tkalich, Low Kai Sheng Bryan

Abstract:

Due to the growing demand for sustainability in the maritime industry, there has been a significant increase in focus on alternative fuels such as biofuels, liquefied natural gas (LNG), hydrogen, methanol and ammonia to reduce the carbon footprint of vessels. Alternative fuels offer efficient transportability and significantly reduce carbon dioxide emissions, a critical factor in combating global warming. In an era where the world is determined to tackle climate change, the utilization of methanol is projected to witness a consistent rise in demand, even during downturns in the oil and gas industry. Since 2022, there has been an increase in methanol loading and discharging operations for industrial use in Singapore. These operations were conducted across various storage tank terminals at Jurong Island of varying capacities, which are also used to store alternative fuels for bunkering requirements. The key objective of this research is to support the green shipping industries in the transformation to new fuels such as methanol and ammonia, especially in evolving the capability to inform risk assessment and management of spills. In the unlikely event of accidental spills, a highly reliable forecasting system must be in place to provide mitigation measures and ahead planning. The outcomes of this research would lead to an enhanced metocean prediction capability and, together with advanced sensing, will continuously build up a robust digital twin of the bunkering operating environment. Outputs from the developments will contribute to management strategies for alternative marine fuel spills, including best practices, safety challenges and crisis management. The outputs can also benefit key port operators and the various bunkering, petrochemicals, shipping, protection and indemnity, and emergency response sectors. The forecasted datasets provide a forecast of the expected atmosphere and hydrodynamic conditions prior to bunkering exercises, enabling a better understanding of the metocean conditions ahead and allowing for more refined spill incident management planning

Keywords: clean fuels, hydrodynamics, coastal engineering, impact assessments

Procedia PDF Downloads 70
253 Partial Least Square Regression for High-Dimentional and High-Correlated Data

Authors: Mohammed Abdullah Alshahrani

Abstract:

The research focuses on investigating the use of partial least squares (PLS) methodology for addressing challenges associated with high-dimensional correlated data. Recent technological advancements have led to experiments producing data characterized by a large number of variables compared to observations, with substantial inter-variable correlations. Such data patterns are common in chemometrics, where near-infrared (NIR) spectrometer calibrations record chemical absorbance levels across hundreds of wavelengths, and in genomics, where thousands of genomic regions' copy number alterations (CNA) are recorded from cancer patients. PLS serves as a widely used method for analyzing high-dimensional data, functioning as a regression tool in chemometrics and a classification method in genomics. It handles data complexity by creating latent variables (components) from original variables. However, applying PLS can present challenges. The study investigates key areas to address these challenges, including unifying interpretations across three main PLS algorithms and exploring unusual negative shrinkage factors encountered during model fitting. The research presents an alternative approach to addressing the interpretation challenge of predictor weights associated with PLS. Sparse estimation of predictor weights is employed using a penalty function combining a lasso penalty for sparsity and a Cauchy distribution-based penalty to account for variable dependencies. The results demonstrate sparse and grouped weight estimates, aiding interpretation and prediction tasks in genomic data analysis. High-dimensional data scenarios, where predictors outnumber observations, are common in regression analysis applications. Ordinary least squares regression (OLS), the standard method, performs inadequately with high-dimensional and highly correlated data. Copy number alterations (CNA) in key genes have been linked to disease phenotypes, highlighting the importance of accurate classification of gene expression data in bioinformatics and biology using regularized methods like PLS for regression and classification.

Keywords: partial least square regression, genetics data, negative filter factors, high dimensional data, high correlated data

Procedia PDF Downloads 49
252 Critical Evaluation of the Transformative Potential of Artificial Intelligence in Law: A Focus on the Judicial System

Authors: Abisha Isaac Mohanlal

Abstract:

Amidst all suspicions and cynicism raised by the legal fraternity, Artificial Intelligence has found its way into the legal system and has revolutionized the conventional forms of legal services delivery. Be it legal argumentation and research or resolution of complex legal disputes; artificial intelligence has crept into all legs of modern day legal services. Its impact has been largely felt by way of big data, legal expert systems, prediction tools, e-lawyering, automated mediation, etc., and lawyers around the world are forced to upgrade themselves and their firms to stay in line with the growth of technology in law. Researchers predict that the future of legal services would belong to artificial intelligence and that the age of human lawyers will soon rust. But as far as the Judiciary is concerned, even in the developed countries, the system has not fully drifted away from the orthodoxy of preferring Natural Intelligence over Artificial Intelligence. Since Judicial decision-making involves a lot of unstructured and rather unprecedented situations which have no single correct answer, and looming questions of legal interpretation arise in most of the cases, discretion and Emotional Intelligence play an unavoidable role. Added to that, there are several ethical, moral and policy issues to be confronted before permitting the intrusion of Artificial Intelligence into the judicial system. As of today, the human judge is the unrivalled master of most of the judicial systems around the globe. Yet, scientists of Artificial Intelligence claim that robot judges can replace human judges irrespective of how daunting the complexity of issues is and how sophisticated the cognitive competence required is. They go on to contend that even if the system is too rigid to allow robot judges to substitute human judges in the recent future, Artificial Intelligence may still aid in other judicial tasks such as drafting judicial documents, intelligent document assembly, case retrieval, etc., and also promote overall flexibility, efficiency, and accuracy in the disposal of cases. By deconstructing the major challenges that Artificial Intelligence has to overcome in order to successfully invade the human- dominated judicial sphere, and critically evaluating the potential differences it would make in the system of justice delivery, the author tries to argue that penetration of Artificial Intelligence into the Judiciary could surely be enhancive and reparative, if not fully transformative.

Keywords: artificial intelligence, judicial decision making, judicial systems, legal services delivery

Procedia PDF Downloads 224
251 SARS-CoV-2: Prediction of Critical Charged Amino Acid Mutations

Authors: Atlal El-Assaad

Abstract:

Viruses change with time through mutations and result in new variants that may persist or disappear. A Mutation refers to an actual change in the virus genetic sequence, and a variant is a viral genome that may contain one or more mutations. Critical mutations may cause the virus to be more transmissible, with high disease severity, and more vulnerable to diagnostics, therapeutics, and vaccines. Thus, variants carrying such mutations may increase the risk to human health and are considered variants of concern (VOC). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - the contagious in humans, positive-sense single-stranded RNA virus that caused coronavirus disease 2019 (COVID-19) - has been studied thoroughly, and several variants were revealed across the world with their corresponding mutations. SARS-CoV-2 has four structural proteins, known as the S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins, but prior study and vaccines development focused on genetic mutations in the S protein due to its vital role in allowing the virus to attach and fuse with the membrane of a host cell. Specifically, subunit S1 catalyzes attachment, whereas subunit S2 mediates fusion. In this perspective, we studied all charged amino acid mutations of the SARS-CoV-2 viral spike protein S1 when bound to Antibody CC12.1 in a crystal structure and assessed the effect of different mutations. We generated all missense mutants of SARS-CoV-2 protein amino acids (AAs) within the SARS-CoV-2:CC12.1 complex model. To generate the family of mutants in each complex, we mutated every charged amino acid with all other charged amino acids (Lysine (K), Arginine (R), Glutamic Acid (E), and Aspartic Acid (D)) and studied the new binding of the complex after each mutation. We applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations to determine the effect of each mutation on binding. After analyzing our data, we identified charged amino acids keys for binding. Furthermore, we validated those findings against published experimental genetic data. Our results are the first to propose in silico potential life-threatening mutations of SARS-CoV-2 beyond the present mutations found in the five common variants found worldwide.

Keywords: SARS-CoV-2, variant, ionic amino acid, protein-protein interactions, missense mutation, AESOP

Procedia PDF Downloads 113
250 Durability Analysis of a Knuckle Arm Using VPG System

Authors: Geun-Yeon Kim, S. P. Praveen Kumar, Kwon-Hee Lee

Abstract:

A steering knuckle arm is the component that connects the steering system and suspension system. The structural performances such as stiffness, strength, and durability are considered in its design process. The former study suggested the lightweight design of a knuckle arm considering the structural performances and using the metamodel-based optimization. The six shape design variables were defined, and the optimum design was calculated by applying the kriging interpolation method. The finite element method was utilized to predict the structural responses. The suggested knuckle was made of the aluminum Al6082, and its weight was reduced about 60% in comparison with the base steel knuckle, satisfying the design requirements. Then, we investigated its manufacturability by performing foraging analysis. The forging was done as hot process, and the product was made through two-step forging. As a final step of its developing process, the durability is investigated by using the flexible dynamic analysis software, LS-DYNA and the pre and post processor, eta/VPG. Generally, a car make does not provide all the information with the part manufacturer. Thus, the part manufacturer has a limit in predicting the durability performance with the unit of full car. The eta/VPG has the libraries of suspension, tire, and road, which are commonly used parts. That makes a full car modeling. First, the full car is modeled by referencing the following information; Overall Length: 3,595mm, Overall Width: 1,595mm, CVW (Curve Vehicle Weight): 910kg, Front Suspension: MacPherson Strut, Rear Suspension: Torsion Beam Axle, Tire: 235/65R17. Second, the road is selected as the cobblestone. The road condition of the cobblestone is almost 10 times more severe than that of usual paved road. Third, the dynamic finite element analysis using the LS-DYNA is performed to predict the durability performance of the suggested knuckle arm. The life of the suggested knuckle arm is calculated as 350,000km, which satisfies the design requirement set up by the part manufacturer. In this study, the overall design process of a knuckle arm is suggested, and it can be seen that the developed knuckle arm satisfies the design requirement of the durability with the unit of full car. The VPG analysis is successfully performed even though it does not an exact prediction since the full car model is very rough one. Thus, this approach can be used effectively when the detail to full car is not given.

Keywords: knuckle arm, structural optimization, Metamodel, forging, durability, VPG (Virtual Proving Ground)

Procedia PDF Downloads 419
249 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor

Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst

Abstract:

Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.

Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics

Procedia PDF Downloads 210
248 Performance of High Efficiency Video Codec over Wireless Channels

Authors: Mohd Ayyub Khan, Nadeem Akhtar

Abstract:

Due to recent advances in wireless communication technologies and hand-held devices, there is a huge demand for video-based applications such as video surveillance, video conferencing, remote surgery, Digital Video Broadcast (DVB), IPTV, online learning courses, YouTube, WhatsApp, Instagram, Facebook, Interactive Video Games. However, the raw videos posses very high bandwidth which makes the compression a must before its transmission over the wireless channels. The High Efficiency Video Codec (HEVC) (also called H.265) is latest state-of-the-art video coding standard developed by the Joint effort of ITU-T and ISO/IEC teams. HEVC is targeted for high resolution videos such as 4K or 8K resolutions that can fulfil the recent demands for video services. The compression ratio achieved by the HEVC is twice as compared to its predecessor H.264/AVC for same quality level. The compression efficiency is generally increased by removing more correlation between the frames/pixels using complex techniques such as extensive intra and inter prediction techniques. As more correlation is removed, the chances of interdependency among coded bits increases. Thus, bit errors may have large effect on the reconstructed video. Sometimes even single bit error can lead to catastrophic failure of the reconstructed video. In this paper, we study the performance of HEVC bitstream over additive white Gaussian noise (AWGN) channel. Moreover, HEVC over Quadrature Amplitude Modulation (QAM) combined with forward error correction (FEC) schemes are also explored over the noisy channel. The video will be encoded using HEVC, and the coded bitstream is channel coded to provide some redundancies. The channel coded bitstream is then modulated using QAM and transmitted over AWGN channel. At the receiver, the symbols are demodulated and channel decoded to obtain the video bitstream. The bitstream is then used to reconstruct the video using HEVC decoder. It is observed that as the signal to noise ratio of channel is decreased the quality of the reconstructed video decreases drastically. Using proper FEC codes, the quality of the video can be restored up to certain extent. Thus, the performance analysis of HEVC presented in this paper may assist in designing the optimized code rate of FEC such that the quality of the reconstructed video is maximized over wireless channels.

Keywords: AWGN, forward error correction, HEVC, video coding, QAM

Procedia PDF Downloads 149
247 Mathematical Study of CO₂ Dispersion in Carbonated Water Injection Enhanced Oil Recovery Using Non-Equilibrium 2D Simulator

Authors: Ahmed Abdulrahman, Jalal Foroozesh

Abstract:

CO₂ based enhanced oil recovery (EOR) techniques have gained massive attention from major oil firms since they resolve the industry's two main concerns of CO₂ contribution to the greenhouse effect and the declined oil production. Carbonated water injection (CWI) is a promising EOR technique that promotes safe and economic CO₂ storage; moreover, it mitigates the pitfalls of CO₂ injection, which include low sweep efficiency, early CO₂ breakthrough, and the risk of CO₂ leakage in fractured formations. One of the main challenges that hinder the wide adoption of this EOR technique is the complexity of accurate modeling of the kinetics of CO₂ mass transfer. The mechanisms of CO₂ mass transfer during CWI include the slow and gradual cross-phase CO₂ diffusion from carbonated water (CW) to the oil phase and the CO₂ dispersion (within phase diffusion and mechanical mixing), which affects the oil physical properties and the spatial spreading of CO₂ inside the reservoir. A 2D non-equilibrium compositional simulator has been developed using a fully implicit finite difference approximation. The material balance term (k) was added to the governing equation to account for the slow cross-phase diffusion of CO₂ from CW to the oil within the gird cell. Also, longitudinal and transverse dispersion coefficients have been added to account for CO₂ spatial distribution inside the oil phase. The CO₂-oil diffusion coefficient was calculated using the Sigmund correlation, while a scale-dependent dispersivity was used to calculate CO₂ mechanical mixing. It was found that the CO₂-oil diffusion mechanism has a minor impact on oil recovery, but it tends to increase the amount of CO₂ stored inside the formation and slightly alters the residual oil properties. On the other hand, the mechanical mixing mechanism has a huge impact on CO₂ spatial spreading (accurate prediction of CO₂ production) and the noticeable change in oil physical properties tends to increase the recovery factor. A sensitivity analysis has been done to investigate the effect of formation heterogeneity (porosity, permeability) and injection rate, it was found that the formation heterogeneity tends to increase CO₂ dispersion coefficients, and a low injection rate should be implemented during CWI.

Keywords: CO₂ mass transfer, carbonated water injection, CO₂ dispersion, CO₂ diffusion, cross phase CO₂ diffusion, within phase CO2 diffusion, CO₂ mechanical mixing, non-equilibrium simulation

Procedia PDF Downloads 176
246 Case-Based Reasoning Application to Predict Geological Features at Site C Dam Construction Project

Authors: Shahnam Behnam Malekzadeh, Ian Kerr, Tyson Kaempffer, Teague Harper, Andrew Watson

Abstract:

The Site C Hydroelectric dam is currently being constructed in north-eastern British Columbia on sub-horizontal sedimentary strata that dip approximately 15 meters from one bank of the Peace River to the other. More than 615 pressure sensors (Vibrating Wire Piezometers) have been installed on bedding planes (BPs) since construction began, with over 80 more planned before project completion. These pressure measurements are essential to monitor the stability of the rock foundation during and after construction and for dam safety purposes. BPs are identified by their clay gouge infilling, which varies in thickness from less than 1 to 20 mm and can be challenging to identify as the core drilling process often disturbs or washes away the gouge material. Without the use of depth predictions from nearby boreholes, stratigraphic markers, and downhole geophysical data, it is difficult to confidently identify BP targets for the sensors. In this paper, a Case-Based Reasoning (CBR) method was used to develop an empirical model called the Bedding Plane Elevation Prediction (BPEP) to help geologists and geotechnical engineers to predict geological features and bedding planes at new locations in a fast and accurate manner. To develop CBR, a database was developed based on 64 pressure sensors already installed on key bedding planes BP25, BP28, and BP31 on the Right Bank, including bedding plane elevations and coordinates. Thirteen (20%) of the most recent cases were selected to validate and evaluate the accuracy of the developed model, while the similarity was defined as the distance between previous cases and recent cases to predict the depth of significant BPs. The average difference between actual BP elevations and predicted elevations for above BPs was ±55cm, while the actual results showed that 69% of predicted elevations were within ±79 cm of actual BP elevations while 100% of predicted elevations for new cases were within ±99cm range. Eventually, the actual results will be used to develop the database and improve BPEP to perform as a learning machine to predict more accurate BP elevations for future sensor installations.

Keywords: case-based reasoning, geological feature, geology, piezometer, pressure sensor, core logging, dam construction

Procedia PDF Downloads 80
245 Identification and Characterization of in Vivo, in Vitro and Reactive Metabolites of Zorifertinib Using Liquid Chromatography Lon Trap Mass Spectrometry

Authors: Adnan A. Kadi, Nasser S. Al-Shakliah, Haitham Al-Rabiah

Abstract:

Zorifertinib is a novel, potent, oral, a small molecule used to treat non-small cell lung cancer (NSCLC). zorifertinib is an Epidermal Growth Factor Receptor (EGFR) inhibitor and has good blood–brain barrier permeability for (NSCLC) patients with EGFR mutations. zorifertinibis currently at phase II/III clinical trials. The current research reports the characterization and identification of in vitro, in vivo and reactive intermediates of zorifertinib. Prediction of susceptible sites of metabolism and reactivity pathways (cyanide and GSH) of zorifertinib were performed by the Xenosite web predictor tool. In-vitro metabolites of zorifertinib were performed by incubation with rat liver microsomes (RLMs) and isolated perfused rat liver hepatocytes. Extraction of zorifertinib and it's in vitro metabolites from the incubation mixtures were done by protein precipitation. In vivo metabolism was done by giving a single oral dose of zorifertinib(10 mg/Kg) to Sprague Dawely rats in metabolic cages by using oral gavage. Urine was gathered and filtered at specific time intervals (0, 6, 12, 18, 24, 48, 72,96and 120 hr) from zorifertinib dosing. A similar volume of ACN was added to each collected urine sample. Both layers (organic and aqueous) were injected into liquid chromatography ion trap mass spectrometry(LC-IT-MS) to detect vivozorifertinib metabolites. N-methyl piperizine ring and quinazoline group of zorifertinib undergoe metabolism forming iminium and electro deficient conjugated system respectively, which are very reactive toward nucleophilic macromolecules. Incubation of zorifertinib with RLMs in the presence of 1.0 mM KCN and 1.0 Mm glutathione were made to check reactive metabolites as it is often responsible for toxicities associated with this drug. For in vitro metabolites there were nine in vitro phase I metabolites, four in vitro phase II metabolites, eleven reactive metabolites(three cyano adducts, five GSH conjugates metabolites, and three methoxy metabolites of zorifertinib were detected by LC-IT-MS. For in vivo metabolites, there were eight in vivo phase I, tenin vivo phase II metabolitesofzorifertinib were detected by LC-IT-MS. In vitro and in vivo phase I metabolic pathways wereN- demthylation, O-demethylation, hydroxylation, reduction, defluorination, and dechlorination. In vivo phase II metabolic reaction was direct conjugation of zorifertinib with glucuronic acid and sulphate.

Keywords: in vivo metabolites, in vitro metabolites, cyano adducts, GSH conjugate

Procedia PDF Downloads 198
244 Early Age Behavior of Wind Turbine Gravity Foundations

Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet

Abstract:

The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.

Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines

Procedia PDF Downloads 175
243 Exploration of Classic Models of Precipitation in Iran: A Case Study of Sistan and Baluchestan Province

Authors: Mohammad Borhani, Ahmad Jamshidzaei, Mehdi Koohsari

Abstract:

The study of climate has captivated human interest throughout history. In response to this fascination, individuals historically organized their daily activities in alignment with prevailing climatic conditions and seasonal variations. Understanding the elements and specific climatic parameters of each region, such as precipitation, which directly impacts human life, is essential because, in recent years, there has been a significant increase in heavy rainfall in various parts of the world attributed to the effects of climate change. Climate prediction models suggest a future scenario characterized by an increase in severe precipitation events and related floods on a global scale. This is a result of human-induced greenhouse gas emissions causing changes in the natural precipitation patterns. The Intergovernmental Panel on Climate Change reported global warming in 2001. The average global temperature has shown an increasing trend since 1861. In the 20th century, this increase has been between (0/2 ± 0/6) °C. The present study focused on examining the trend of monthly, seasonal, and annual precipitation in Sistan and Baluchestan provinces. The study employed data obtained from 13 precipitation measurement stations managed by the Iran Water Resources Management Company, encompassing daily precipitation records spanning the period from 1997 to 2016. The results indicated that the total monthly precipitation at the studied stations in Sistan and Baluchestan province follows a sinusoidal trend. The highest intense precipitation was observed in January, February, and March, while the lowest occurred in September, October, and then November. The investigation of the trend of seasonal precipitation in this province showed that precipitation follows an upward trend in the autumn season, reaching its peak in winter, and then shows a decreasing trend in spring and summer. Also, the examination of average precipitation indicated that the highest yearly precipitation occurred in 1997 and then in 2004, while the lowest annual precipitation took place between 1999 and 2001. The analysis of the annual precipitation trend demonstrates a decrease in precipitation from 1997 to 2016 in Sistan and Baluchestan province.

Keywords: climate change, extreme precipitation, greenhouse gas, trend analysis

Procedia PDF Downloads 67
242 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth in Patients with Lymph Nodes Metastases

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This paper is devoted to mathematical modelling of the progression and stages of breast cancer. We propose Consolidated mathematical growth model of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases (CoM-III) as a new research tool. We are interested in: 1) modelling the whole natural history of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases; 2) developing adequate and precise CoM-III which reflects relations between primary tumor and secondary distant metastases; 3) analyzing the CoM-III scope of application; 4) implementing the model as a software tool. Firstly, the CoM-III includes exponential tumor growth model as a system of determinate nonlinear and linear equations. Secondly, mathematical model corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for secondary distant metastases growth in patients with lymph nodes metastases; 3) ‘visible period’ for secondary distant metastases growth in patients with lymph nodes metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-III model and predictive software: a) detect different growth periods of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases; b) make forecast of the period of the distant metastases appearance in patients with lymph nodes metastases; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoM-III: the number of doublings for ‘non-visible’ and ‘visible’ growth period of secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of secondary distant metastases. The CoM-III enables, for the first time, to predict the whole natural history of primary tumor and secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-III describes correctly primary tumor and secondary distant metastases growth of IA, IIA, IIB, IIIB (T1-4N1-3M0) stages in patients with lymph nodes metastases (N1-3); b) facilitates the understanding of the appearance period and inception of secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, primary tumor, secondary metastases, survival

Procedia PDF Downloads 302
241 Mobility Management for Pedestrian Accident Predictability and Mitigation Strategies Using Multiple

Authors: Oscar Norman Nekesa, Yoshitaka Kajita

Abstract:

Tom Mboya Street is a vital urban corridor within the spectrum of Nairobi city, it experiences high volumes of pedestrian and vehicular traffic. Despite past intervention measures to lessen this catastrophe, rates have remained high. This highlights significant safety concerns that need urgent attention. This study investigates the correlation and pedestrian accident predictability with significant independent variables using multiple linear regression to model to develop effective mobility management strategies for accident mitigation. The methodology involves collecting and analyzing data on pedestrian accidents and various related independent variables. Data sources include the National Transport and Safety Authority (NTSA), Kenya National Bureau of Statistics, and Nairobi City County records, covering five years. This study aims to investigate that traffic volumes (pedestrian and vehicle), Vehicular speed, human factors, illegal parking, policy issues, urban-land use, built environment, traffic signals conditions, inadequate lighting, and insufficient traffic control measures significantly have predictability with the rate of pedestrian accidents. Explanatory variables related to road design and geometry are significant in predictor models for the Tom Mboya Road link but less influential in junction along the 5 km stretch road models. The most impactful variable across all models was vehicular traffic flow. The study recommends infrastructural improvements, enhanced enforcement, and public awareness campaigns to reduce accidents and improve urban mobility. These insights can inform policy-making and urban planning to enhance pedestrian safety along the dense packed Tom Mboya Street and similar urban settings. The findings will inform evidence-based interventions to enhance pedestrian safety and improve urban mobility.

Keywords: multiple linear regression, urban mobility, traffic management, Nairobi, Tom Mboya street, infrastructure conditions., pedestrian safety, correlation and prediction

Procedia PDF Downloads 26
240 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 389
239 Application of Shore Protective Structures in Optimum Land Using of Defense Sites Located in Coastal Cities

Authors: Mir Ahmad Lashteh Neshaei, Hamed Afsoos Biria, Ata Ghabraei, Mir Abdolhamid Mehrdad

Abstract:

Awareness of effective land using issues in coastal area including protection of natural ecosystems and coastal environment due to the increasing of human life along the coast is of great importance. There are numerous valuable structures and heritages which are located in defence sites and waterfront area. Marine structures such as groins, sea walls and detached breakwaters are constructed in coast to improve the coast stability against bed erosion due to changing wave and climate pattern. Marine mechanisms and interaction with the shore protection structures need to be intensively studied. Groins are one of the most prominent structures that are used in shore protection to create a safe environment for coastal area by maintaining the land against progressive coastal erosion. The main structural function of a groin is to control the long shore current and littoral sediment transport. This structure can be submerged and provide the necessary beach protection without negative environmental impact. However, for submerged structures adopted for beach protection, the shoreline response to these structures is not well understood at present. Nowadays, modelling and computer simulation are used to assess beach morphology in the vicinity of marine structures to reduce their environmental impact. The objective of this study is to predict the beach morphology in the vicinity of submerged groins and comparison with non-submerged groins with focus on a part of the coast located in Dahane sar Sefidrood, Guilan province, Iran where serious coast erosion has occurred recently. The simulations were obtained using a one-line model which can be used as a first approximation of shoreline prediction in the vicinity of groins. The results of the proposed model are compared with field measurements to determine the shape of the coast. Finally, the results of the present study show that using submerged groins can have a good efficiency to control the beach erosion without causing severe environmental impact to the coast. The important outcome from this study can be employed in optimum designing of defence sites in the coastal cities to improve their efficiency in terms of re-using the heritage lands.

Keywords: submerged structures, groin, shore protective structures, coastal cities

Procedia PDF Downloads 316
238 The Effect of Air Filter Performance on Gas Turbine Operation

Authors: Iyad Al-Attar

Abstract:

Air filters are widely used in gas turbines applications to ensure that the large mass (500kg/s) of clean air reach the compressor. The continuous demand of high availability and reliability has highlighted the critical role of air filter performance in providing enhanced air quality. In addition to being challenged with different environments [tropical, coastal, hot], gas turbines confront wide array of atmospheric contaminants with various concentrations and particle size distributions that would lead to performance degradation and components deterioration. Therefore, the role of air filters is of a paramount importance since fouled compressor can reduce power output and availability of the gas turbine to over 70 % throughout operation. Consequently, accurate filter performance prediction is critical tool in their selection considering their role in minimizing the economic impact of outages. In fact, actual performance of Efficient Particulate Air [EPA] filters used in gas turbine tend to deviate from the performance predicted by laboratory results. This experimental work investigates the initial pressure drop and fractional efficiency curves of full-scale pleated V-shaped EPA filters used globally in gas turbine. The investigation involved examining the effect of different operational conditions such as flow rates [500 to 5000 m3/h] and design parameters such as pleat count [28, 30, 32 and 34 pleats per 100mm]. This experimental work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase of flow rates and pleat density. The reasons, which led to surface area losses of filtration media, are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. This paper also demonstrates that the effect of increasing the flow rate has more pronounced effect on filter performance compared to pleating density. This experimental work suggests that a valid comparison of the pleat densities should be based on the effective surface area, namely, the area that participates in the filtration process, and not the total surface area the pleat density provides. Throughout this study, optimal pleat count that satisfies both initial pressure drop and efficiency requirements may not have necessarily existed.

Keywords: filter efficiency, EPA Filters, pressure drop, permeability

Procedia PDF Downloads 239
237 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 70
236 An Overview of the Wind and Wave Climate in the Romanian Nearshore

Authors: Liliana Rusu

Abstract:

The goal of the proposed work is to provide a more comprehensive picture of the wind and wave climate in the Romanian nearshore, using the results provided by numerical models. The Romanian coastal environment is located in the western side of the Black Sea, the more energetic part of the sea, an area with heavy maritime traffic and various offshore operations. Information about the wind and wave climate in the Romanian waters is mainly based on observations at Gloria drilling platform (70 km from the coast). As regards the waves, the measurements of the wave characteristics are not so accurate due to the method used, being also available for a limited period. For this reason, the wave simulations that cover large temporal and spatial scales represent an option to describe better the wave climate. To assess the wind climate in the target area spanning 1992–2016, data provided by the NCEP-CFSR (U.S. National Centers for Environmental Prediction - Climate Forecast System Reanalysis) and consisting in wind fields at 10m above the sea level are used. The high spatial and temporal resolution of the wind fields is good enough to represent the wind variability over the area. For the same 25-year period, as considered for the wind climate, this study characterizes the wave climate from a wave hindcast data set that uses NCEP-CFSR winds as input for a model system SWAN (Simulating WAves Nearshore) based. The wave simulation results with a two-level modelling scale have been validated against both in situ measurements and remotely sensed data. The second level of the system, with a higher resolution in the geographical space (0.02°×0.02°), is focused on the Romanian coastal environment. The main wave parameters simulated at this level are used to analyse the wave climate. The spatial distributions of the wind speed, wind direction and the mean significant wave height have been computed as the average of the total data. As resulted from the amount of data, the target area presents a generally moderate wave climate that is affected by the storm events developed in the Black Sea basin. Both wind and wave climate presents high seasonal variability. All the results are computed as maps that help to find the more dangerous areas. A local analysis has been also employed in some key locations corresponding to highly sensitive areas, as for example the main Romanian harbors.

Keywords: numerical simulations, Romanian nearshore, waves, wind

Procedia PDF Downloads 344
235 In Silico Analysis of Salivary miRNAs to Identify the Diagnostic Biomarkers for Oral Cancer

Authors: Andleeb Zahra, Itrat Rubab, Sumaira Malik, Amina Khan, Muhammad Jawad Khan, M. Qaiser Fatmi

Abstract:

Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. Recent studies have highlighted the role of miRNA in disease pathology, indicating its potential use in an early diagnostic tool. miRNAs are small, double stranded, non-coding RNAs that regulate gene expression by deregulating mRNAs. miRNAs play important roles in modifying various cellular processes such as cell growth, differentiation, apoptosis, and immune response. Dis-regulated expression of miRNAs is known to affect the cell growth, and this may function as tumor suppressors or oncogenes in various cancers. Objectives: The main objectives of this study were to characterize the extracellular miRNAs involved in oral cancer (OC) to assist early detection of cancer as well as to propose a list of genes that can potentially be used as biomarkers of OC. We used gene expression data by microarrays already available in literature. Materials and Methods: In the first step, a total of 318 miRNAs involved in oral carcinoma were shortlisted followed by the prediction of their target genes. Simultaneously, the differentially expressed genes (DEGs) of oral carcinoma from all experiments were identified. The common genes between lists of DEGs of OC based on experimentally proven data and target genes of each miRNA were identified. These common genes are the targets of specific miRNA, which is involved in OC. Finally, a list of genes was generated which may be used as biomarker of OC. Results and Conclusion: In results, we included some of pathways in cancer to show the change in gene expression under the control of specific miRNA. Ingenuity pathway analysis (IPA) provided a list of major biomarkers like CDH2, CDK7 and functional enrichment analysis identified the role of miRNA in major pathways like cell adhesion molecules pathway affected by cancer. We observed that at least 25 genes are regulated by maximum number of miRNAs, and thereby, they can be used as biomarkers of OC. To better understand the role of miRNA with respect to their target genes further experiments are required, and our study provides a platform to better understand the miRNA-OC relationship at genomics level.

Keywords: biomarkers, gene expression, miRNA, oral carcinoma

Procedia PDF Downloads 375
234 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms

Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita

Abstract:

Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.

Keywords: air quality, internet of things, artificial intelligence, smart home

Procedia PDF Downloads 93
233 Discovering Event Outliers for Drug as Commercial Products

Authors: Arunas Burinskas, Aurelija Burinskiene

Abstract:

On average, ten percent of drugs - commercial products are not available in pharmacies due to shortage. The shortage event disbalance sales and requires a recovery period, which is too long. Therefore, one of the critical issues that pharmacies do not record potential sales transactions during shortage and recovery periods. The authors suggest estimating outliers during shortage and recovery periods. To shorten the recovery period, the authors suggest using average sales per sales day prediction, which helps to protect the data from being downwards or upwards. Authors use the outlier’s visualization method across different drugs and apply the Grubbs test for significance evaluation. The researched sample is 100 drugs in a one-month time frame. The authors detected that high demand variability products had outliers. Among analyzed drugs, which are commercial products i) High demand variability drugs have a one-week shortage period, and the probability of facing a shortage is equal to 69.23%. ii) Mid demand variability drugs have three days shortage period, and the likelihood to fall into deficit is equal to 34.62%. To avoid shortage events and minimize the recovery period, real data must be set up. Even though there are some outlier detection methods for drug data cleaning, they have not been used for the minimization of recovery period once a shortage has occurred. The authors use Grubbs’ test real-life data cleaning method for outliers’ adjustment. In the paper, the outliers’ adjustment method is applied with a confidence level of 99%. In practice, the Grubbs’ test was used to detect outliers for cancer drugs and reported positive results. The application of the Grubbs’ test is used to detect outliers which exceed boundaries of normal distribution. The result is a probability that indicates the core data of actual sales. The application of the outliers’ test method helps to represent the difference of the mean of the sample and the most extreme data considering the standard deviation. The test detects one outlier at a time with different probabilities from a data set with an assumed normal distribution. Based on approximation data, the authors constructed a framework for scaling potential sales and estimating outliers with Grubbs’ test method. The suggested framework is applicable during the shortage event and recovery periods. The proposed framework has practical value and could be used for the minimization of the recovery period required after the shortage of event occurrence.

Keywords: drugs, Grubbs' test, outlier, shortage event

Procedia PDF Downloads 134