Search results for: pottery making
3129 M-Machine Assembly Scheduling Problem to Minimize Total Tardiness with Non-Zero Setup Times
Authors: Harun Aydilek, Asiye Aydilek, Ali Allahverdi
Abstract:
Our objective is to minimize the total tardiness in an m-machine two-stage assembly flowshop scheduling problem. The objective is an important performance measure because of the fact that the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. In the literature, the problem is considered with zero setup times which may not be realistic and appropriate for some scheduling environments. Considering separate setup times from processing times increases machine utilization by decreasing the idle time and reduces total tardiness. We propose two new algorithms and adapt four existing algorithms in the literature which are different versions of simulated annealing and genetic algorithms. Moreover, a dominance relation is developed based on the mathematical formulation of the problem. The developed dominance relation is incorporated in our proposed algorithms. Computational experiments are conducted to investigate the performance of the newly proposed algorithms. We find that one of the proposed algorithms performs significantly better than the others, i.e., the error of the best algorithm is less than those of the other algorithms by minimum 50%. The newly proposed algorithm is also efficient for the case of zero setup times and performs better than the best existing algorithm in the literature.Keywords: algorithm, assembly flowshop, scheduling, simulation, total tardiness
Procedia PDF Downloads 3353128 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models
Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi
Abstract:
This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control
Procedia PDF Downloads 643127 Ultra-Wideband (45-50 GHz) mm-Wave Substrate Integrated Waveguide Cavity Slots Antenna for Future Satellite Communications
Authors: Najib Al-Fadhali, Huda Majid
Abstract:
In this article, a substrate integrated waveguide cavity slot antenna was designed using a computer simulation technology software tool to address the specific design challenges for millimeter-wave communications posed by future satellite communications. Due to the symmetrical structure, a high-order mode is generated in SIW, which yields high gain and high efficiency with a compact feed structure. The antenna has dimensions of 20 mm x 20 mm x 1.34 mm. The proposed antenna bandwidth ranges from 45 GHz to 50 GHz, covering a Q-band application such as satellite communication. Antenna efficiency is above 80% over the operational frequency range. The gain of the antenna is above 9 dB with a peak value of 9.4 dB at 47.5 GHz. The proposed antenna is suitable for various millimeter-wave applications such as sensing, body imaging, indoor scenarios, new generations of wireless networks, and future satellite communications. The simulated results show that the SIW antenna resonates throughout the bands of 45 to 50 GHz, making this new antenna cover all applications within this range. The reflection coefficients are below 10 dB in most ranges from 45 to 50 GHz. The compactness, integrity, reliability, and performance at various operating frequencies make the proposed antenna a good candidate for future satellite communications.Keywords: ultra-wideband, Q-band, SIW, mm-wave, satellite communications
Procedia PDF Downloads 903126 Entrepreneurial Practice and Corruption in Tourism Sector: A Study of Entrepreneurial Orientation and Organizational Corruption in Nepali Star Hotels
Authors: Prabin Raj Gautam
Abstract:
Entrepreneurship in tourism sectors, particularly hotel entrepreneurship has contributed to Nepalese Gross Domestic Production (GDP). The tourist standard and star hotels in developing countries have not only been generating revenues but also providing international hospitality to the guest in the local areas. For doing so, these hotel enterprises must need to implement different business strategies to enhance and maintain their international business benchmark. The Entrepreneurial Orientation (EO) is core for making business strategies. Meanwhile, the corruption is labeled as negative factor for economic development. This paper presents the relationship between EO of Nepalese star hotels and organizational corruption. The study employed questionnaire survey as data collection tool under the quantitative methodology. Five hypotheses are developed and tested. After gathering the data form 216 questionnaire distributed to CEOs/Managers of the sample hotels, the findings show that out of five dimensions of EO, only autonomy, pro-activeness, and innovativeness are not significant to organizational corruption; however, risk-taking and competitive aggressiveness are found significant contributor. The descriptive statistics and structural equation modeling are employed to describe the data and fit the model.Keywords: entrepreneurship, entrepreneurial orientation, organizational corruption, dimensions
Procedia PDF Downloads 3203125 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases
Authors: Suglo Tohari Luri
Abstract:
Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.Keywords: data, engine, intelligence, customer, neo4j, database
Procedia PDF Downloads 1963124 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome
Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis
Abstract:
Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.Keywords: protein-interactions, machine-learning, metagenomics, microbiome
Procedia PDF Downloads 3783123 Gendered Effects on Productivity Gap Due to Information Asymmetry in India
Authors: Shruti Sengupta
Abstract:
According to the nationally representative data, about 73% of India's rural workforce is engaged in agriculture. While women make significant contributions to total agriculture production, they contribute to about one-third in India. In terms of gender composition, about 80% of the female and 69% of the male workforce is engaged in agriculture in rural India. Still, it is common to find gender differences in plot management within the household. In the last two and half years, India's agri-food system has undergone several changes due to this pandemic, both the demand and supply side, making agriculture more information and knowledge-intensive. Therefore, this paper investigates, using a nationally representative sample, how information asymmetry affects the net returns per hectare of land between female and male farm managers. Empirical results show that information intensity has a significant positive effect on net farm returns per hectare. Results suggest that if females have the same access to technical information as their male counterparts, their farm income can go up by .96 pp compared to male-headed farms. Results also indicate that literate females have higher farm incomes than non-literate females. The study contributes to the literature by employing gender differentials in farm income due to the information gap.Keywords: agriculture, gender, information asymmetry, farm income, social bias
Procedia PDF Downloads 1093122 Blocking of Random Chat Apps at Home Routers for Juvenile Protection in South Korea
Authors: Min Jin Kwon, Seung Won Kim, Eui Yeon Kim, Haeyoung Lee
Abstract:
Numerous anonymous chat apps that help people to connect with random strangers have been released in South Korea. However, they become a serious problem for young people since young people often use them for channels of prostitution or sexual violence. Although ISPs in South Korea are responsible for making inappropriate content inaccessible on their networks, they do not block traffic of random chat apps since 1) the use of random chat apps is entirely legal. 2) it is reported that they use HTTP proxy blocking so that non-HTTP traffic cannot be blocked. In this paper, we propose a service model that can block random chat apps at home routers. A service provider manages a blacklist that contains blocked apps’ information. Home routers that subscribe the service filter the traffic of the apps out using deep packet inspection. We have implemented a prototype of the proposed model, including a centralized server providing the blacklist, a Raspberry Pi-based home router that can filter traffic of the apps out, and an Android app used by the router’s administrator to locally customize the blacklist.Keywords: deep packet inspection, internet filtering, juvenile protection, technical blocking
Procedia PDF Downloads 3513121 Impacts of School-Wide Positive Behavioral Interventions and Supports on Student Academics, Behavior and Mental Health
Authors: Catherine Bradshaw
Abstract:
Educators often report difficulty managing behavior problems and other mental health concerns that students display at school. These concerns also interfere with the learning process and can create distraction for teachers and other students. As such, schools play an important role in both preventing and intervening with students who experience these types of challenges. A number of models have been proposed to serve as a framework for delivering prevention and early intervention services in schools. One such model is called Positive Behavioral Interventions and Supports (PBIS), which has been scaled-up to over 26,000 schools in the U.S. and many other countries worldwide. PBIS aims to improve a range of student outcomes through early detection of and intervention related to behavioral and mental health symptoms. PBIS blends and applies social learning, behavioral, and organizational theories to prevent disruptive behavior and enhance the school’s organizational health. PBIS focuses on creating and sustaining tier 1 (universal), tier 2 (selective), and tier 3 (individual) systems of support. Most schools using PBIS have focused on the core elements of the tier 1 supports, which includes the following critical features. The formation of a PBIS team within the school to lead implementation. Identification and training of a behavioral support ‘coach’, who serves as a on-site technical assistance provider. Many of the individuals identified to serve as a PBIS coach are also trained as a school psychologist or guidance counselor; coaches typically have prior PBIS experience and are trained to conduct functional behavioral assessments. The PBIS team also identifies a set of three to five positive behavioral expectations that are implemented for all students and by all staff school-wide (e.g., ‘be respectful, responsible, and ready to learn’); these expectations are posted in all settings across the school, including in the classroom, cafeteria, playground etc. All school staff define and teach the school-wide behavioral expectations to all students and review them regularly. Finally, PBIS schools develop or adopt a school-wide system to reward or reinforce students who demonstrate those 3-5 positive behavioral expectations. Staff and administrators create an agreed upon system for responding to behavioral violations that include definitions about what constitutes a classroom-managed vs. an office-managed discipline problem. Finally, a formal system is developed to collect, analyze, and use disciplinary data (e.g., office discipline referrals) to inform decision-making. This presentation provides a brief overview of PBIS and reports findings from a series of four U.S. based longitudinal randomized controlled trials (RCTs) documenting the impacts of PBIS on school climate, discipline problems, bullying, and academic achievement. The four RCTs include 80 elementary, 40 middle, and 58 high schools and results indicate a broad range of impacts on multiple student and school-wide outcomes. The session will highlight lessons learned regarding PBIS implementation and scale-up. We also review the ways in which PBIS can help educators and school leaders engage in data-based decision-making and share data with other decision-makers and stakeholders (e.g., students, parents, community members), with the overarching goal of increasing use of evidence-based programs in schools.Keywords: positive behavioral interventions and supports, mental health, randomized trials, school-based prevention
Procedia PDF Downloads 2333120 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example
Authors: Guantao Bai
Abstract:
Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.Keywords: computer vision, deep learning, public spaces, using features
Procedia PDF Downloads 753119 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach
Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas
Abstract:
Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality
Procedia PDF Downloads 1933118 Effect of Crude Flowers Extract of Citrus reticulata Blanco Flowers on Physicochemical and Nutritional Properties of Cheddar Cheese
Authors: Usman Mir Khan, Ishtiaque Ahmad, Saima Inayat, H. M. Arslan Amin, Muhammad Ayaz, Nisar Ahmad
Abstract:
Citrus reticulata Blanco crude flowers extract (CFE) at four different concentration (1, 2, 3 and 4%, v/v) were used as natural milk coagulant instead of rennet to apply for Cheddar cheese making from buffalo milk. The physicochemical properties and nutrition composition of Cheddar cheeses were compared with cheese made with 0.002% (v/v) rennet (control cheese). Physico-chemical of Cheddar cheese showed that cheese made with 1% and 2% of CFE had a crumbly and slightly softer texture of cheese. While, cheeses containing 3 and 4% CFE had semi-hard textural properties of curd similar to rennet added cheese. The CFE made cheese had moisture 37 %, fat 45 % on dry basis similar to rennet made Cheddar cheese. Protein analysis shows that CFE made cheese had significant higher protein content than control. The Cheddar cheese with 3% and 1% CFE were preferred by consumers instead of 2% and 4% CFE for their taste, texture/appearance and overall acceptability. Conclusively, CFE coagulated Cheddar cheese fulfills the nutritional requirement with acceptable organoleptic characteristics and at the same time provides nutritional health benefits.Keywords: cheddar cheese, Citrus reticulata Blanco, buffalo milk, milk coagulant
Procedia PDF Downloads 3083117 Artificial Neural Network and Statistical Method
Authors: Tomas Berhanu Bekele
Abstract:
Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression
Procedia PDF Downloads 733116 Securing Online Voting With Blockchain and Smart Contracts
Authors: Anant Mehrotra, Krish Phagwani
Abstract:
Democratic voting is vital for any country, but current methods like ballot papers or EVMs have drawbacks, including transparency issues, low voter turnout, and security concerns. Blockchain technology offers a potential solution by providing a secure, decentralized, and transparent platform for e-voting. With features like immutability, security, and anonymity, blockchain combined with smart contracts can enhance trust and prevent vote tampering. This paper explores an Ethereum-based e-voting application using Solidity, showcasing a web app that prevents duplicate voting through a token-based system, while also discussing the advantages and limitations of blockchain in digital voting. Voting is a crucial component of democratic decision-making, yet current methods, like paper ballots, remain outdated and inefficient. This paper reviews blockchain-based voting systems, highlighting strategies and guidelines to create a comprehensive electronic voting system that leverages cryptographic techniques, such as zero-knowledge proofs, to enhance privacy. It addresses limitations of existing e-voting solutions, including cost, identity management, and scalability, and provides key insights for organizations looking to design their own blockchain-based voting systems.Keywords: electronic voting, smart contracts, blockchain nased voting, security
Procedia PDF Downloads 183115 Assessing Impacts of Climate Change on Rural Water Resources
Authors: Ntandoyenkosi Moyo
Abstract:
Majority of rural Eastern Cape villages of South Africa households do not have access to safe water supply. Due to changes in climatic conditions for example higher temperatures, these sources become not reliable in supplying adequate and safe water to the population. These rural populations due to the drying up of water resources have to find other alternative ways to get water. Climate change has an impact on the reliability of water resources and this has an impact on rural communities. This study seeks to establish what alternative ways do people use when affected by unfavorable conditions like less rainfall and increased temperatures. The study also seeks to investigate any local and provincial intervention in the provision of water to the village. Interventions can be in the form of programmes or initiatives that involve water supply strategies. The community should participate fully in making sure that their place is serviced. The study will identify households with improved sources (JOJO tanks) and those with unimproved sources (rivers) and investigate what alternatives they resort to when their sources dry up. The study also investigates community views on whether they have any challenges of water supply (reliability and adequacy) as required by section 27(1) (b) of the constitution which states that everyone should have access to safe and clean water.Keywords: rural water resources, temperature, improved sources, unimproved sources
Procedia PDF Downloads 3243114 Financial Information and Collective Bargaining: Conflicting or Complementing
Authors: Humayun Murshed, Shibly Abdullah
Abstract:
The research conducted in early seventies apparently assumed the existence of a universal decision model for union negotiators and furthermore tended to regard financial information as a ‘neutral’ input into a rational decision-making process. However, research in the eighties began to question the neutrality of financial information as an input in collective bargaining rather viewing it as a potentially effective means for controlling the labour force. Furthermore, this later research also started challenging the simplistic assumptions relating particularly to union objectives which have underpinned the earlier search for universal union decision models. Despite the above developments there seems to be a dearth of studies in developing countries concerning the use of financial information in collective bargaining. This paper seeks to begin to remedy this deficiency. Utilising a case study approach based on two enterprises, one in the public sector and the other a multinational, the universal decision model is rejected and it is argued that the decision whether or not to use financial information is a contingent one and such a contingency is largely defined by the context and environment in which both union and management negotiators work. An attempt is also made to identify the factors constraining as well as promoting the use of financial information in collective bargaining, these being regarded as unique to the organizations within which the case studies are conducted.Keywords: collective bargaining, developing countries, disclosures, financial information
Procedia PDF Downloads 4743113 The Money Supply Effect on Hong Kong’s Post-1997 Asian Financial Crisis Property Market
Authors: Keith Dominic T. Li
Abstract:
The soaring prices of residential properties in Hong Kong has become a social problem that even the middle class is having dif?iculties in purchasing homes. In making policies to curb the prices, it is important to determine the factors that contribute to the property in?lation. Many researches attribute this in?lation to macroeconomic factors especially the interest rate. However, it is important to remember that Hong Kong is under a Currency Board system which makes its interest rate exogenously determined. This research aims to show the signi?icance of the money supply on Hong Kong residential property prices in post-1997 Asian Financial Crisis period. Using money supply data, macroeconomic fundamentals, and demographic variables from 2000Q1 to 2013Q2, the factors contributed to residential property price in?lation are estimated to calculate the share of each explanatory variable in disparity. It is found that the Hong Kong property market is mainly driven by investment and that the in?lation on Hong Kong residential property prices can explained by the increase in the Hang Seng Index and in the money supply M2.Keywords: real estate, Hong Kong, property market, monetary economics, monetary policy
Procedia PDF Downloads 5353112 Global City Typologies: 300 Cities and Over 100 Datasets
Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans
Abstract:
Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling
Procedia PDF Downloads 1863111 Optimal Design of RC Pier Accompanied with Multi Sliding Friction Damping Mechanism Using Combination of SNOPT and ANN Method
Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada
Abstract:
The structural system concept of RC pier accompanied with multi sliding friction damping mechanism was developed based on numerical analysis approach. However in the implementation, to make design for such kind of this structural system consumes a lot of effort in case high of complexity. During making design, the special behaviors of this structural system should be considered including flexible small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. The confinement distribution of friction devices has significant influence to its. Optimization and prediction with multi function regression of this structural system expected capable of providing easier and simpler design method. The confinement distribution of friction devices is optimized with SNOPT in Opensees, while some design variables of the structure are predicted using multi function regression of ANN. Based on the optimization and prediction this structural system is able to be designed easily and simply.Keywords: RC Pier, multi sliding friction device, optimal design, flexible small deformation
Procedia PDF Downloads 3693110 A Research Using Remote Monitoring Technology for Pump Output Monitoring in Distributed Fuel Stations in Nigeria
Authors: Ofoegbu Ositadinma Edward
Abstract:
This research paper discusses a web based monitoring system that enables effective monitoring of fuel pump output and sales volume from distributed fuel stations under the domain of a single company/organization. The traditional method of operation by these organizations in Nigeria is non-automated and accounting for dispensed product is usually approximated and manual as there is little or no technology implemented to presently provide information relating to the state of affairs in the station both to on-ground staff and to supervisory staff that are not physically present in the station. This results in unaccountable losses in product and revenue as well as slow decision making. Remote monitoring technology as a vast research field with numerous application areas incorporating various data collation techniques and sensor networks can be applied to provide information relating to fuel pump status in distributed fuel stations reliably. Thus, the proposed system relies upon a microcontroller, keypad and pump to demonstrate the traditional fuel dispenser. A web-enabled PC with an accompanying graphic user interface (GUI) was designed using virtual basic which is connected to the microcontroller via the serial port which is to provide the web implementation.Keywords: fuel pump, microcontroller, GUI, web
Procedia PDF Downloads 4403109 VIAN-DH: Computational Multimodal Conversation Analysis Software and Infrastructure
Authors: Teodora Vukovic, Christoph Hottiger, Noah Bubenhofer
Abstract:
The development of VIAN-DH aims at bridging two linguistic approaches: conversation analysis/interactional linguistics (IL), so far a dominantly qualitative field, and computational/corpus linguistics and its quantitative and automated methods. Contemporary IL investigates the systematic organization of conversations and interactions composed of speech, gaze, gestures, and body positioning, among others. These highly integrated multimodal behaviour is analysed based on video data aimed at uncovering so called “multimodal gestalts”, patterns of linguistic and embodied conduct that reoccur in specific sequential positions employed for specific purposes. Multimodal analyses (and other disciplines using videos) are so far dependent on time and resource intensive processes of manual transcription of each component from video materials. Automating these tasks requires advanced programming skills, which is often not in the scope of IL. Moreover, the use of different tools makes the integration and analysis of different formats challenging. Consequently, IL research often deals with relatively small samples of annotated data which are suitable for qualitative analysis but not enough for making generalized empirical claims derived quantitatively. VIAN-DH aims to create a workspace where many annotation layers required for the multimodal analysis of videos can be created, processed, and correlated in one platform. VIAN-DH will provide a graphical interface that operates state-of-the-art tools for automating parts of the data processing. The integration of tools that already exist in computational linguistics and computer vision, facilitates data processing for researchers lacking programming skills, speeds up the overall research process, and enables the processing of large amounts of data. The main features to be introduced are automatic speech recognition for the transcription of language, automatic image recognition for extraction of gestures and other visual cues, as well as grammatical annotation for adding morphological and syntactic information to the verbal content. In the ongoing instance of VIAN-DH, we focus on gesture extraction (pointing gestures, in particular), making use of existing models created for sign language and adapting them for this specific purpose. In order to view and search the data, VIAN-DH will provide a unified format and enable the import of the main existing formats of annotated video data and the export to other formats used in the field, while integrating different data source formats in a way that they can be combined in research. VIAN-DH will adapt querying methods from corpus linguistics to enable parallel search of many annotation levels, combining token-level and chronological search for various types of data. VIAN-DH strives to bring crucial and potentially revolutionary innovation to the field of IL, (that can also extend to other fields using video materials). It will allow the processing of large amounts of data automatically and, the implementation of quantitative analyses, combining it with the qualitative approach. It will facilitate the investigation of correlations between linguistic patterns (lexical or grammatical) with conversational aspects (turn-taking or gestures). Users will be able to automatically transcribe and annotate visual, spoken and grammatical information from videos, and to correlate those different levels and perform queries and analyses.Keywords: multimodal analysis, corpus linguistics, computational linguistics, image recognition, speech recognition
Procedia PDF Downloads 1143108 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market
Authors: Zahra Hatami, Hesham Ali, David Volkman
Abstract:
Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.Keywords: portfolio management performance, network analysis, centrality measurements, Sharpe ratio
Procedia PDF Downloads 1613107 Optimizing the Residential Design Process Using Automated Technologies
Authors: Milena Nanova, Martin Georgiev, Damyan Damov
Abstract:
Modern residential architecture is increasingly influenced by rapid urbanization, technological advancements, and growing investor expectations. The integration of AI and digital tools such as CAD and BIM (Building Information Modelling) is transforming the design process by improving efficiency, accuracy, and speed. However, urban development faces challenges, including the high competition for viable sites and the time-consuming nature of traditional investment feasibility studies and architectural planning. Finding and analyzing suitable sites for residential development is complicated by intense competition and rising investor demands. Investors require quick assessments of property potential to avoid missing opportunities, while traditional architectural design processes rely on the experience of the team and can be time-consuming, adding pressure to make fast, effective decisions. The widespread use of CAD tools has sped up the drafting process, enhancing both accuracy and efficiency. Digital tools allow designers to manipulate drawings quickly, reducing the time spent on revisions. BIM further advances this by enabling native 3D modelling, where changes to a design in one view are automatically reflected in all others, minimizing errors and saving time. AI is becoming an integral part of architectural design software. While AI is currently being incorporated into existing programs like AutoCAD, Revit, and ArchiCAD, its full potential is reached in parametric modelling. In this process, designers define parameters (e.g., building size, layout, and materials), and the software generates multiple design variations based on those inputs. This method accelerates the design process by automating decisions and enabling the quick generation of alternative solutions. The study utilizes generative design, a specific application of parametric modelling that uses Machine Learning (ML) to explore a wide range of design possibilities based on predefined criteria. It optimizes designs through iterations, testing many variations to find the best solutions. This process is particularly beneficial in the early stages of design, where multiple options are explored before refining the best ones. ML’s ability to handle complex mathematical tasks allows it to generate unconventional yet effective designs that a human designer might overlook. Residential architecture, with its anticipated and typical layouts and modular nature, is especially suitable for generative design. The relationships between rooms and the overall organization of apartment units follow logical patterns, making it an ideal candidate for parametric modelling. Using these tools, architects can quickly explore various apartment configurations, considering factors like apartment sizes, types, and circulation patterns, and identify the most efficient layout for a given site. Parametric modelling and generative design offer significant benefits to residential architecture by streamlining the design process, enabling faster decision-making, and optimizing building layouts. These technologies allow architects and developers to analyze numerous design possibilities, improving outcomes while responding to the challenges of urban development. By integrating ML-driven generative design, the architecture industry can enhance creativity, efficiency, and adaptability in residential projects.Keywords: architectural design, generative design, parametric models, residential buildings, workflow optimization
Procedia PDF Downloads 143106 Is Privatization Related with Macroeconomic Management? Evidence from Some Selected African Countries
Authors: E. O. George, P. Ojeaga, D. Odejimi, O. Mattehws
Abstract:
Has macroeconomic management succeeded in making privatization promote growth in Africa? What are the probable strategies that should accompany the privatization reform process to promote growth in Africa? To what extent has the privatization process succeeded in attracting foreign direct investment to Africa? The study investigates the relationship between macroeconomic management and privatization. Many African countries have embarked on one form of privatization reform or the other since 1980 as one of the stringent conditions for accessing capital from the IMF and the World Bank. Secondly globalization and the gradually integration of the African economy into the global economy also means that Africa has to strategically develop its domestic market to cushion itself from fluctuations and probable contagion associated with global economic crisis that are always inevitable Stiglitz. The methods of estimation used are the OLS, linear mixed effects (LME), 2SLS and the GMM method of estimation. It was found that macroeconomic management has the capacity to affect the success of the privatization reform process. It was also found that privatization was not promoting growth in Africa; privatization could promote growth if long run growth strategies are implemented together with the privatization reform process. Privatization was also found not to have the capacity to attract foreign investment to many African countries.Keywords: Africa, political economy, game theory, macroeconomic management and privatization
Procedia PDF Downloads 3353105 Improving Decision Support for Organ Transplant
Authors: Ian McCulloh, Andrew Placona, Darren Stewart, Daniel Gause, Kevin Kiernan, Morgan Stuart, Christopher Zinner, Laura Cartwright
Abstract:
An estimated 22-25% of viable deceased donor kidneys are discarded every year in the US, while waitlisted candidates are dying every day. As many as 85% of transplanted organs are refused at least once for a patient that scored higher on the match list. There are hundreds of clinical variables involved in making a clinical transplant decision and there is rarely an ideal match. Decision makers exhibit an optimism bias where they may refuse an organ offer assuming a better match is imminent. We propose a semi-parametric Cox proportional hazard model, augmented by an accelerated failure time model based on patient specific suitable organ supply and demand to estimate a time-to-next-offer. Performance is assessed with Cox-Snell residuals and decision curve analysis, demonstrating improved decision support for up to a 5-year outlook. Providing clinical decision makers with quantitative evidence of likely patient outcomes (e.g., time to next offer and the mortality associated with waiting) may improve decisions and reduce optimism bias, thus reducing discarded organs and matching more patients on the waitlist.Keywords: decision science, KDPI, optimism bias, organ transplant
Procedia PDF Downloads 1133104 Ecosystem Services Assessment for Urban Nature-Based Solutions Implemented in the Public Space: Case Study of Alhambra Square in Bogotá, Colombia
Authors: Diego Sánchez, Sandra M. Aguilar, José F. Gómez, Gustavo Montaño, Laura P. Otero, Carlos V. Rey, José A. Martínez, Juliana Robles, Jorge E. Burgos, Juan S. López
Abstract:
Bogota is making efforts towards urban resilience through Nature-based Solutions (NbS) incorporation in public projects as a climate change resilience strategy. The urban renovation project on the Alhambra square includes Green Infrastructure (GI), like Sustainable Urban Drainage Systems (SUDS) and Urban Trees (UT), as ecosystem services (ES) boosters. This study analyzes 3 scenarios: (1) the initial situation without NbS, (2) the expected situation including NbS in the design and (3) the projection of the second one after 30 years, calculating the ecosystem services, the stormwater management benefits provided by SUDS and the cultural services. The obtained results contribute to the understanding of the urban NbS benefits in public spaces, providing valuable information to foster investment in sustainable projects and encouraging policy makers to integrate NbS in urban planning.Keywords: ecosystem services, nature-based solutions, stormwater management, sustainable urban drainage systems
Procedia PDF Downloads 1643103 Trajectory Optimization for Autonomous Deep Space Missions
Authors: Anne Schattel, Mitja Echim, Christof Büskens
Abstract:
Trajectory planning for deep space missions has become a recent topic of great interest. Flying to space objects like asteroids provides two main challenges. One is to find rare earth elements, the other to gain scientific knowledge of the origin of the world. Due to the enormous spatial distances such explorer missions have to be performed unmanned and autonomously. The mathematical field of optimization and optimal control can be used to realize autonomous missions while protecting recourses and making them safer. The resulting algorithms may be applied to other, earth-bound applications like e.g. deep sea navigation and autonomous driving as well. The project KaNaRiA ('Kognitionsbasierte, autonome Navigation am Beispiel des Ressourcenabbaus im All') investigates the possibilities of cognitive autonomous navigation on the example of an asteroid mining mission, including the cruise phase and approach as well as the asteroid rendezvous, landing and surface exploration. To verify and test all methods an interactive, real-time capable simulation using virtual reality is developed under KaNaRiA. This paper focuses on the specific challenge of the guidance during the cruise phase of the spacecraft, i.e. trajectory optimization and optimal control, including first solutions and results. In principle there exist two ways to solve optimal control problems (OCPs), the so called indirect and direct methods. The indirect methods are being studied since several decades and their usage needs advanced skills regarding optimal control theory. The main idea of direct approaches, also known as transcription techniques, is to transform the infinite-dimensional OCP into a finite-dimensional non-linear optimization problem (NLP) via discretization of states and controls. These direct methods are applied in this paper. The resulting high dimensional NLP with constraints can be solved efficiently by special NLP methods, e.g. sequential quadratic programming (SQP) or interior point methods (IP). The movement of the spacecraft due to gravitational influences of the sun and other planets, as well as the thrust commands, is described through ordinary differential equations (ODEs). The competitive mission aims like short flight times and low energy consumption are considered by using a multi-criteria objective function. The resulting non-linear high-dimensional optimization problems are solved by using the software package WORHP ('We Optimize Really Huge Problems'), a software routine combining SQP at an outer level and IP to solve underlying quadratic subproblems. An application-adapted model of impulsive thrusting, as well as a model of an electrically powered spacecraft propulsion system, is introduced. Different priorities and possibilities of a space mission regarding energy cost and flight time duration are investigated by choosing different weighting factors for the multi-criteria objective function. Varying mission trajectories are analyzed and compared, both aiming at different destination asteroids and using different propulsion systems. For the transcription, the robust method of full discretization is used. The results strengthen the need for trajectory optimization as a foundation for autonomous decision making during deep space missions. Simultaneously they show the enormous increase in possibilities for flight maneuvers by being able to consider different and opposite mission objectives.Keywords: deep space navigation, guidance, multi-objective, non-linear optimization, optimal control, trajectory planning.
Procedia PDF Downloads 4163102 Natural Dyes in Schools. Development of Techniques From Early Childhood as a Tool for Art, Design and Sustainability
Authors: Luciana Marrone
Abstract:
Natural dyes are a great resource for today's artists and designers providing endless possibilities for design and sustainability. This research and development project focuses on the idea of making these dyeing or painting methodologies reach the widest possible range of students. The main objective is to inform and train, free of charge, teachers and students from different academic institutions, at different levels, kindergarten, primary, secondary, tertiary and university. In this research and dissemination project, in the first instance, institutions from Argentina, Chile, Uruguay, Mexico, Spain, Italy, Colombia, Paraguay, Venezuela, Brazil and Australia joined the project, reaching the grassroots of education from the very beginning. Natural dyes will become part of everyday life for more people, achieving their own colors for art, textiles or any other application. The knowledge of the techniques and resources of the student a fundamental tool, sustainable and opens endless possibilities even in places or homes with few economic resources, thus achieving that natural dyes are not only part of the world of designers but also that they are incorporated from the basics and can thus become a resource applicable in different areas even in places with few economic or development possibilities.Keywords: art, education, natural dyes, sustainability, textile design.
Procedia PDF Downloads 873101 Creatures of the Clearing: Forests, People, and Ants in Imperial Brazil
Authors: Diogo de Carvalho Cabral
Abstract:
This article offers a non-declensionist account of tropical deforestation, arguing that, rather than social stamp upon the environment or ecological endgame, deforestation is part of social site-making and remaking, the process through which humans produce sociality by carrying out nature-mediated – and therefore nature-transforming – practices that inevitably reset the very conditions of those practices. Human landscape-shaping inadvertently alters other species’ habitats –most often decimating them, but sometimes improving them–, the outcomes of which always resonate back upon human inhabitation and land use. Despite the overall tendency of biotic homogenization resulting from modern deforestation processes, there are always winners, i.e., species that gain competitive advantages enabling them to thrive in the novel ecosystems. Here it is examined one such case of deforestation-boosted species, namely leafcutter ants, which wrought havoc in the rural landscapes of nineteenth-century Brazil by defoliating a wide range of crops. By combining Historical GIS analysis and qualitative interpretation, it is shown how agricultural deforestation might have changed the ant species' biogeographies, and how in turn these changes – construed as 'infestation' – stimulated social innovations and rearrangements such as technical ingenuity, legal-administrative practices, and even local electoral arenas.Keywords: deforestation, leafcutter ants, nineteenth-century Brazil, socio-ecological change
Procedia PDF Downloads 1273100 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models
Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed
Abstract:
In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.Keywords: equivalent martingale measure, European put option, girsanov theorem, martingales, monte carlo method, option price valuation formula
Procedia PDF Downloads 138