Search results for: hybrid fuzzy weighted k-nearest neighbor
834 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines
Procedia PDF Downloads 294833 A Cognitive Approach to the Optimization of Power Distribution across an Educational Campus
Authors: Mrinmoy Majumder, Apu Kumar Saha
Abstract:
The ever-increasing human population and its demand for energy is placing stress upon conventional energy sources; and as demand for power continues to outstrip supply, the need to optimize energy distribution and utilization is emerging as an important focus for various stakeholders. The distribution of available energy must be achieved in such a way that the needs of the consumer are satisfied. However, if the availability of resources is not sufficient to satisfy consumer demand, it is necessary to find a method to select consumers based on factors such as their socio-economic or environmental impacts. Weighting consumer types in this way can help separate them based on their relative importance, and cognitive optimization of the allocation process can then be carried out so that, even on days of particularly scarce supply, the socio-economic impacts of not satisfying the needs of consumers can be minimized. In this context, the present study utilized fuzzy logic to assign weightage to different types of consumers based at an educational campus in India, and then established optimal allocation by applying the non-linear mapping capability of neuro-genetic algorithms. The outputs of the algorithms were compared with similar outputs from particle swarm optimization and differential evolution algorithms. The results of the study demonstrate an option for the optimal utilization of available energy based on the socio-economic importance of consumers.Keywords: power allocation, optimization problem, neural networks, environmental and ecological engineering
Procedia PDF Downloads 479832 Frequent Itemset Mining Using Rough-Sets
Authors: Usman Qamar, Younus Javed
Abstract:
Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining
Procedia PDF Downloads 437831 Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells
Authors: Dimitra Sygkridou, Dimitrios Karageorgopoulos, Elias Stathatos, Evangelos Vitoratos
Abstract:
Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface.Keywords: nickel doped cobalt sulfide, counter electrodes, dye-sensitized solar cells, quasi-solid state electrolyte, hybrid organic-inorganic materials
Procedia PDF Downloads 760830 Tumor Boundary Extraction Using Intensity and Texture-Based on Gradient Vector
Authors: Namita Mittal, Himakshi Shekhawat, Ankit Vidyarthi
Abstract:
In medical research study, doctors and radiologists face lot of complexities in analysing the brain tumors in Magnetic Resonance (MR) images. Brain tumor detection is difficult due to amorphous tumor shape and overlapping of similar tissues in nearby region. So, radiologists require one such clinically viable solution which helps in automatic segmentation of tumor inside brain MR image. Initially, segmentation methods were used to detect tumor, by dividing the image into segments but causes loss of information. In this paper, a hybrid method is proposed which detect Region of Interest (ROI) on the basis of difference in intensity values and texture values of tumor region using nearby tissues with Gradient Vector Flow (GVF) technique in the identification of ROI. Proposed approach uses both intensity and texture values for identification of abnormal section of the brain MR images. Experimental results show that proposed method outperforms GVF method without any loss of information.Keywords: brain tumor, GVF, intensity, MR images, segmentation, texture
Procedia PDF Downloads 432829 Integration of Multi Effect Desalination with Solid Oxide Fuel Cell/Gas Turbine Power Cycle
Authors: Mousa Meratizaman, Sina Monadizadeh, Majid Amidpour
Abstract:
One of the most favorable thermal desalination methods used widely today is Multi Effect Desalination. High energy consumption in this method causes coupling it with high temperature power cycle like gas turbine. This combination leads to higher energy efficiency. One of the high temperature power systems which have cogeneration opportunities is Solid Oxide Fuel Cell / Gas Turbine. Integration of Multi Effect Desalination with Solid Oxide Fuel Cell /Gas Turbine power cycle in a range of 300-1000 kW is considered in this article. The exhausted heat of Solid Oxide Fuel Cell /Gas Turbine power cycle is used in Heat Recovery Steam Generator to produce needed motive steam for Desalination unit. Thermodynamic simulation and parametric studies of proposed system are carried out to investigate the system performance.Keywords: solid oxide fuel cell, thermodynamic simulation, multi effect desalination, gas turbine hybrid cycle
Procedia PDF Downloads 379828 Investigation of Dynamic Characteristic of Planetary Gear Set Based On Three-Axes Torque Measurement
Authors: Masao Nakagawa, Toshiki Hirogaki, Eiichi Aoyama, Mohamed Ali Ben Abbes
Abstract:
A planetary gear set is widely used in hybrid vehicles as the power distribution system or in electric vehicles as the high reduction system, but due to its complexity with planet gears, its dynamic characteristic is not fully understood. There are many reports on two-axes driving or displacement of the planet gears under these conditions, but only few reports deal with three-axes driving. A three-axes driving condition is tested using three-axes torque measurement and focuses on the dynamic characteristic around the planet gears in this report. From experimental result, it was confirmed that the transition forces around the planet gears were balanced and the torques were also balanced around the instantaneous rotation center. The meshing frequency under these conditions was revealed to be the harmonics of two meshing frequencies; meshing frequency of the ring gear and that of the planet gears. The input power of the ring gear is distributed to the carrier and the sun gear in the dynamic sequential change of three fixed conditions; planet, star and solar modes.Keywords: dynamic characteristic, gear, planetary gear set, torque measuring
Procedia PDF Downloads 381827 Mapping Social and Natural Hazards: A Survey of Potential for Managed Retreat in the United States
Authors: Karim Ahmed
Abstract:
The purpose of this study was to investigate how factoring the impact of natural disasters beyond flooding would affect managed retreat policy eligibility in the United States. For the study design, a correlation analysis method compared weighted measures of flooding and other natural disasters (e.g., wildfires, tornadoes, heatwaves, etc.) to CBSA Populated areas, the prevalence of cropland, and relative poverty on a county level. The study found that the vast majority of CBSAs eligible for managed retreat programs under a policy inclusive of non-flooding events would have already been covered by flood-only managed retreat policies. However, it is noteworthy that a majority of those counties that are not covered by a flood-only managed retreat policy have high rates of poverty and are either heavily populated and/or agriculturally active. The correlation is particularly strong between counties that are subject to multiple natural hazards and those that have both high rates of relative poverty and cropland prevalence. There is currently no managed retreat policy for agricultural land in the United States despite the environmental implications and food supply chain vulnerabilities related to at-risk cropland. The findings of this study suggest both that such a policy should be created and, when it is, that special attention should be paid to non-flood natural disasters affecting agricultural areas. These findings also reveal that, while current flood-based policies in the United States serve many areas that do need access to managed retreat funding and implementation, other vulnerable areas are overlooked by this approach. These areas are often deeply impoverished and are therefore particularly vulnerable to natural disaster; if and when those disasters do occur, these areas are often less financially prepared to recover or retreat from the disaster’s advance and, due to the limitations of the current policies discussed above, are less able to take the precautionary measures necessary to mitigate their risk.Keywords: flood, hazard, land use, managed retreat, wildfire
Procedia PDF Downloads 126826 Gc-ms Data Integrated Chemometrics for the Authentication of Vegetable Oil Brands in Minna, Niger State, Nigeria
Authors: Rasaq Bolakale Salau, Maimuna Muhammad Abubakar, Jonathan Yisa, Muhammad Tauheed Bisiriyu, Jimoh Oladejo Tijani, Alexander Ifeanyi Ajai
Abstract:
Vegetables oils are widely consumed in Nigeria. This has led to competitive manufacture of various oil brands. This leads increasing tendencies for fraud, labelling misinformation and other unwholesome practices. A total of thirty samples including raw and corresponding branded samples of vegetable oils were collected. The Oils were extracted from raw ground nut, soya bean and oil palm fruits. The GC-MS data was subjected to chemometric techniques of PCA and HCA. The SOLO 8.7 version of the standalone chemometrics software developed by Eigenvector research incorporated and powered by PLS Toolbox was used. The GCMS fingerprint gave basis for discrimination as it reveals four predominant but unevenly distributed fatty acids: Hexadecanoic acid methyl ester (10.27- 45.21% PA), 9,12-octadecadienoic acid methyl ester (10.9 - 45.94% PA), 9-octadecenoic acid methyl ester (18.75 - 45.65%PA), and Eicosanoic acid methyl ester (1.19% - 6.29%PA). In PCA modelling, two PCs are retained at cumulative variance captured at 73.15%. The score plots indicated that palm oil brands are most aligned with raw palm oil. PCA loading plot reveals the signature retention times between 4.0 and 6.0 needed for quality assurance and authentication of the oils samples. They are of aromatic hydrocarbons, alcohols and aldehydes functional groups. HCA dendrogram which was modeled using Euclidian distance through Wards method, indicated co-equivalent samples. HCA revealed the pair of raw palm oil brand and palm oil brand in the closest neighbourhood (± 1.62 % A difference) based on variance weighted distance. It showed Palm olein brand to be most authentic. In conclusion, based on the GCMS data with chemometrics, the authenticity of the branded samples is ranked as: Palm oil > Soya oil > groundnut oil.Keywords: vegetable oil, authenticity, chemometrics, PCA, HCA, GC-MS
Procedia PDF Downloads 31825 Aquafaba Derived from Korean Soybean Cultivars: A Novel Vegan Egg Replacer
Authors: Yue He, Youn Young Shim, Ji Hye Kim, Jae Youl Cho, Martin J. T. Reaney
Abstract:
Recently, pulse cooking water (a.k.a. Aquafaba) has been used as an important and cost-effective alternative to eggs in gluten-free, vegan cooking and baking applications. The aquafaba (AQ) is primarily due to its excellent ability to stabilize foams and emulsions in foods. However, the functional ingredients of this excellent AQ are usually discarded with the compound release. This study developed a high-functional food material, AQ, using functional soybean AQ that has not been studied in Korea. A zero-waste and cost-effective hybrid process were used to produce oil emulsifiers from Korean soybeans. The treatment technique was implemented using a small number of efficient steps. Aquafaba from Backtae had the best emulsion properties (92%) and has the potential to produce more stable food oil emulsions. Therefore, this study is expected to be utilized in the development of the first gluten-free, vegan product for vegetarians and consumers with animal protein allergies, utilizing wastewater from cooked soybeans as a source of plant protein that can replace animal protein.Keywords: aquafaba, soybean, chickpea, emulsifiers, egg replacer, egg-free products
Procedia PDF Downloads 177824 Evolution of Fashion Design in the Era of High-Tech Culture
Authors: Galina Mihaleva, C. Koh
Abstract:
Fashion, like many other design fields, undergoes numerous evolutions throughout the ages. This paper aims to recognize and evaluate the significance of advance technology in fashion design and examine how it changes the role of modern fashion designers by modifying the creation process. It also touches on how modern culture is involved in such developments and how it affects fashion design in terms of conceptualizing and fabrication. The methodology used is through surveying the various examples of technological applications to fashion design and drawing parallels between what was achievable then and what is achievable now. By comparing case studies, existing fashion design examples and crafting method experimentations; we then spot patterns in which to predict the direction of future developments in the field. A breakdown on the elements of technology in fashion design helps us understand the driving force behind such a trend. The results from explorations in the paper have shown that there is an observed pattern of a distinct increase in interest and progress in the field of fashion technology, which leads to the birth of hybrid crafting methods. In conclusion, it is shown that as fashion technology continues to evolve, their role in clothing crafting becomes more prominent and grows far beyond the humble sewing machine.Keywords: fashion design, functional aesthetics, smart textiles, 3D printing
Procedia PDF Downloads 409823 A Gyro-stabilized Autonomous Multi-terrain Quadrupedal-wheeled Robot: Towards Edge-enabled Self-balancing, Autonomy, and Terramechanical Efficiency of Unmanned Off-road Vehicles
Authors: Mbadiwe S. Benyeogor, Oladayo O. Olakanmi, Kosisochukwu P. Nnoli, Olusegun I. Lawal, Eric JJ. Gratton
Abstract:
For a robot or any vehicular system to navigate in off-road terrain, its driving mechanisms and the electro-software system must be capable of generating, controlling, and moderating sufficient mechanical power with precision. This paper proposes an autonomous robot with a gyro-stabilized active suspension system in form of a hybrid quadrupedal wheel drive mechanism. This system is to serve as a miniature model for demonstrating how off-road vehicles can be robotized into efficient terramechanical mobile platforms that are capable of self-balanced autonomous navigation and maneuvering on rough and uneven topographies. Results from tests and analysis show that the developed system performs as expected. Therefore, our model and control devices can be adapted to computerizing, automating, and upgrading the operation of unmanned ground vehicles for off-road navigation.Keywords: active suspension, autonomous robots, edge computing, navigational sensors, terramechanics
Procedia PDF Downloads 154822 Construction of a Supply Chain Model Using the PREVA Method: The Case of Innovative Sargasso Recovery Projects in Ther Lesser Antilles
Authors: Maurice Bilioniere, Katie Lanneau
Abstract:
Suddenly appeared in 2011, invasions of sargasso seaweeds Fluitans and Natans are a climatic hazard which causes many problems in the Caribbean. Faced with the growth and frequency of the phenomenon of massive sargasso stranding on their coasts, the French West Indies are moving towards the path of industrial recovery. In this context of innovative projects, we will analyze the necessary requirements for the management and performance of the supply chain, taking into account the observed volatility of the sargasso input. Our prospective approach will consist in studying the theoretical framework of modeling a hybrid supply chain by coupling the discreet event simulation (DES) with a valuation of the process costs according to the "activity-based costing" method (ABC). The PREVA approach (PRocess EVAluation) chosen for our modeling has the advantage of evaluating the financial flows of the logistic process using an analytical model chained with an action model for the evaluation or optimization of physical flows.Keywords: sargasso, PREVA modeling, supply chain, ABC method, discreet event simulation (DES)
Procedia PDF Downloads 176821 Land Suitability Assessment for Vineyards in Afghanistan Based on Physical and Socio-Economic Criteria
Authors: Sara Tokhi Arab, Tariq Salari, Ryozo Noguchi, Tofael Ahamed
Abstract:
Land suitability analysis is essential for table grape cultivation in order to increase its production and productivity under the dry condition of Afghanistan. In this context, the main aim of this paper was to determine the suitable locations for vineyards based on satellite remote sensing and GIS (geographical information system) in Kabul Province of Afghanistan. The Landsat8 OLI (operational land imager) and thermal infrared sensor (TIRS) and shuttle radar topography mission digital elevation model (SRTM DEM) images were processed to obtain the normalized difference vegetation index (NDVI), normalized difference moisture index (NDMI), land surface temperature (LST), and topographic criteria (elevation, aspect, and slope). Moreover, Jaxa rainfall (mm per hour), soil properties information are also used for the physical suitability of vineyards. Besides, socio-economic criteria were collected through field surveys from Kabul Province in order to develop the socio-economic suitability map. Finally, the suitable classes were determined using weighted overly based on a reclassification of each criterion based on AHP (Analytical Hierarchy Process) weights. The results indicated that only 11.1% of areas were highly suitable, 24.8% were moderately suitable, 35.7% were marginally suitable and 28.4% were not physically suitable for grapes production. However, 15.7% were highly suitable, 17.6% were moderately suitable, 28.4% were marginally suitable and 38.3% were not socio-economically suitable for table grapes production in Kabul Province. This research could help decision-makers, growers, and other stakeholders with conducting precise land assessments by identifying the main limiting factors for the production of table grapes management and able to increase land productivity more precisely.Keywords: vineyards, land physical suitability, socio-economic suitability, AHP
Procedia PDF Downloads 170820 A Hybrid Digital Watermarking Scheme
Authors: Nazish Saleem Abbas, Muhammad Haris Jamil, Hamid Sharif
Abstract:
Digital watermarking is a technique that allows an individual to add and hide secret information, copyright notice, or other verification message inside a digital audio, video, or image. Today, with the advancement of technology, modern healthcare systems manage patients’ diagnostic information in a digital way in many countries. When transmitted between hospitals through the internet, the medical data becomes vulnerable to attacks and requires security and confidentiality. Digital watermarking techniques are used in order to ensure the authenticity, security and management of medical images and related information. This paper proposes a watermarking technique that embeds a watermark in medical images imperceptibly and securely. In this work, digital watermarking on medical images is carried out using the Least Significant Bit (LSB) with the Discrete Cosine Transform (DCT). The proposed methods of embedding and extraction of a watermark in a watermarked image are performed in the frequency domain using LSB by XOR operation. The quality of the watermarked medical image is measured by the Peak signal-to-noise ratio (PSNR). It was observed that the watermarked medical image obtained performing XOR operation between DCT and LSB survived compression attack having a PSNR up to 38.98.Keywords: watermarking, image processing, DCT, LSB, PSNR
Procedia PDF Downloads 47819 The Effectiveness of Incidental Physical Activity Interventions Compared to Other Interventions in the Management of People with Low Back Pain: A Systematic Review and Meta-Analysis
Authors: Hosam Alzahrani, Martin Mackey, Emmanuel Stamatakis, Marina B. Pinheiro, Manuela Wicks, Debra Shirley
Abstract:
Objective: To investigate the effectiveness of incidental (non-structured) physical activity interventions compared with other commonly prescribed interventions for the management of people with low back pain (LBP). Methods: We performed a systematic review with meta-analyses of eligible randomized controlled trials obtained by searching Medline, Scopus, CINAHL, EMBASE, and CENTRAL. This review considered trials investigating the effect of incidental physical activity interventions compared to other interventions in people aged 18 years or over, diagnosed with non-specific LBP. Analyses were conducted separately for short-term (≤3 months), intermediate-term (> 3 and < 12 months), and long-term (≥ 12 months), for each outcome. The analyses were conducted using the weighted mean difference (WMD). The overall quality of evidence was assessed using the GRADE system. Meta-analyses were only performed for pain and disability outcomes as there was insufficient data on the other outcomes. Results: For pain, the pooled results did not show any significant effects between the incidental physical activity intervention and other interventions at any time point. For disability, incidental physical activity was not statistically more effective than other interventions at short-term; however, the pooled results favored incidental physical activity at intermediate-term (WMD= -6.05, 95% CI: -10.39 to -1.71, p=0.006) and long-term (WMD= -6.40 95% CI: -11.68 to -1.12, p=0.02) follow-ups among participants with chronic LBP. The overall quality of evidence was rated “moderate quality” based on the GRADE system. Conclusion: The incidental physical activity intervention provided intermediate and long disability relief for people with chronic LBP, although this improvement was small and not likely to be clinically important.Keywords: physical activity, incidental, low back pain, systematic review, meta-analysis
Procedia PDF Downloads 157818 Lowering Error Floors by Concatenation of Low-Density Parity-Check and Array Code
Authors: Cinna Soltanpur, Mohammad Ghamari, Behzad Momahed Heravi, Fatemeh Zare
Abstract:
Low-density parity-check (LDPC) codes have been shown to deliver capacity approaching performance; however, problematic graphical structures (e.g. trapping sets) in the Tanner graph of some LDPC codes can cause high error floors in bit-error-ratio (BER) performance under conventional sum-product algorithm (SPA). This paper presents a serial concatenation scheme to avoid the trapping sets and to lower the error floors of LDPC code. The outer code in the proposed concatenation is the LDPC, and the inner code is a high rate array code. This approach applies an interactive hybrid process between the BCJR decoding for the array code and the SPA for the LDPC code together with bit-pinning and bit-flipping techniques. Margulis code of size (2640, 1320) has been used for the simulation and it has been shown that the proposed concatenation and decoding scheme can considerably improve the error floor performance with minimal rate loss.Keywords: concatenated coding, low–density parity–check codes, array code, error floors
Procedia PDF Downloads 356817 Counter-Terrorism and De-Radicalization as Soft Strategies in Combating Terrorism in Indonesia: A Critical Review
Authors: Tjipta Lesmana
Abstract:
Terrorist attacks quickly penetrated Indonesia following the downfall of Soeharto regime in May 1998. Reform era was officially proclaimed. Indonesia turned to 'heaven state' from 'authoritarian state'. For the first time since 1966, the country experienced a full-scale freedom of expression, including freedom of the press, and heavy acknowledgement of human rights practice. Some religious extremists previously run away to neighbor countries to escape from security apparatus secretly backed home. Quickly they consolidated the power to continue their long aspiration and dream to establish 'Shariah Indonesia', Indonesia based on Khilafah ideology. Bali bombings I which shocked world community occurred on 12 October 2002 in the famous tourist district of Kuta on the Indonesian island of Bali, killing 202 people (including 88 Australians, 38 Indonesians, and people from more than 20 other nationalities). In the capital, Jakarta, successive bombings were blasted in Marriott hotel, Australian Embassy, residence of the Philippine Ambassador and stock exchange office. A 'drunken Indonesia' is far from ready to combat nationwide sudden and massive terrorist attacks. Police Detachment 88 (Densus 88) Indonesian counter-terrorism squad, was quickly formed following 2002 Bali Bombing. Anti-terrorism Provisional Act was immediately erected, as well, due to urgent need to fight terrorism. Some Bali bombings criminals were deadly executed after sentenced by the court. But a series of terrorist suicide attacks and another Bali bombings (the second one) in Bali, again, shocked world community. Terrorism network is undoubtedly spreading nationwide. Suspicion is high that they had close connection with Al Qaeda’s groups. Even 'Afghanistan alumni' and 'Syria alumni' returned to Indonesia to back up the local mujahidins in their fights to topple Indonesia constitutional government and set up Islamic state (Khilafah). Supported by massive aids from friendly nations, especially Australia and United States, Indonesia launched large scale operations to crush terrorism consisted of various radical groups such as JAD, JAS, and JAADI. Huge energy, money, and souls were dedicated. Terrorism is, however, persistently entrenched. High ranking officials from Detachment 88 squad and military intelligence believe that terrorism is still one the most deadly enemy of Indonesia.Keywords: counter-radicalization, de-radicalization, Khalifah, Union State, Al Qaedah, ISIS
Procedia PDF Downloads 178816 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.Keywords: decision tree, feature selection, intrusion detection system, support vector machine
Procedia PDF Downloads 265815 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion
Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang
Abstract:
Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.Keywords: roads, defect detection, visualization, deep learning
Procedia PDF Downloads 9814 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data
Authors: Muthukumarasamy Govindarajan
Abstract:
Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine
Procedia PDF Downloads 142813 Modeling User Context Using CEAR Diagram
Authors: Ravindra Dastikop, G. S. Thyagaraju, U. P. Kulkarni
Abstract:
Even though the number of context aware applications is increasing day by day along with the users, till today there is no generic programming paradigm for context aware applications. This situation could be remedied by design and developing the appropriate context modeling and programming paradigm for context aware applications. In this paper, we are proposing the static context model and metrics for validating the expressiveness and understandability of the model. The proposed context modeling is a way of describing a situation of user using context entities , attributes and relationships .The model which is an extended and hybrid version of ER model, ontology model and Graphical model is specifically meant for expressing and understanding the user situation in context aware environment. The model is useful for understanding context aware problems, preparing documentation and designing programs and databases. The model makes use of context entity attributes relationship (CEAR) diagram for representation of association between the context entities and attributes. We have identified a new set of graphical notations for improving the expressiveness and understandability of context from the end user perspective .Keywords: user context, context entity, context entity attributes, situation, sensors, devices, relationships, actors, expressiveness, understandability
Procedia PDF Downloads 344812 Design and Analysis of a Laminated Composite Automotive Drive Shaft
Authors: Hossein Kh. Bisheh, Nan Wu
Abstract:
Advanced composite materials have a great importance in engineering structures due to their high specific modulus and strength and low weight. These materials can be used in design and fabrication of automotive drive shafts to reduce the weight of the structure. Hence, an optimum design of a composite drive shaft satisfying the design criteria, can be an appropriate substitution of metallic drive shafts. The aim of this study is to design and analyze a composite automotive drive shaft with high specific strength and low weight satisfying the design criteria. Tsai-Wu criterion is chosen as the failure criterion. Various designs with different lay-ups and materials are investigated based on the design requirements and finally, an optimum design satisfying the design criteria is chosen based on the weight and cost considerations. The results of this study indicate that if the weight is the main concern, a shaft made of Carbon/Epoxy can be a good option, and if the cost is a more important parameter, a hybrid shaft made of aluminum and Carbon/Epoxy can be considered.Keywords: Bending natural frequency, Composite drive shaft, Peak torque, Torsional buckling
Procedia PDF Downloads 232811 Study of Electrical Properties of An-Fl Based Organic Semiconducting Thin Film
Authors: A.G. S. Aldajani, N. Smida, M. G. Althobaiti, B. Zaidi
Abstract:
In order to exploit the good electrical properties of anthracene and the excellent properties of fluorescein, new hybrid material has been synthesized (An-Fl). Current-voltage measurements were done on a new single-layer ITO/An-FL/Al device of typically 100 nm thickness. Atypical diode behavior is observed with a turn-on voltage of 4.4 V, a dynamic resistance of 74.07 KΩ and a rectification ratio of 2.02 due to unbalanced transport. Results show also that the current-voltage characteristics present three different regimes of the power-law (J~Vᵐ) for which the conduction mechanism is well described with space-charge-limited current conduction mechanism (SCLC) with a charge carrier mobility of 2.38.10⁻⁵cm2V⁻¹S⁻¹. Moreover, the electrical transport properties of this device have been carried out using a dependent frequency study in the range (50 Hz–1.4 MHz) for different applied biases (from 0 to 6 V). At lower frequency, the σdc values increase with bias voltage rising, supporting that the mobile ion can hop successfully to its nearest vacant site. From σac and impedance measurements, the equivalent electrical circuit is evidenced, where the conductivity process is coherent with an exponential trap distribution caused by structural defects and/or chemical impurities.Keywords: semiconducting polymer, conductivity, SCLC, impedance spectroscopy
Procedia PDF Downloads 179810 Study of the Benefit Analysis Using Vertical Farming Method in Urban Renewal within the Older City of Taichung
Authors: Hsu Kuo-Wei, Tan Roon Fang, Chao Jen-chih
Abstract:
Cities face environmental challenges, including over-urbanization issues, air and water quality issues, lack of green space, excess heat capture, polluted storm water runoff and lack of ecological biodiversity. The vertical farming holds the condition of technology addressing these issues by enabling more food to be produced with finite less resources use and space. Most of the existing research regarding to technology Industry of agriculture between plant factory and vertical greening, which with high costs and high-technology. Relative research developed a sustainable model for construction and operation of the vertical farm in urban housing which aims to revolutionize our daily life of food production and urban development. However, those researches focused on quantitative analysis. This study utilized relative research for key variables of benefits of vertical farming. In the second stage, utilizes Fuzzy Delphi Method to obtain the critical factors of benefits of vertical farming using in Urban Renewal by interviewing the foregoing experts. Then, Analytic Hierarchy Process is applied to find the importance degree of each criterion as the measurable indices of the vertical farming method in urban renewal within the older city of Taichung.Keywords: urban renewal, vertical farming, urban agriculture, benefit analysis, the older city of Taichung
Procedia PDF Downloads 466809 A Critical Review and Bibliometric Analysis on Measures of Achievement Motivation
Authors: Kanupriya Rawat, Aleksandra Błachnio, Paweł Izdebski
Abstract:
Achievement motivation, which drives a person to strive for success, is an important construct in sports psychology. This systematic review aims to analyze the methods of measuring achievement motivation used in previous studies published over the past four decades and to find out which method of measuring achievement motivation is the most prevalent and the most effective by thoroughly examining measures of achievement motivation used in each study and by evaluating most highly cited achievement motivation measures in sport. In order to understand this latent construct, thorough measurement is necessary, hence a critical evaluation of measurement tools is required. The literature search was conducted in the following databases: EBSCO, MEDLINE, APA PsychARTICLES, Academic Search Ultimate, Open Dissertations, ERIC, Science direct, Web of Science, as well as Wiley Online Library. A total of 26 articles met the inclusion criteria and were selected. From this review, it was found that the Achievement Goal Questionnaire- Sport (AGQ-Sport) and the Task and Ego Orientation in Sport Questionnaire (TEOSQ) were used in most of the research, however, the average weighted impact factor of the Achievement Goal Questionnaire- Sport (AGQ-Sport) is the second highest and most relevant in terms of research articles related to the sport psychology discipline. Task and Ego Orientation in Sport Questionnaire (TEOSQ) is highly popular in cross-cultural adaptation but has the second last average IF among other scales due to the less impact factor of most of the publishing journals. All measures of achievement motivation have Cronbach’s alpha value of more than .70, which is acceptable. The advantages and limitations of each measurement tool are discussed, and the distinction between using implicit and explicit measures of achievement motivation is explained. Overall, both implicit and explicit measures of achievement motivation have different conceptualizations of achievement motivation and are applicable at either the contextual or situational level. The conceptualization and degree of applicability are perhaps the most crucial factors for researchers choosing a questionnaire, even though they differ in their development, reliability, and use.Keywords: achievement motivation, task and ego orientation, sports psychology, measures of achievement motivation
Procedia PDF Downloads 96808 Machine Learning Methods for Flood Hazard Mapping
Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto
Abstract:
This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia PDF Downloads 178807 Multichannel Scheme under Fairness Environment for Cognitive Radio Networks
Authors: Hans Marquez Ramos, Cesar Hernandez, Ingrid Páez
Abstract:
This paper develops a multiple channel assignment model, which allows to take advantage in most efficient way, spectrum opportunities in cognitive radio networks. Developed scheme allows make several available and frequency adjacent channel assignments, which require a bigger wide band, under an equality environment. The hybrid assignment model it is made by to algorithms, one who makes the ranking and select available frequency channels and the other one in charge of establishing an equality criteria, in order to not restrict spectrum opportunities for all other secondary users who wish to make transmissions. Measurements made were done for average bandwidth, average delay, as well fairness computation for several channel assignment. Reached results were evaluated with experimental spectrum occupational data from GSM frequency band captured. Developed model, shows evidence of improvement in spectrum opportunity use and a wider average transmit bandwidth for each secondary user, maintaining equality criteria in channel assignment.Keywords: bandwidth, fairness, multichannel, secondary users
Procedia PDF Downloads 504806 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering
Authors: Sharifah Mousli, Sona Taheri, Jiayuan He
Abstract:
Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning
Procedia PDF Downloads 116805 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 134