Search results for: sulfate resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3507

Search results for: sulfate resistance

1287 Investigation on Pull-Out-Behavior and Interface Critical Parameters of Polymeric Fibers Embedded in Concrete and Their Correlation with Particular Fiber Characteristics

Authors: Michael Sigruener, Dirk Muscat, Nicole Struebbe

Abstract:

Fiber reinforcement is a state of the art to enhance mechanical properties in plastics. For concrete and civil engineering, steel reinforcements are commonly used. Steel reinforcements show disadvantages in their chemical resistance and weight, whereas polymer fibers' major problems are in fiber-matrix adhesion and mechanical properties. In spite of these facts, longevity and easy handling, as well as chemical resistance motivate researches to develop a polymeric material for fiber reinforced concrete. Adhesion and interfacial mechanism in fiber-polymer-composites are already studied thoroughly. For polymer fibers used as concrete reinforcement, the bonding behavior still requires a deeper investigation. Therefore, several differing polymers (e.g., polypropylene (PP), polyamide 6 (PA6) and polyetheretherketone (PEEK)) were spun into fibers via single screw extrusion and monoaxial stretching. Fibers then were embedded in a concrete matrix, and Single-Fiber-Pull-Out-Tests (SFPT) were conducted to investigate bonding characteristics and microstructural interface of the composite. Differences in maximum pull-out-force, displacement and slope of the linear part of force vs displacement-function, which depicts the adhesion strength and the ductility of the interfacial bond were studied. In SFPT fiber, debonding is an inhomogeneous process, where the combination of interfacial bonding and friction mechanisms add up to a resulting value. Therefore, correlations between polymeric properties and pull-out-mechanisms have to be emphasized. To investigate these correlations, all fibers were introduced to a series of analysis such as differential scanning calorimetry (DSC), contact angle measurement, surface roughness and hardness analysis, tensile testing and scanning electron microscope (SEM). Of each polymer, smooth and abraded fibers were tested, first to simulate the abrasion and damage caused by a concrete mixing process and secondly to estimate the influence of mechanical anchoring of rough surfaces. In general, abraded fibers showed a significant increase in maximum pull-out-force due to better mechanical anchoring. Friction processes therefore play a major role to increase the maximum pull-out-force. The polymer hardness affects the tribological behavior and polymers with high hardness lead to lower surface roughness verified by SEM and surface roughness measurements. This concludes into a decreased maximum pull-out-force for hard polymers. High surface energy polymers show better interfacial bonding strength in general, which coincides with the conducted SFPT investigation. Polymers such as PEEK or PA6 show higher bonding strength in smooth and roughened fibers, revealed through high pull-out-force and concrete particles bonded on the fiber surface pictured via SEM analysis. The surface energy divides into dispersive and polar part, at which the slope is correlating with the polar part. Only polar polymers increase their SFPT-function slope due to better wetting abilities when showing a higher bonding area through rough surfaces. Hence, the maximum force and the bonding strength of an embedded fiber is a function of polarity, hardness, and consequently surface roughness. Other properties such as crystallinity or tensile strength do not affect bonding behavior. Through the conducted analysis, it is now feasible to understand and resolve different effects in pull-out-behavior step-by-step based on the polymer properties itself. This investigation developed a roadmap on how to engineer high adhering polymeric materials for fiber reinforcement of concrete.

Keywords: fiber-matrix interface, polymeric fibers, fiber reinforced concrete, single fiber pull-out test

Procedia PDF Downloads 117
1286 Recycled Asphalt Pavement with Warm Mix Additive for Sustainable Road Construction

Authors: Meor Othman Hamzah, Lillian Gungat, Nur Izzi Md. Yusoff, Jan Valentin

Abstract:

The recent hike in raw materials costs and the quest for preservation of the environment has prompted asphalt industries to adopt greener road construction technology. This paper presents a study on such technology by means of asphalt recycling and use of warm mix asphalt (WMA) additive. It evaluates the effects of a WMA named RH-WMA on binder rheological properties and asphalt mixture performance. The recycled asphalt, obtained from local roads, was processed, fractionated, and incorporated with virgin aggregate and binder. For binder testing, the recycled asphalt was extracted and blended with virgin binder. The binder and mixtures specimen containing 30 % and 50 % recycled asphalt contents were mixed with 3 % RH-WMA. The rheological properties of the binder were evaluated based on fundamental, viscosity, and frequency sweep tests. Indirect tensile strength and resilient modulus tests were carried out to assess the mixture’s performances. The rheological properties and strength performance results showed that the addition of RH-WMA slightly reduced the binder and mixtures stiffness. The percentage of recycled asphalt increased the stiffness of binder and mixture, and thus improves the resistance to rutting. Therefore, the integration of recycled asphalt and RH-WMA can be an alternative material for road sustainable construction for countries in the tropics.

Keywords: recycled asphalt, warm mix additive, rheological, mixture performance

Procedia PDF Downloads 519
1285 Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber

Authors: Wakayama Shunya, Okubo Kazuya, Fujii Toru, Sakata Daisuke, Kado Noriyuki, Furutachi Hiroshi

Abstract:

The purpose of this study is to propose an effective method to improve frictional coefficient of modified shoe rubber soles with added glass fibers onto the icy and snowy road surfaces in order to prevent slip-and-fall accidents by the users. Added fibers in the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angle was -60, -30, +30, +60, 90 degrees and 0 for usual specimen, respectively. It was found that horizontal arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while the standing in normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at the critical frictional state and the enlargement of resistance force for extracting exposed fibers from the ice and snow, respectively. Current study suggested that effective arraignments in the tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for uses in regions of cold climates.

Keywords: frictional coefficient, shoe soles, icy and snowy road, glass fibers, tilting angle

Procedia PDF Downloads 494
1284 Comparison of Different in vitro Models of the Blood-Brain Barrier for Study of Toxic Effects of Engineered Nanoparticles

Authors: Samir Dekali, David Crouzier

Abstract:

Due to their new physico-chemical properties engineered nanoparticles (ENPs) are increasingly employed in numerous industrial sectors (such as electronics, textile, aerospace, cosmetics, pharmaceuticals, food industry, etc). These new physico-chemical properties can also represent a threat for the human health. Consumers can notably be exposed involuntarily by different routes such as inhalation, ingestion or through the skin. Several studies recently reported a possible biodistribution of these ENPs on the blood-brain barrier (BBB). Consequently, there is a great need for developing BBB in vitro models representative of the in vivo situation and capable of rapidly and accurately assessing ENPs toxic effects and their potential translocation through this barrier. In this study, several in vitro models established with micro-endothelial brain cell lines of different origins (bEnd.3 mouse cell line or a new human cell line) co-cultivated or not with astrocytic cells (C6 rat or C8-B4 mouse cell lines) on Transwells® were compared using different endpoints: trans-endothelial resistance, permeability of the Lucifer yellow and protein junction labeling. Impact of NIST diesel exhaust particles on BBB cell viability is also discussed.

Keywords: nanoparticles, blood-brain barrier, diesel exhaust particles, toxicology

Procedia PDF Downloads 441
1283 The Discovery of Competitive Glca Inhibitors That Inhibits the Human Pathogenic Fungi Aspergillus Fumigatus and Candida Albicans

Authors: Reem Al-Shidhani, Isabelle S. R. Storer, Michael J. Bromley, Lydia Tabernero

Abstract:

Invasive fungal diseases are an increasing global health concern that contributes to the high mortality rates in immunocompromised patients. The rising of antifungal resistance severely lowers the efficacy of the limited antifungal agents available. New antifungal drugs that target new mechanisms are necessary to tackle the current shortfalls. Amongst post- modifications, phosphorylation is a predominant and an outstanding protein alteration in all eukaryotes. In fungi, protein phosphorylation plays a vital role in many signal transduction pathways, including cell cycle, cell growth, metabolism, transcription, differentiation, proliferation, and virulence. The investigation of Aspergillus fumigatus phosphatases revealed seven genes essential for viability. Inhibiting one of these phosphatases is a new interesting route to develop novel antifungal drugs. In this study, we carried out an early drug discovery process targeting oneessential phosphatase, GlcA. Here, we report the identification of new GlcA inhibitors that show antifungal activity. These important finding open a new avenue to the development of novel antifungals to expand the current narrow arsenal of clinical candidates.

Keywords: invasive fungal diseases, phosphatases, GlcA, competitive inhibitors

Procedia PDF Downloads 125
1282 Economics and Management Information Systems: Institute of Management and Technology Enugu a Case Study

Authors: Cletus Agbowo

Abstract:

Standard principles, rules, regulations, norms and guides are necessities in practice especially in the Economics and management information system Institute of management of and technology (IMT) Enugu a case sturdy as presented by the presenter. Without mincing words, the fundamental bottle neck of management is economics, how to select to engage merger productivity resources to achieve uncountable objectives without tears. Management information system inevitably become bound up in organizational politics because the influence access to a key resource – namely information. Economics and management information can effect who does what to whom, when, where and how in an organization. In great institutions like the Institute of Management and Technology (IMT) Enugu a case study many new information systems require changes in personnel, individual routines that can be painful for those involved and require retraining and additional effort may or may not be compensated. In a nut shell, because management information system potentially change an organization’s structure, culture, business processes, and strategy, there is often considerable resistance to them when they are introduced. The case study have many schools, departments, divisions and units which needs research on economics and management information systems. A system can be defined as a set of interrelated components and / or elements, which reacts with input to produce output. A department in an organization is a system. The researcher is faced to itemize the practical challenges encountered and solution adopted by the Institute Management and Enugu state government.

Keywords: economics, information, management, productivity, regulations

Procedia PDF Downloads 385
1281 Cancer of the Cervix Caused by HPV (Human papillomavirus) in Algerian Population

Authors: Sara Mouffouk, Fatma Belaid, Asma Hechani, Chaima Mouffouk

Abstract:

Cancer of the cervix caused by HPV (human papillomavirus ) is for many years a real public health problem, it is ranked 2nd deadly female cancer kills more than 270 000 women each year worldwide. In Algeria, the mortality of cervical cancer decreases with the impact, but the prognosis of these cancers remains bleak: The 5-year relative survival is 60 %. The mode of transmission is usually sexuel. Our study was undertaken to show the link between HPV and cervical cancer and the importance of Pap smear screening in this type of pathology. On the total sample, 76.11 % showed abnormal cervical smears of which 13% have mild cases and hormonal reaction Change, and 44% represent inflammatory smears and normal cases 35%, while long seven years from 2005 to 2012. Thus, 43% of abnormal smear results between ASCUS, AGUS, low and high grade carcinoma and adenocarcinoma and 57 % of other cases of unknown origin. The average age of women at risk of developing adenocarcinoma is 45-50 with a 67% to 33% of the same risk in women of age group 41-45 years although the percentage of cases of HPV infected patients was 2% in the past seven years. We found that with increasing age, the risk is argued. Due to several factors such as multiparty can reduced the resistance of the uterine epithelium and even as the multi that promotes contamination HPV causes repeated infections with HPV.

Keywords: cervical cancer, human papillomavirus (HPV) screening, prevention, vaccines

Procedia PDF Downloads 520
1280 Separation of Lanthanides Ions from Mineral Waste with Functionalized Pillar[5]Arenes: Synthesis, Physicochemical Characterization and Molecular Dynamics Studies

Authors: Ariesny Vera, Rodrigo Montecinos

Abstract:

The rare-earth elements (REEs) or rare-earth metals (REMs), correspond to seventeen chemical elements composed by the fifteen lanthanoids, as well as scandium and yttrium. Lanthanoids corresponds to lanthanum and the f-block elements, from cerium to lutetium. Scandium and yttrium are considered rare-earth elements because they have ionic radii similar to the lighter f-block elements. These elements were called rare earths because they are simply more difficult to extract and separate individually than the most metals and, generally, they do not accumulate in minerals, they are rarely found in easily mined ores and are often unfavorably distributed in common ores/minerals. REEs show unique chemical and physical properties, in comparison to the other metals in the periodic table. Nowadays, these physicochemical properties are utilized in a wide range of synthetic, catalytic, electronic, medicinal, and military applications. Because of their applications, the global demand for rare earth metals is becoming progressively more important in the transition to a self-sustaining society and greener economy. However, due to the difficult separation between lanthanoid ions, the high cost and pollution of these processes, the scientists search the development of a method that combines selectivity and quantitative separation of lanthanoids from the leaching liquor, while being more economical and environmentally friendly processes. This motivation has favored the design and development of more efficient and environmentally friendly cation extractors with the incorporation of compounds as ionic liquids, membrane inclusion polymers (PIM) and supramolecular systems. Supramolecular chemistry focuses on the development of host-guest systems, in which a host molecule can recognize and bind a certain guest molecule or ion. Normally, the formation of a host-guest complex involves non-covalent interactions Additionally, host-guest interactions can be influenced among others effects by the structural nature of host and guests. The different macrocyclic hosts for lanthanoid species that have been studied are crown ethers, cyclodextrins, cucurbituryls, calixarenes and pillararenes.Among all the factors that can influence and affect lanthanoid (III) coordination, perhaps the most basic of them is the systematic control using macrocyclic substituents that promote a selective coordination. In this sense, macrocycles pillar[n]arenes (P[n]As) present a relatively easy functionalization and they have more π-rich cavity than other host molecules. This gives to P[n]As a negative electrostatic potential in the cavity which would be responsible for the selectivity of these compounds towards cations. Furthermore, the cavity size, the linker, and the functional groups of the polar headgroups could be modified in order to control the association of lanthanoid cations. In this sense, different P[n]As systems, specifically derivatives of the pentamer P[5]A functionalized with amide, amine, phosphate and sulfate derivatives, have been designed in terms of experimental synthesis and molecular dynamics, and the interaction between these P[5]As and some lanthanoid ions such as La³+, Eu³+ and Lu³+ has been studied by physicochemical characterization by 1H-NMR, ITC and fluorescence in the case of Eu³+ systems. The molecular dynamics study of these systems was developed in hexane as solvent, also taking into account the lanthanoid ions mentioned above, and the respective comparison studies between the different ions.

Keywords: lanthanoids, macrocycles, pillar[n]arenes, rare-earth metal extraction, supramolecular chemistry, supramolecular complexes.

Procedia PDF Downloads 79
1279 Effect of Drought Stress on Yield and Yield Components of Maize Cultivars in Golestan Province

Authors: Mojtaba Esmaeilzad Limoudehi, Ebrahim Amiri

Abstract:

Water scarcity is now one of the leading challenges for human societies. In this regard, recognizing the relationship between soil, water, plant growth, and plant response to stress is very significant. In this paper, considering the importance of drought stress and the role of choosing suitable cultivars in resistance against drought, a split-plot experiment using early, intermediate, and late-maturing cultivars was carried out in Katul filed, Golestan province during two cultivation years of 2015 and 2016. The main factor was irrigation intervals at four levels, including 7 days, 14 days, 21 days, and 28 days. The subfactor was the subplot of six maize cultivars (two early maturing cultivars, two medium maturing cultivars, and two late-maturing cultivars). The results of variance analysis have revealed that irrigation interval and cultivars treatment have significant effects on the number of grain in each corn, number of rows in each corn, number of grain per row, the weight of 1000 grains, grain yield, and biomass yield. Although, the interaction of these two factors on the mentioned attributes was meaningful. The best grain yield was achieved at 7 days irrigation interval and late maturing maize cultivars treatment, which was equal to 12301 kg/ha.

Keywords: corn, growth period, optimization, stress

Procedia PDF Downloads 147
1278 Service Life Modelling of Concrete Deterioration Due to Biogenic Sulphuric Acid (BSA) Attack-State-of-an-Art-Review

Authors: Ankur Bansal, Shashank Bishnoi

Abstract:

Degradation of Sewage pipes, sewage pumping station and Sewage treatment plants(STP) is of major concern due to difficulty in their maintenance and the high cost of replacement. Most of these systems undergo degradation due to Biogenic sulphuric acid (BSA) attack. Since most of Waste water treatment system are underground, detection of this deterioration remains hidden. This paper presents a literature review, outlining the mechanism of this attack focusing on critical parameters of BSA attack, along with available models and software to predict the deterioration due to this attack. This paper critically examines the various steps and equation in various Models of BSA degradation, detail on assumptions and working of different softwares are also highlighted in this paper. The paper also focuses on the service life design technique available through various codes and method to integrate the servile life design with BSA degradation on concrete. In the end, various methods enhancing the resistance of concrete against Biogenic sulphuric acid attack are highlighted. It may be concluded that the effective modelling for degradation phenomena may bring positive economical and environmental impacts. With current computing capabilities integrated degradation models combining the various durability aspects can bring positive change for sustainable society.

Keywords: concrete degradation, modelling, service life, sulphuric acid attack

Procedia PDF Downloads 315
1277 Preparation of Nb Silicide-Based Alloy Powder by Hydrogenation-Dehydrogenation (HDH) Reaction

Authors: Gi-Beom Park, Hyong-Gi Park, Seong-Yong Lee, Jaeho Choi, Seok Hong Min, Tae Kwon Ha

Abstract:

The Nb silicide-based alloy has the excellent high-temperature strength and relatively lower density than the Ni-based superalloy; therefore, it has been receiving a lot of attention for the next generation high-temperature material. To enhance the high temperature creep property and oxidation resistance, Si was added to the Nb-based alloy, resulting in a multi-phase microstructure with metal solid solution and silicide phase. Since the silicide phase has a low machinability due to its brittle nature, it is necessary to fabricate components using the powder metallurgy. However, powder manufacturing techniques for the alloys have not yet been developed. In this study, we tried to fabricate Nb-based alloy powder by the hydrogenation-dehydrogenation reaction. The Nb-based alloy ingot was prepared by vacuum arc melting and it was annealed in the hydrogen atmosphere for the hydrogenation. After annealing, the hydrogen concentration was increased from 0.004wt% to 1.22wt% and Nb metal phase was transformed to Nb hydride phase. The alloy after hydrogenation could be easily pulverized into powder by ball milling due to its brittleness. For dehydrogenation, the alloy powders were annealed in the vacuum atmosphere. After vacuum annealing, the hydrogen concentration was decreased to 0.003wt% and Nb hydride phase was transformed back to Nb metal phase.

Keywords: Nb alloy, Nb metal and silicide composite, powder, hydrogenation-dehydrogenation reaction

Procedia PDF Downloads 249
1276 The Effect of Different Cucumber (Cucumis sativus L.) Varieties on Growth and Development Time of Aphis gossypii Glover (Hemiptera: Aphididae)

Authors: Rochelyn Dona, Mohamed F. Nur, Serdar Satar

Abstract:

The biological response of Aphis gossypii Glover (Hom. Aphididae) was investigated on the effects of seven cucumber varieties (Cucumis sativus L.) such as Kitir, Muhika, Ayda, Beit, 14-F1, Ruzgar, and Ptk in the laboratory condition at 24±1°C, 65±5% relative humidity (RH) and a photoperiod of 16:8 (L:D) hour. The results were related that the developmental time of A. gossypii at the nymphal stages was presented a significant difference only on the first instar stage. From the lowest to the highest respectively, 0.98 days on ruzgar to 1.18 days on Kitir, the second nymphal stage 0.98 days to Beit alfa, 1.08 days on Muhika, the third from 0.94 days to Kitir, from 1.16 days to 14-F1, and the last instar 1.22 days on Ptk, 1.48 days on Kitir were investigated. The total development time was evaluated at 4.46 days Beit on alfa 4.72 days on Kitir. The offspring number was 60.42 aphids on ayda and 83.72 aphids on muhika, the significant differences between varieties were based on one-way ANOVA (Tukey test). The lifetime of A. gossypii was recorded 19.10 days on Kitir, 27.64 days on Ptk. The results showed that cucumber cultivars were affected by the biological life of A. gossypii. The combination of this study with the other methods of the IPM tactics can serve as the best strategy for controlling this pest on cucumber varieties into the greenhouse.

Keywords: cucumber cultivars, fecundity, intrinsic rate, mortality, resistance

Procedia PDF Downloads 194
1275 Studies on Mechanical Properties of Concrete and Mortar Containing Waste Glass Aggregate

Authors: Nadjoua Bourmatte, Hacène Houari

Abstract:

Glass has been indispensable to men’s life due to its properties, including pliability to take any shape with ease, bright surface, resistance to abrasion, reasonable safety and durability. Waste glass creates serious environmental problems, mainly due to the inconsistency of waste glass streams. With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal. The object of this research work is to study the effect of using recycled glass waste, as a partial replacement of fine aggregate, on the fresh and hardened properties of concrete. Recycled glass was used to replace fine aggregate in proportions of 0%, 25% and 50%. We could observe that the Glass waste aggregates are lighter than natural aggregates and they show a very low water absorption. The experimental results showed that the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. The standard sand was substituted with aggregates based on glass waste for manufacturing mortars, Mortar based on glass shows a compressive strength and low bending with a 1/2 ratio with control mortar strength.

Keywords: concrete, environment, glass waste, recycling

Procedia PDF Downloads 235
1274 Utilization Reactive Dilutes to Improve the Properties of Epoxy Resin as Anticorrosion Coating

Authors: El-Sayed Negim, Ainakulova D. T., Puteri S. M., Khaldun M. Azzam, Bekbayeva L. K., Arpit Goyal, Ganjian E.

Abstract:

Anticorrosion coatings protect metal surfaces from environmental factors including moisture, oxygen, and gases that caused corrosion to the metal. Various types of anticorrosion coatings are available, with different properties and application methods. Many researchers have been developing methods to prevent corrosion, and epoxy polymers are one of the wide methods due to their excellent adhesion, chemical resistance, and durability. In this study, synthesis reactive dilute based on glycidyl methacrylate (GMA) with each of 2-ethylhexyl acrylate (2-EHA) and butyl acrylate (BuA) to improve the performance of epoxy resin and anticorrosion coating. The copolymers were synthesized with composition ratio (5/5) by bulk polymerization technique using benzoyl peroxide as a catalyst and temperature at 85 oC for 2 hours and at 90 oC for 30 minutes to complete the polymerization process. The obtained copolymers were characterized by FTIR, viscosity and thixotropic index. The effect of copolymers as reactive dilute on the physical and mechanical properties of epoxy resin was investigated. Metal plates coated by the modified epoxy resins with different contents of copolymers were tested using alkali and salt test methods, and the copolymer based on GMA and BUA showed the best protection efficiency due to the barrier effect of the polymer layer.

Keywords: epoxy, coating, dilute, corrosion, reactive

Procedia PDF Downloads 59
1273 Molecular Characterization and Phylogenetic Analysis of Influenza a(H3N2) Virus Circulating during the 2010-2011 in Riyadh, Saudi Arabia

Authors: Ghazanfar Ali, Fahad N Almajhdi

Abstract:

This study provides data on the viral diagnosis and molecular epidemiology of influenza A(H3N2) virus isolated in Riyadh, Saudi Arabia. Nasopharyngeal aspirates from 80 clinically infected patients in the peak of the 2010-2011 winter seasons were processed for viral diagnosis by RT-PCR. Sequencing of entire HA and NA genes of representative isolates and molecular epidemiological analysis were performed. A total of 06 patients were positive for influenza A, B and respiratory syncytial viruses by RT-PCR assays; out of these only one sample was positive for influenza A(H3N2) by RT-PCR. Phylogenetic analysis of the HA and NA gene sequences showed identities higher than 99-98.8 % in both genes. They were also similar to reference isolates in HA sequences (99 % identity) and in NA sequences (99 % identity). Amino acid sequences predicted for the HA gene were highly identical to reference strains. The NA amino acid substitutions identified did not include the oseltamivir-resistant H275Y substitution. Conclusion: Viral isolation and RT-PCR together were useful for diagnosis of the influenza A (H3N2) virus. Variations in HA and NA sequences are similar to those identified in worldwide reference isolates and no drug resistance was found.

Keywords: influenza A (H3N2), genetic characterization, viral isolation, RT-PCR, Saudi Arabia

Procedia PDF Downloads 264
1272 Exploring the Physical Environment and Building Features in Earthquake Disaster Areas

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience. Conventional ways to mitigate earthquake disaster are to enhance building codes and advance structural engineering measures. However, earthquake-induced ground damage such as liquefaction, land subsidence, landslide happen on places nearby earthquake prone or poor soil condition areas. Therefore, this study uses spatial statistical analysis to explore the spatial pattern of damaged buildings. Afterwards, principle components analysis (PCA) is applied to categorize the similar features in different kinds of clustered patterns. The results show that serious landslide prone area, close to fault, vegetated ground surface and mudslide prone area are common in those highly damaged buildings. In addition, the oldest building might not be directly referred to the most vulnerable one. In fact, it seems that buildings built between 1974 and 1989 become more fragile during the earthquake. The incorporation of both spatial statistical analyses and PCA can provide more accurate information to subsidize retrofit programs to enhance earthquake resistance in particular areas.

Keywords: earthquake disaster, spatial statistic analysis, principle components analysis (pca), clustered patterns

Procedia PDF Downloads 317
1271 Design and 3D-Printout of The Stack-Corrugate-Sheel Core Sandwiched Decks for The Bridging System

Authors: K. Kamal

Abstract:

Structural sandwich panels with core of Advanced Composites Laminates l Honeycombs / PU-foams are used in aerospace applications and are also fabricated for use now in some civil engineering applications. An all Advanced Composites Foot Over Bridge (FOB) system, designed and developed for pedestrian traffic is one such application earlier, may be cited as an example here. During development stage of this FoB, a profile of its decks was then spurred as a single corrugate sheet core sandwiched between two Glass Fibre Reinforced Plastics(GFRP) flat laminates. Once successfully fabricated and used, these decks did prove suitable also to form other structure on assembly, such as, erecting temporary shelters. Such corrugated sheet core profile sandwiched panels were then also tried using the construction materials but any conventional method of construction only posed certain difficulties in achieving the required core profile monolithically within the sandwiched slabs and hence it was then abended. Such monolithic construction was, however, subsequently eased out on demonstration by dispensing building materials mix through a suitably designed multi-dispenser system attached to a 3D Printer. This study conducted at lab level was thus reported earlier and it did include the fabrication of a 3D printer in-house first as ‘3DcMP’ as well as on its functional operation, some required sandwich core profiles also been 3D-printed out producing panels hardware. Once a number of these sandwich panels in single corrugated sheet core monolithically printed out, panels were subjected to load test in an experimental set up as also their structural behavior was studied analytically, and subsequently, these results were correlated as reported in the literature. In achieving the required more depths and also to exhibit further the stronger and creating sandwiched decks of better structural and mechanical behavior, further more complex core configuration such as stack corrugate sheets core with a flat mid plane was felt to be the better sandwiched core. Such profile remained as an outcome that turns out merely on stacking of two separately printed out monolithic units of single corrugated sheet core developed earlier as above and bonded them together initially, maintaining a different orientation. For any required sequential understanding of the structural behavior of any such complex profile core sandwiched decks with special emphasis to study of the effect in the variation of corrugation orientation in each distinct tire in this core, it obviously calls for an analytical study first. The rectangular,simply supported decks have therefore been considered for analysis adopting the ‘Advanced Composite Technology(ACT), some numerical results along with some fruitful findings were obtained and these are all presented here in this paper. From this numerical result, it has been observed that a mid flat layer which eventually get created monolethically itself, in addition to eliminating the bonding process in development, has been found to offer more effective bending resistance by such decks subjected to UDL over them. This is understood to have resulted here since the existence of a required shear resistance layer at the mid of the core in this profile, unlike other bending elements. As an addendum to all such efforts made as covered above and was published earlier, this unique stack corrugate sheet core profile sandwiched structural decks, monolithically construction with ease at the site itself, has been printed out from a 3D Printer. On employing 3DcMP and using some innovative building construction materials, holds the future promises of such research & development works since all those several aspects of a 3D printing in construction are now included such as reduction in the required construction time, offering cost effective solutions with freedom in design of any such complex shapes thus can widely now be realized by the modern construction industry.

Keywords: advance composite technology(ACT), corrugated laminates, 3DcMP, foot over bridge (FOB), sandwiched deck units

Procedia PDF Downloads 179
1270 Effect of Tube Thickness on the Face Bending for Blind-Bolted Connection to Concrete Filled Tubular Structures

Authors: Mohammed Mahmood, Walid Tizani, Carlo Sansour

Abstract:

In this paper, experimental testing and numerical analysis were used to investigate the effect of tube thickness on the face bending for concrete filled hollow sections connected to other structural members using Extended Hollobolts. Six samples were tested experimentally by applying pull-out load on the bolts. These samples were designed to fail by column face bending. The main variable in all tests is the column face thickness. Finite element analyses were also performed using ABAQUS 6.11 to extend the experimental results and to quantify the effect of column face thickness. Results show that, the column face thickness has a clear impact on the connection strength and stiffness. However, the amount of improvement in the connection stiffness by changing the column face thickness from 5 mm to 6.3 mm seems to be higher than that when increasing it from 6.3 mm to 8 mm. The displacement at which the bolts start pulling-out from their holes increased with the use of thinner column face due to the high flexibility of the section. At the ultimate strength, the yielding of the column face propagated to the column corner and there was no yielding in its walls. After the ultimate resistance is reached, the propagation of the yielding was mainly in the column face with a miner yielding in the walls.

Keywords: anchored bolted connection, Extended Hollobolt, column faces bending, concrete filled hollow sections

Procedia PDF Downloads 426
1269 Fulani Herdsmen and the Threat to Grassroots Security in Rural Nigeria

Authors: Akachi Odoemene

Abstract:

There is an ongoing grassroots war in Nigeria, particularly in its north central zone, as well as all through its southern parts, which have been most bloody. The war is between Fulani herdsmen and farming communities – an age-long problem which has escalated in the last decade and has assumed a very deadly dimension. In a typical scenario, Fulani herdsmen move into non-Fulani homelands with their cattle which graze on local farmlands, destroying farmers’ crops. This provokes their victims – the farmers – to acts of resistance, preventing the Fulani and their cattle from entering into farmlands. In some cases, there have been incidences of killing and/or stealing cattle, or poisoning of fields. In response, the herders wedge deadly attacks on farming communities, leading to the death of thousands of people. To be sure, this has been a major factor of instability in the rural areas of Nigeria. This paper aims at engaging the issues and cross-cutting issues of interest, as well as providing context and perspectives to the violent conflicts between Fulani herders and local communities in Nigeria. It particularly interrogates four central issues: (1) the nature and dynamics of the crisis, (2) the positions and stakes of the parties to the crisis, (3) the remedies available for containing/managing the conflicts and their desirability, and (4) perspectives on the positions of government(s) (and the African Union) on this conflict. Both primary and secondary sources were used for the purposes of this essay.

Keywords: Fulani Herdsmen, violent conflicts and insecurity, sustainable remedies, Nigeria

Procedia PDF Downloads 260
1268 Novel Anticorrosion Epoxy Reinforced Graphitic Nanocomposite as a Durable Surface

Authors: Shimaa A. Higazy, Mohamed S. Selim, Olfat E. El-Azabawy, Abeer A. Hassan

Abstract:

We designed novel epoxy/graphitic carbon nitride (g-C₃N₄) nanocomposite materials as suitable surface coatings. g-C₃N₄ nanosheets were facilely prepared and dispersed in the epoxy resin via solution casting. This research focuses on the mechanical and anticorrosion properties of g-C₃N₄ nanofiller reinforced epoxy nanocomposites. The structures, sizes, and morphologies of designed polymeric nanocomposites and nanofillers were elucidated using various techniques such as FT-IR, NMR, FE-TEM, FE-SEM. The developed nanocomposite was applied as a surface coating by air-assisted spray method. The structure-property relationship was studied for different concentrations of nanofiller in the epoxy matrix. The anticorrosive properties were studied via electrochemical experiments, including potentiodynamic polarization, electrochemical impedance, and open-circuit potential analyses, as well as salt spray test. Mechanical durability was assessed by various methods, such as impact, T-bending, and crosscut tests. Surface heterogeneity, elasticity, and corrosion-resistance features are among the merits of developed composite. The highest improvement was achieved with well dispersion of g-C₃N₄ sheets fillers. This fascinating epoxy nanostructured coating provides a promising anticorrosive coatings for a sustainable future environment.

Keywords: epoxy, nanocomposite, surface coating, anticorrosive properties, mechanical durability

Procedia PDF Downloads 92
1267 Design and Validation of Cutting Performance of Ceramic Matrix Composites Using FEM Simulations

Authors: Zohaib Ellahi, Guolong Zhao

Abstract:

Ceramic matrix composite (CMC) material possesses high strength, wear resistance and anisotropy thus machining of this material is very difficult and demands high cost. In this research, FEM simulations and physical experiments have been carried out to assess the machinability of carbon fiber reinforced silicon carbide (C/SiC) using polycrystalline diamond (PCD) tool in slot milling process. Finite element model has been generated in Abaqus/CAE software and milling operation performed by using user defined material subroutine. Effect of different milling parameters on cutting forces and stresses has been calculated through FEM simulations and compared with experimental results to validate the finite element model. Cutting forces in x and y-direction were calculated through both experiments and finite element model and found a good agreement between them. With increase in cutting speed resultant cutting forces are decreased. Resultant cutting forces are increased with increased feed per tooth and depth of cut. When machining performed along the fiber direction stresses generated near the tool edge were minimum and increases with fiber cutting angle.

Keywords: experimental & numerical investigation, C/SiC cutting performance analysis, milling of CMCs, CMC composite stress analysis

Procedia PDF Downloads 91
1266 The Austenite Role in Duplex Stainless Steel Performance

Authors: Farej Ahmed Emhmmed Alhegagi

Abstract:

Duplex stainless steels are attractive material for apparatus working with sea water, petroleum, refineries, chemical plants,vessels, and pipes operating at high temperatures and/or pressures. The role of austenite phase in duplex stainless steels performance was investigated. Zeron 100, stainless steels with 50/50 ferrite / austenite %, specimens were tested for strength, toughness, embrittlement susceptibility, and assisted environmental cracking (AEC) resistance. Specimens were heat treated at 475°C for different times and loaded to well- selected values of load. The load values were chosen to be within the range of higher / lower than the expected toughness. Sodium chloride solution 3.5wt% environment with polarity of -900mV / SCE was used to investigate the material susceptibility to (AEC). Results showed important effect of austenite on specimens overall mechanical properties. Strength was affected by the ductile nature of austenite phase leading to plastic deformation accommodated by austenite slip system. Austenite embrittlement, either by decomposition or nucleation and growth process, was not observed to take place during specimens heat treatment. Cracking due to (AEC) took place in the ferrite grains and avoided the austenite phase. Specimens showed the austenite to act as a crack arrestor during (AEC) of duplex stainless steels.

Keywords: austenite phase, mechanical properties, embrittlement susceptibility, duplex stainless steels

Procedia PDF Downloads 362
1265 Prospective Future of Frame Fire Tests

Authors: Chung-Hao Wu, Tung-Dju Lin, Ming-Chin Ho, Minehiro Nishiyama

Abstract:

This paper discusses reported fire tests of concrete beams and columns, future fire tests of beam/column frames, and an innovative concept for designing a beam/column furnace. The proposed furnace could be designed to maximize the efficiency of fire test procedures and minimize the cost of furnace construction and fuel consumption. ASTM E119 and ISO 834 standards were drafted based on prescriptive codes and have several weaknesses. The first involves a provision allowing the support regions of a test element to be protected from fire exposure. The second deals with the L/30 deflection end point instead of the structural end point (collapse) in order to protect the hydraulic rams from fire damage. Furthermore, designers commonly use the measured fire endurances of interior columns to assess fire ratings of edge and corner columns of the same building. The validity of such an engineering practice is theoretically unsound. Performance-Based Codes (PBC) require verification tests of structural frames including the beam/column joints to overcome these weaknesses but allow the use of element test data as reference only. In the last 30 years, PBC have gained global popularity because the innovative design and flexibility in achieving an ultimate performance goal.

Keywords: fire resistance, concrete structure, beam/column frame, fire tests

Procedia PDF Downloads 334
1264 Growth and Some Physiological Properties of Three Selected Species of Bifidobacteria in Admixture of Soy Milk and Goat Milk

Authors: Ahmed Zahran

Abstract:

Bifidobacterium breve ATCC 15700, Bifidobacterium adolescents ATCC 15704 and Bifidobacterium longum ATCC 15707 were tested for their growth, acid production, bile tolerance, antibiotic resistance and adherence to columnar epithelial cells of the small intestine of goat. The growth of all studied species was determined in the MRSL medium. B.longum 15707 was the most active species in comparison with the other two species; it was also more resistant to bile acids. The adhesion of the studied species to the columnar epithelial cells was studied. All the studied species showed some degree of adhesion; however, B.longum adhered more than the other two species. This species was resistant to four types of antibiotics and was sensitive to chloramphenicol 30 µg. The activity of Bifidobacterium species in soymilk was evaluated by measuring the development of titratalle acidity. B.longum 15707 was the most active species in terms of growth and activity of soymilk. So, soymilk containing bifidobacteria could be added to goat milk to produce acceptable functional soy yogurt, using the ratio of (1:4) soy milk to goat milk. This product could be of unique health benefits, especially in the case of high cholesterol levels and replenishment of intestinal flora after antibiotic therapy.

Keywords: bifidobacteria physiological properties, soy milk, goat milk, attachment epithelial cells, columnar tissues, probiotic food

Procedia PDF Downloads 89
1263 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite

Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala

Abstract:

The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.

Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂

Procedia PDF Downloads 135
1262 UV-Cured Coatings Based on Acrylated Epoxidized Soybean Oil and Epoxy Carboxylate

Authors: Alaaddin Cerit, Suheyla Kocaman, Ulku Soydal

Abstract:

During the past two decades, photoinitiated polymerization has been attracting a great interest in terms of scientific and industrial activity. The wide recognition of UV treatment in the polymer industry results not only from its many practical applications but also from its advantage for low-cost processes. Unlike most thermal curing systems, radiation-curable systems can polymerize at room temperature without additional heat, and the curing is completed in a very short time. The advantage of cationic UV technology is that post-cure can continue in the ‘dark’ after radiation. In this study, bio-based acrylated epoxidized soybean oil (AESO) was cured with UV radiation using radicalic photoinitiator Irgacure 184. Triarylsulphonium hexafluoroantimonate was used as cationic photoinitiator for curing of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. The effect of curing time and the amount of initiators on the curing degree and thermal properties were investigated. The thermal properties of the coating were analyzed after crosslinking UV irradiation. The level of crosslinking in the coating was evaluated by FTIR analysis. Cationic UV-cured coatings demonstrated excellent adhesion and corrosion resistance properties. Therefore, our study holds a great potential with its simple and low-cost applications.

Keywords: acrylated epoxidized soybean oil, epoxy carboxylate, thermal properties, uv-curing

Procedia PDF Downloads 262
1261 Preparation, Structure, and Properties of Hydroxyl Containing Acrylate Monomer Grafted Silk Fabrics by HRP-Catalyzed ATRP Method

Authors: Tieling Xing, Jinqiu Yang, Guoqiang Chen

Abstract:

It is environmentally friendly to use horseradish peroxidase (HRP) instead of the traditional transition metal catalyst for the catalyst of atom transfer radical polymerization (ATRP). Silk fabrics were successfully grafted with hydroxyl-containing acrylate monomer to improve its crease resistance by HRP-catalyzed ATRP method. Taking grafting yield as the evaluation index, single factor tests revealed that the optimum grafting reaction condition was as follow: monomer mass fraction 120-210%(o.w.f), HRP concentration 360-480U/mL, molar ratio of HRP to NaAsc 1:150, reaction temperature 50-60℃, reaction time 24h. Raman spectra showed hydroxyl-containing acrylate monomer were successfully grafted on silk fabrics. SEM figures indicated the surface of grafted silk became rougher, and graft copolymer was distributed evenly on the surface of silk fiber. The crease-resistant recovery property of grafted silk fabric was greatly improved, especially in wet crease recovery angle. The result showed hydroxyl-containing acrylate monomer can be successfully grafted onto silk fabric based on HRP-catalyzed ATRP method.

Keywords: atom transfer radical polymerization, catalysis, horseradish peroxidase, hydroxyl-containing acrylate monomer

Procedia PDF Downloads 154
1260 Atomic Layer Deposition of MoO₃ on Mesoporous γ-Al₂O₃ Prepared by Sol-Gel Method as Efficient Catalyst for Oxidative Desulfurization of Refractory Dibenzothiophene Compound

Authors: S. Said, Asmaa A. Abdulrahman

Abstract:

MoOₓ/Al₂O₃ based catalyst has long been widely used as an active catalyst in oxidative desulfurization reaction due to its high stability under severe reaction conditions and high resistance to sulfur poisoning. In this context, 4 & 9wt.% MoO₃ grafted on mesoporous γ-Al₂O₃ has been synthesized using the modified atomic layer deposition (ALD) method. Another MoO₃/Al₂O₃ sample was prepared by the conventional wetness impregnation (IM) method, for comparison. The effect of the preparation methods on the metal-support interaction was evaluated using different characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N₂-physisorption, transmission electron microscopy (TEM), H₂- temperature-programmed reduction and FT-IR. Oxidative desulfurization (ODS) reaction of the model fuel oil was used as a probe reaction to examine the catalytic efficiency of the prepared catalysts. ALD method led to samples with much better physicochemical properties than those of the prepared one via the impregnation method. However, the 9 wt.%MoO₃/Al₂O₃ (ALD) catalyst in the ODS reaction of model fuel oil shows enhanced catalytic performance with ~90%, which has been attributed to the more Mo⁶⁺ surface concentrations relative to Al³⁺ with large pore diameter and surface area. The kinetic study shows that the ODS of DBT follows a pseudo first-order rate reaction.

Keywords: mesoporous Al₂O₃, xMoO₃/Al₂O₃, atomic layer deposition, wetness impregnation, ODS, DBT

Procedia PDF Downloads 109
1259 Strength Properties of Concrete Paving Blocks with Fly Ash and Glass Powder

Authors: Joel Santhosh, N. Bhavani Shankar Rao

Abstract:

Problems associated with construction site have been known for many years. Construction industry has to support a world of continuing population growth and economic development. The rising costs of construction materials and the need to adhere to sustainability, alternative construction techniques and materials are being sought. To increase the applications of concrete paving blocks, greater understanding of products produced with locally available materials and indigenously produced mineral admixtures is essential. In the present investigation, concrete paving blocks may be produced with locally available aggregates, cement, fly ash and waste glass powder as the mineral admixture. The ultimate aim of this work is to ascertain the performance of concrete paving blocks containing fly ash and glass powder and compare it with the performance of conventional concrete paving blocks. Mix design is carried out to form M40 grade of concrete by using IS: 10262: 2009 and specification given by IRC: SP: 63: 2004. The paving blocks are tested in accordance to IS: 15658: 2006. It showed that the partial replacement of cement by fly ash and waste glass powder satisfies the minimum requirement as specified by the Indian standard IS: 15658: 2006 for concrete paving blocks to be used in non traffic, light traffic and medium-heavy traffic areas. The study indicated that fly ash and waste glass powder can effectively be used as cement replacement without substantial change in strength.

Keywords: paving block, fly ash, glass powder, strength, abrasion resistance, durability

Procedia PDF Downloads 301
1258 Influence of the Molecular Architecture of a Polycarboxylate-Based Superplasticizer on the Rheological and Physicomechanical Properties of Cement Pastes

Authors: Alya Harichane, Abderraouf Achour, Abdelbaki Benmounah

Abstract:

The main difficulty encountered in the formulation of high-performance concrete (HPC) consists in choosing the most efficient cement-superplasticizer pair allowing to obtain maximum water reduction, good workability of the concrete in the fresh state, and very good mechanical resistance in the hardened state. The aim of this work is to test the efficiency of three polycarboxylate ether-based superplasticizers (PCE) marketed in Algeria with CEMI 52.5 R cement and to study the effect of chemical structure of PCE on zeta potential, rheological and mechanical properties of cement pastes. The property of the polymers in cement was tested by a Malvern Zetasizer 2000 apparatus and VT 550 viscometer. Results showed that the zeta potential and its rheological properties are related to the molecular weight and the density carboxylic of PCE. The PCE with a moderate molecular weight and the highest carboxylic groups had the best dispersion (high value of zeta potential) and lowest viscosity. The effect of the chemical structure of PCEs on mechanical properties is evaluated by the formulation of cement mortar with these PCEs. The result shows that there is a correlation between the zeta potential of polymer and the compressive strength of cement paste.

Keywords: molecular weight, polycarboxylate-ether superplasticizer, rheology, zeta potential

Procedia PDF Downloads 94