Search results for: social network theory
14814 The Amorphousness of the Exposure Sphere
Authors: Nipun Ansal
Abstract:
People guard their beliefs and opinions with their lives. Beliefs that they’ve formed over a period of time, and can go to any lengths to defy, desist from, resist and negate any outward stimulus that has the potential to shake them. Cognitive dissonance is term used to describe it in theory. And every human being, in order to defend himself from cognitive dissonance applies 4 rings of defense viz. Selective Exposure, Selective Perception, Selective Attention, and Selective Retention. This paper is a discursive analysis on how the onslaught of social media, complete with its intrusive weaponry, has amorphized the external ring of defense: the selective exposure. The stimulus-response model of communication is one of the most inherent model that encompasses communication behaviours of children and elderly, individual and masses, humans and animals alike. The paper deliberates on how information bombardment through the uncontrollable channels of the social media, Facebook and Twitter in particular, have dismantled our outer sphere of exposure, leading users online to a state of constant dissonance, and thus feeding impulsive action-taking. It applies case study method citing an example to corroborate how knowledge generation has given in to the information overload and the effect it has on decision making. With stimulus increasing in number of encounters, opinion formation precedes knowledge because of the increased demand of participation and decrease in time for the information to permeate from the outer sphere of exposure to the sphere of retention, which of course, is through perception and attention. This paper discusses the challenge posed by this fleeting, stimulus rich, peer-dominated media on the traditional models of communication and meaning-generation.Keywords: communication, discretion, exposure, social media, stimulus
Procedia PDF Downloads 40814813 Classroom Incivility Behaviours among Medical Students: A Comparative Study in Pakistan
Authors: Manal Rauf
Abstract:
Trained medical practitioners are produced from medical colleges serving in public and private sectors. Prime responsibility of teaching faculty is to inculcate required work ethic among the students by serving as role models for them. It is an observed fact that classroom incivility behaviours are providing a friction in achieving these targets. Present study aimed at identification of classroom incivility behaviours observed by teachers and students of public and private medical colleges as per Glasser’s Choice Theory, making a comparison and investigating the strategies being adopted by teachers of both sectors to control undesired class room behaviours. Findings revealed that a significant difference occurs between teacher and student incivility behaviours. Public sector teacher focussed on survival as a strong factor behind in civil behaviours whereas private sector teachers considered power as the precedent for incivility. Teachers of both sectors are required to use verbal as well as non-verbal immediacy to reach a healthy leaning environment.Keywords: classroom incivility behaviour, glasser choice theory, Mehrabian immediacy theory
Procedia PDF Downloads 23914812 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition
Procedia PDF Downloads 15714811 A Social Network Analysis for Formulating Construction Defect Generation Mechanisms
Authors: Hamad Aljassmi, Sangwon Han
Abstract:
Various solutions for preventing construction defects have been suggested. However, a construction company may have difficulties adopting all these suggestions due to financial and practical constraints. Based on this recognition, this paper aims to identify the most significant defect causes and formulate their defect generation mechanism in order to help a construction company to set priorities of its defect prevention strategies. For this goal, we conducted a questionnaire survey of 106 industry professionals and identified five most significant causes including: (1) organizational culture, (2) time pressure and constraints, (3) workplace quality system, (4) financial constraints upon operational expenses and (5) inadequate employee training or learning opportunities.Keywords: defect, quality, failure, risk
Procedia PDF Downloads 62714810 [Keynote Speech]: An Overview on the Effectiveness of Critical Thinking on Knowledge
Authors: Solehah Yaacob
Abstract:
The study focuses on revisiting the effectiveness of Critical Thinking in human mind capability as a major faculty in human life. The tool used as a measurement of this knowledge ability consists of several processes including experience and education background. To emphasize the `Overview` concept, the researcher highlights two major aspects of philosophical approach, they are; Divine Revelation Concept and Modern Scientific Theory. The research compares between the both parties to introduce the Divine Revelation into Modern Scientific theory. An analytical and critical study of the both concepts become the methodology of the discussion.Keywords: critical thinking, knowledge, intellectual, language
Procedia PDF Downloads 43814809 A Dynamic Neural Network Model for Accurate Detection of Masked Faces
Authors: Oladapo Tolulope Ibitoye
Abstract:
Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.Keywords: convolutional neural network, face detection, face mask, masked faces
Procedia PDF Downloads 6814808 Social Work Education in Gujarat: Challenges and Responses
Authors: Rajeshkumar Mahendrabhai Patel, Narendrakumar D. Vasava
Abstract:
It is seen that higher education in India requires a high degree of attention for the quality. The Government of India has been putting its efforts to improvise the quality of higher education through different means such as need based changes in the policy of higher education, accreditation of the institutions of higher education and many others. The Social Work education in India started way back in Tata School of Social Sciences in the year 1936. Gradually the need for social work education was felt, and different institution started imparting social work education in different regions. Due to the poor educational policy of Gujarat state (The Concept of Self-Financed Education) different Universities initiated the MSW program on a self-financed basis. The present scenario of the Social work Education in Gujarat faces ample challenges and problems which need to be addressed consciously. The present paper will try to examine and analyze the challenges and problems such as curriculum, staffing, quality of teaching, the pattern of education etc. The probable responses to this scenario are also discussed in this paper.Keywords: social work education, challenges, problems, responses, self-financed education in Gujarat
Procedia PDF Downloads 36814807 Diversity and Inclusion in Focus: Cultivating a Sense of Belonging in Higher Education
Authors: Naziema Jappie
Abstract:
South Africa is a diverse nation but with many challenges. The fundamental changes in the political, economic and educational domains in South Africa in the late 1990s affected the South African community profoundly. In higher education, experiences of discrimination and bias are detrimental to the sense of belonging of staff and students. It is therefore important to cultivate an appreciation of diversity and inclusion. To bridge common understandings with the reality of racial inequality, we must understand the ways in which senior and executive leadership at universities think about social justice issues relating to diversity and inclusion and contextualize these within the current post-democracy landscape. The position and status of social justice issues and initiatives in South African higher education is a slow process. The focus is to highlight how and to what extent initiatives or practices around campus diversity and inclusion have been considered and made part of the mainstream intellectual and academic conversations in South Africa. This involves an examination of the social and epistemological conditions of possibility for meaningful research and curriculum practices, staff and student recruitment, and student access and success in addressing the challenges posed by social diversity on campuses. Methodology: In this study, university senior and executive leadership were interviewed about their perceptions and advancement of social justice and examine the buffering effects of diverse and inclusive peer interactions and institutional commitment on the relationship between discrimination–bias and sense of belonging for staff and students at the institutions. The paper further explores diversity and inclusion initiatives at the three institutions using a Critical Race Theory approach in conjunction with a literature review on social justice with a special focus on diversity and inclusion. Findings: This paper draws on research findings that demonstrate the need to address social justice issues of diversity and inclusion in the SA higher education context. The reason for this is so that university leaders can live out their experiences and values as they work to transform students into being accountable and responsible. Documents were selected for review with the intent of illustrating how diversity and inclusion work being done across an institution can shape the experiences of previously disadvantaged persons at these institutions. The research has highlighted the need for institutional leaders to embody their own mission and vision as they frame social justice issues for the campus community. Finally, the paper provides recommendations to institutions for strengthening high-level diversity and inclusion programs/initiatives among staff, students and administrators. The conclusion stresses the importance of addressing the historical and current policies and practices that either facilitate or negate the goals of social justice, encouraging these privileged institutions to create internal committees or task forces that focus on racial and ethnic disparities in the institution.Keywords: diversity, higher education, inclusion, social justice
Procedia PDF Downloads 12114806 Micromechanics Modeling of 3D Network Smart Orthotropic Structures
Authors: E. M. Hassan, A. L. Kalamkarov
Abstract:
Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures
Procedia PDF Downloads 40014805 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner
Authors: Beier Zhu, Rui Zhang, Qi Song
Abstract:
Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization
Procedia PDF Downloads 19414804 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata
Procedia PDF Downloads 38814803 Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System
Authors: Alpesh Adeshara, Rajendrasinh Jadeja, Praghnesh Bhatt
Abstract:
Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of Supervisory Control and Data Acquisition System (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide Area Measurement System (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of MATLAB based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.Keywords: GPS global positioning system, PMU phasor measurement system, WAMS wide area monitoring system, DFT, PDC
Procedia PDF Downloads 49614802 Presenting a Model for Predicting the State of Being Accident-Prone of Passages According to Neural Network and Spatial Data Analysis
Authors: Hamd Rezaeifar, Hamid Reza Sahriari
Abstract:
Accidents are considered to be one of the challenges of modern life. Due to the fact that the victims of this problem and also internal transportations are getting increased day by day in Iran, studying effective factors of accidents and identifying suitable models and parameters about this issue are absolutely essential. The main purpose of this research has been studying the factors and spatial data affecting accidents of Mashhad during 2007- 2008. In this paper it has been attempted to – through matching spatial layers on each other and finally by elaborating them with the place of accident – at the first step by adding landmarks of the accident and through adding especial fields regarding the existence or non-existence of effective phenomenon on accident, existing information banks of the accidents be completed and in the next step by means of data mining tools and analyzing by neural network, the relationship between these data be evaluated and a logical model be designed for predicting accident-prone spots with minimum error. The model of this article has a very accurate prediction in low-accident spots; yet it has more errors in accident-prone regions due to lack of primary data.Keywords: accident, data mining, neural network, GIS
Procedia PDF Downloads 4714801 Stimulating the Social Interaction Development of Children through Computer Play Activities: The Role of Teachers
Authors: Mahani Razali, Abd Halim Masnan, Nordin Mamat, Seah Siok Peh
Abstract:
This research is based on three main objectives which are to identify children`s social interaction behaviour during computer play activities, teacher’s role and to explore teacher’s beliefs, views and knowledge about computers use in four Malaysian pre-schools.This qualitative study was carried out among 25 pre-school children and three teachers as the research sample. The data collection procedures involved structured observation which was to identify social interaction behavior among pre-school children through computer play activities; as for semi-structured interviews, it was done to study the perception of the teachers on the acquired of social interaction behavior development among the children. A variety of patterns can be seen within the peer interactions indicating that children exhibit a vast range of social interactions at the computer, and they varied each day. The findings of this study guide us to certain conclusions, which have implications in understanding the phenomena of how computers were used and how its relationship to the children’s social interactions emerge in the four Malaysian preschools. This study provides evidence that the children’s social interactions with peers and adults were mediated by the engagement of the children in the computer environments.Keywords: computer, play, preschool, social interaction
Procedia PDF Downloads 29914800 Golden Dawn's Rhetoric on Social Networks: Populism, Xenophobia and Antisemitism
Authors: Georgios Samaras
Abstract:
New media such as Facebook, YouTube and Twitter introduced the world to a new era of instant communication. An era where online interactions could replace a lot of offline actions. Technology can create a mediated environment in which participants can communicate (one-to-one, one-to-many, and many-to-many) both synchronously and asynchronously and participate in reciprocal message exchanges. Currently, social networks are attracting similar academic attention to that of the internet after its mainstream implementation into public life. Websites and platforms are seen as the forefront of a new political change. There is a significant backdrop of previous methodologies employed to research the effects of social networks. New approaches are being developed to be able to adapt to the growth of social networks and the invention of new platforms. Golden Dawn was the first openly neo-Nazi party post World War II to win seats in the parliament of a European country. Its racist rhetoric and violent tactics on social networks were rewarded by their supporters, who in the face of Golden Dawn’s leaders saw a ‘new dawn’ in Greek politics. Mainstream media banned its leaders and members of the party indefinitely after Ilias Kasidiaris attacked Liana Kanelli, a member of the Greek Communist Party, on live television. This media ban was seen as a treasonous move by a significant percentage of voters, who believed that the system was desperately trying to censor Golden Dawn to favor mainstream parties. The shocking attack on live television received international coverage and while European countries were condemning this newly emerged neo-Nazi rhetoric, almost 7 percent of the Greek population rewarded Golden Dawn with 18 seats in the Greek parliament. Many seem to think that Golden Dawn mobilised its voters online and this approach played a significant role in spreading their message and appealing to wider audiences. No strict online censorship existed back in 2012 and although Golden Dawn was openly used neo-Nazi symbolism, it was allowed to use social networks without serious restrictions until 2017. This paper used qualitative methods to investigate Golden Dawn’s rise in social networks from 2012 to 2019. The focus of the content analysis was set on three social networking platforms: Facebook, Twitter and YouTube, while the existence of Golden Dawn’s website, which was used as a news sharing hub, was also taken into account. The content analysis included text and visual analyses that sampled content from their social networking pages to translate their political messaging through an ideological lens focused on extreme-right populism. The absence of hate speech regulations on social network platforms in 2012 allowed the free expression of those heavily ultranationalist and populist views, as they were employed by Golden Dawn in the Greek political scene. On YouTube, Facebook and Twitter, the influence of their rhetoric was particularly strong. Official channels and MPs profiles were investigated to explore the messaging in-depth and understand its ideological elements.Keywords: populism, far-right, social media, Greece, golden dawn
Procedia PDF Downloads 14814799 The Univalence Principle: Equivalent Mathematical Structures Are Indistinguishable
Authors: Michael Shulman, Paige North, Benedikt Ahrens, Dmitris Tsementzis
Abstract:
The Univalence Principle is the statement that equivalent mathematical structures are indistinguishable. We prove a general version of this principle that applies to all set-based, categorical, and higher-categorical structures defined in a non-algebraic and space-based style, as well as models of higher-order theories such as topological spaces. In particular, we formulate a general definition of indiscernibility for objects of any such structure, and a corresponding univalence condition that generalizes Rezk’s completeness condition for Segal spaces and ensures that all equivalences of structures are levelwise equivalences. Our work builds on Makkai’s First-Order Logic with Dependent Sorts, but is expressed in Voevodsky’s Univalent Foundations (UF), extending previous work on the Structure Identity Principle and univalent categories in UF. This enables indistinguishability to be expressed simply as identification, and yields a formal theory that is interpretable in classical homotopy theory, but also in other higher topos models. It follows that Univalent Foundations is a fully equivalence-invariant foundation for higher-categorical mathematics, as intended by Voevodsky.Keywords: category theory, higher structures, inverse category, univalence
Procedia PDF Downloads 15114798 Race, Class, Gender, and the American Welfare State (1930s-1990s)
Authors: Tahar Djebbar Aziza
Abstract:
The American society, like all societies, is fractured by social divisions between different groups of people. It is divided by race, class, gender, and other social and cultural characteristics. Social divisions affect the way and the manner welfare is delivered for citizens within the American society. The welfare state exists to guarantee the promotion of well –being for all the different components within a society without taking into account their age, gender, their ethnicity/race, or their social belonging (class). Race, class, and even gender issues are the main factors that affected the formal structure, the nature, as well as the evolution of the American welfare state and led to its uniqueness. They have affected the structure and the evolution of the American welfare state since its creation in the 1930s, and led to its uniqueness in an international level. This study aims therefore at enhancing the readers’ awareness of social divisions: race, class, gender and their implications for the distribution of welfare resources and life chances in the USA from the early 1930s to the late 1990s.Keywords: African Americans, class, gender, minority groups, race, social divisions, social policy, U.S. welfare state
Procedia PDF Downloads 55514797 Network Traffic Classification Scheme for Internet Network Based on Application Categorization for Ipv6
Authors: Yaser Miaji, Mohammed Aloryani
Abstract:
The rise of recent applications in everyday implementation like videoconferencing, online recreation and voice speech communication leads to pressing the need for novel mechanism and policy to serve this steep improvement within the application itself and users‟ wants. This diversity in web traffics needs some classification and prioritization of the traffics since some traffics merit abundant attention with less delay and loss, than others. This research is intended to reinforce the mechanism by analysing the performance in application according to the proposed mechanism implemented. The mechanism used is quite direct and analytical. The mechanism is implemented by modifying the queue limit in the algorithm.Keywords: traffic classification, IPv6, internet, application categorization
Procedia PDF Downloads 56514796 Imputing the Minimum Social Value of Public Healthcare: A General Equilibrium Model of Israel
Authors: Erez Yerushalmi, Sani Ziv
Abstract:
The rising demand for healthcare services, without a corresponding rise in public supply, led to a debate on whether to increase private healthcare provision - especially in hospital services and second-tier healthcare. Proponents for increasing private healthcare highlight gains in efficiency, while opponents its risk to social welfare. None, however, provide a measure of the social value and its impact on the economy in terms of a monetary value. In this paper, we impute a minimum social value of public healthcare that corresponds to indifference between gains in efficiency, with losses to social welfare. Our approach resembles contingent valuation methods that introduce a hypothetical market for non-commodities, but is different from them because we use numerical simulation techniques to exploit certain market failure conditions. In this paper, we develop a general equilibrium model that distinguishes between public-private healthcare services and public-private financing. Furthermore, the social value is modelled as a by product of healthcare services. The model is then calibrated to our unique health focused Social Accounting Matrix of Israel, and simulates the introduction of a hypothetical health-labour market - given that it is heavily regulated in the baseline (i.e., the true situation in Israel today). For baseline parameters, we estimate the minimum social value at around 18% public healthcare financing. The intuition is that the gain in economic welfare from improved efficiency, is offset by the loss in social welfare due to a reduction in available social value. We furthermore simulate a deregulated healthcare scenario that internalizes the imputed value of social value and searches for the optimal weight of public and private healthcare provision.Keywords: contingent valuation method (CVM), general equilibrium model, hypothetical market, private-public healthcare, social value of public healthcare
Procedia PDF Downloads 14614795 Sentiment Analysis of Social Media on the Cryptocurrency Price
Authors: Tarek Sadraoui, Ahlem Nasr Othman
Abstract:
Our research deal with studying and testing the effects of social media on the cryptocurrency price during the period 2020-2023. The rise of the phenomena of cryptocurrency in the world raises questions about the importance of sentiment analysis of social media on the price of the cryptocurrency. Using panel data, we show that the positive and negative twits have a positive and statistically significant impact on the price of the cryptocurrency, and neutral twits have exerted a negative and significant effect on the cryptocurrency price. Specifically, we determine the causal relationship, short-term and long-term relationship with ARDL approach between the cryptocurrency price and social media using the Granger causality test.Keywords: social media, Twitter, Google trend, panel, cryptocurrency
Procedia PDF Downloads 11514794 The Study of Elementary School Teacher’s Behavior of Using E-books by UTAUT Model
Authors: Tzong-Shing Cheng, Chen Pei Chen, Shu-Wei Chen
Abstract:
The purpose of this research is to apply Unified Theory of Acceptance and Use of Technology (UTAUT) model to investigate the factors that influence elementary school teacher’s behavior of using e-books. Based on the literature review, a questionnaire was modified and used to test the elementary school teachers in Changhua. A total of 420 questionnaires were administered and 364 of them were returned, including 328 valid and 36 invalid questionnaires. The effective response rate is 78%. The methods of data analysis include descriptive statistics, factor analysis, Pearson’s correlation coefficient, one way analysis of variance (ANOVA) and simple regression analysis. The results show that: 1. There were significant difference in the Elementary school teachers’ “Performance Expectancy”, “Effort Expectancy”, “Social Influence”, and “Facilitating Conditions” depending on their different “Demographic Variables”. 2. “Performance Expectancy” and “Behavioral Intention to Use” are positively correlated. 3. “Effort Expectancy” and “Behavioral Intention to Use” are positively correlated. 4. There was no significant relationship between “Social Influence” and “Behavioral Intention to Use”. 5. There was significant relationship between “Facilitating Conditions” and “Use Behavior”.Keywords: e-books, UTAUT, elementary school teacher, behavioral intention to use
Procedia PDF Downloads 61314793 The On-Board Critical Message Transmission Design for Navigation Satellite Delay/Disruption Tolerant Network
Authors: Ji-yang Yu, Dan Huang, Guo-ping Feng, Xin Li, Lu-yuan Wang
Abstract:
The navigation satellite network, especially the Beidou MEO Constellation, can relay data effectively with wide coverage and is applied in navigation, detection, and position widely. But the constellation has not been completed, and the amount of satellites on-board is not enough to cover the earth, which makes the data-relay disrupted or delayed in the transition process. The data-relay function needs to tolerant the delay or disruption in some extension, which make the Beidou MEO Constellation a delay/disruption-tolerant network (DTN). The traditional DTN designs mainly employ the relay table as the basic of data path schedule computing. But in practical application, especially in critical condition, such as the war-time or the infliction heavy losses on the constellation, parts of the nodes may become invalid, then the traditional DTN design could be useless. Furthermore, when transmitting the critical message in the navigation system, the maximum priority strategy is used, but the nodes still inquiry the relay table to design the path, which makes the delay more than minutes. Under this circumstances, it needs a function which could compute the optimum data path on-board in real-time according to the constellation states. The on-board critical message transmission design for navigation satellite delay/disruption-tolerant network (DTN) is proposed, according to the characteristics of navigation satellite network. With the real-time computation of parameters in the network link, the least-delay transition path is deduced to retransmit the critical message in urgent conditions. First, the DTN model for constellation is established based on the time-varying matrix (TVM) instead of the time-varying graph (TVG); then, the least transition delay data path is deduced with the parameters of the current node; at last, the critical message transits to the next best node. For the on-board real-time computing, the time delay and misjudges of constellation states in ground stations are eliminated, and the residual information channel for each node can be used flexibly. Compare with the minute’s delay of traditional DTN; the proposed transmits the critical message in seconds, which improves the re-transition efficiency. The hardware is implemented in FPGA based on the proposed model, and the tests prove the validity.Keywords: critical message, DTN, navigation satellite, on-board, real-time
Procedia PDF Downloads 34314792 A Carrier Phase High Precision Ranging Theory Based on Frequency Hopping
Authors: Jie Xu, Zengshan Tian, Ze Li
Abstract:
Previous indoor ranging or localization systems achieving high accuracy time of flight (ToF) estimation relied on two key points. One is to do strict time and frequency synchronization between the transmitter and receiver to eliminate equipment asynchronous errors such as carrier frequency offset (CFO), but this is difficult to achieve in a practical communication system. The other one is to extend the total bandwidth of the communication because the accuracy of ToF estimation is proportional to the bandwidth, and the larger the total bandwidth, the higher the accuracy of ToF estimation obtained. For example, ultra-wideband (UWB) technology is implemented based on this theory, but high precision ToF estimation is difficult to achieve in common WiFi or Bluetooth systems with lower bandwidth compared to UWB. Therefore, it is meaningful to study how to achieve high-precision ranging with lower bandwidth when the transmitter and receiver are asynchronous. To tackle the above problems, we propose a two-way channel error elimination theory and a frequency hopping-based carrier phase ranging algorithm to achieve high accuracy ranging under asynchronous conditions. The two-way channel error elimination theory uses the symmetry property of the two-way channel to solve the asynchronous phase error caused by the asynchronous transmitter and receiver, and we also study the effect of the two-way channel generation time difference on the phase according to the characteristics of different hardware devices. The frequency hopping-based carrier phase ranging algorithm uses frequency hopping to extend the equivalent bandwidth and incorporates a carrier phase ranging algorithm with multipath resolution to achieve a ranging accuracy comparable to that of UWB at 400 MHz bandwidth in the typical 80 MHz bandwidth of commercial WiFi. Finally, to verify the validity of the algorithm, we implement this theory using a software radio platform, and the actual experimental results show that the method proposed in this paper has a median ranging error of 5.4 cm in the 5 m range, 7 cm in the 10 m range, and 10.8 cm in the 20 m range for a total bandwidth of 80 MHz.Keywords: frequency hopping, phase error elimination, carrier phase, ranging
Procedia PDF Downloads 12214791 Consumer Trust in User-Generated Brand Recommendations on Social Networking Sites
Authors: Minimol M. C.
Abstract:
The study provides insights into the consumer’s trust on user generated brand recommendations on social networking sites and also investigates the role of ad scepticism in generating consumer trust in user generated brand recommendations. The work contributes to a better understanding of trust development in the context of social networking sites. Specifically, the study reveals that not all dimensions of trustworthiness are equal. The individual user characteristics vary according to the person. The major finding of this study is that high degrees of trust toward user generated brand recommendations can be generated on the basis of high trust toward social networking sites and ad scepticism. Consumers trust the user generated brand recommendations based on the individual’s trust in the particular social networking platform and the level of their individual ad-scepticism. The study pinpoints that as consumers’ trust in user generated brand recommendations is affected by their trust in social networking sites, it is influenced by benevolence, integrity, the propensity to trust, and individual user characteristics to a great extent, and hence, it is imperative for brands should attempt to build on these factors so that they can engage consumers to generate user generated content on social media.Keywords: Consumer trust, user-generated brand recommendations, ad scepticism, social networking sites
Procedia PDF Downloads 10114790 Intrusion Detection System Using Linear Discriminant Analysis
Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou
Abstract:
Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99
Procedia PDF Downloads 22714789 Theory of Constraints: Approach for Performance Enhancement and Boosting Overhaul Activities
Authors: Sunil Dutta
Abstract:
Synchronization is defined as ‘the sequencing and re-sequencing of all relative and absolute activities in time and space and continuous alignment of those actions with purposeful objective in a complex and dynamic atmosphere. In a complex and dynamic production / maintenance setup, no single group can work in isolation for long. In addition, many activities in projects take place simultaneously at the same time. Work of every section / group is interwoven with work of others. The various activities / interactions which take place in production / overhaul workshops are interlinked because of physical requirements (information, material, workforces, equipment, and space) and dependencies. The activity sequencing is determined by physical dependencies of various department / sections / units (e.g., inventory availability must be ensured before stripping and disassembling of equipment), whereas resource dependencies do not. Theory of constraint facilitates identification, analyses and exploitation of the constraint in methodical manner. These constraints (equipment, manpower, policies etc.) prevent the department / sections / units from getting optimum exploitation of available resources. The significance of theory of constraints for achieving synchronization at overhaul workshop is illustrated in this paper.Keywords: synchronization, overhaul, throughput, obsolescence, uncertainty
Procedia PDF Downloads 35114788 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks
Authors: S. Neelima, P. S. Subramanyam
Abstract:
The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)
Procedia PDF Downloads 43714787 Language Learning Motivation in Mozambique: A Quantitative Study of University Students
Authors: Simao E. Luis
Abstract:
From the 1960s to the 1990s, the social-psychological framework of language attitudes that emerged from the Canadian research tradition was very influential. Integrativeness was one of the main variables in Gardner’s theory because refugees and immigrants were motivated to learn English and French to integrate into the Canadian community. Second language (L2) scholars have expressed concerns over integrativeness because it cannot explain the motivation of L2 learners in global contexts. This study aims to investigate student motivation to learn English as a foreign language in Mozambique, and to contribute to the ongoing validation of the L2 Motivational Self System theory in an under-researched country. One hundred thirty-seven (N=137) university students completed a well-established motivation questionnaire. The data were analyzed with SPSS, and descriptive statistics, correlations, multiple regressions, and MANOVA were conducted. Results show that many variables contribute to motivated learning behavior, particularly the L2 learning experience and attitudes towards the English language. Statistically significant differences were found between males and females, with males expressing more motivation to learn the English language for personal interests. Statistically significant differences were found between older and younger students, with older students reporting more vivid images of themselves as future English language users. These findings have pedagogical implications because motivational strategies are positively correlated with student motivated learning behavior. Therefore, teachers should design L2 tasks that can help students to develop their future L2 selves.Keywords: English as a foreign language, L2 motivational self system, Mozambique, university students
Procedia PDF Downloads 11914786 Central Energy Management for Optimizing Utility Grid Power Exchange with a Network of Smart Homes
Authors: Sima Aznavi, Poria Fajri, Hanif Livani
Abstract:
Smart homes are small energy systems which may be equipped with renewable energy sources, storage devices, and loads. Energy management strategy plays a main role in the efficient operation of smart homes. Effective energy scheduling of the renewable energy sources and storage devices guarantees efficient energy management in households while reducing the energy imports from the grid. Nevertheless, despite such strategies, independently day ahead energy schedules for multiple households can cause undesired effects such as high power exchange with the grid at certain times of the day. Therefore, the interactions between multiple smart home day ahead energy projections is a challenging issue in a smart grid system and if not managed appropriately, the imported energy from the power network can impose additional burden on the distribution grid. In this paper, a central energy management strategy for a network consisting of multiple households each equipped with renewable energy sources, storage devices, and Plug-in Electric Vehicles (PEV) is proposed. The decision-making strategy alongside the smart home energy management system, minimizes the energy purchase cost of the end users, while at the same time reducing the stress on the utility grid. In this approach, the smart home energy management system determines different operating scenarios based on the forecasted household daily load and the components connected to the household with the objective of minimizing the end user overall cost. Then, selected projections for each household that are within the same cost range are sent to the central decision-making system. The central controller then organizes the schedules to reduce the overall peak to average ratio of the total imported energy from the grid. To validate this approach simulations are carried out for a network of five smart homes with different load requirements and the results confirm that by applying the proposed central energy management strategy, the overall power demand from the grid can be significantly flattened. This is an effective approach to alleviate the stress on the network by distributing its energy to a network of multiple households over a 24- hour period.Keywords: energy management, renewable energy sources, smart grid, smart home
Procedia PDF Downloads 24814785 Proposing Problem-Based Learning as an Effective Pedagogical Technique for Social Work Education
Authors: Christine K. Fulmer
Abstract:
Social work education is competency based in nature. There is an expectation that graduates of social work programs throughout the world are to be prepared to practice at a level of competence, which is beneficial to both the well-being of individuals and community. Experiential learning is one way to prepare students for competent practice. The use of Problem-Based Learning (PBL) is a form experiential education that has been successful in a number of disciplines to bridge the gap between the theoretical concepts in the classroom to the real world. PBL aligns with the constructivist theoretical approach to learning, which emphasizes the integration of new knowledge with the beliefs students already hold. In addition, the basic tenants of PBL correspond well with the practice behaviors associated with social work practice including multi-disciplinary collaboration and critical thinking. This paper makes an argument for utilizing PBL in social work education.Keywords: social work education, problem-based learning, pedagogy, experiential learning, constructivist theoretical approach
Procedia PDF Downloads 314