Search results for: smart manufacturing
1028 Characterization of a Hypoeutectic Al Alloy Obtained by Selective Laser Melting
Authors: Jairo A. Muñoz, Alexander Komissarov, Alexander Gromov
Abstract:
In this investigation, a hypoeutectic AlSi11Cu alloy was printed. This alloy was obtained in powder form with an average particle size of 40 µm. Bars 20 mm in diameter and 100 mm in length were printed with the building direction parallel to the bars' longitudinal direction. The microstructural characterization demonstrated an Al matrix surrounded by a Si network forming a coral-like pattern. The microstructure of the alloy showed a heterogeneous behavior with a mixture of columnar and equiaxed grains. Likewise, the texture indicated that the columnar grains were preferentially oriented towards the building direction, while the equiaxed followed a texture dominated by the cube component. On the other hand, the as-printed material strength showed higher values than those obtained in the same alloy using conventional processes such as casting. In addition, strength and ductility differences were found in the printed material, depending on the measurement direction. The highest values were obtained in the radial direction (565 MPa maximum strength and 4.8% elongation to failure). The lowest values corresponded to the transverse direction (508 MPa maximum strength and 3.2 elongation to failure), which corroborate the material anisotropy.Keywords: additive manufacturing, aluminium alloy, melting pools, tensile test
Procedia PDF Downloads 1551027 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease
Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove
Abstract:
Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease
Procedia PDF Downloads 1061026 Modeling, Analysis, and Optimization of Process Parameters of Metal Spinning
Authors: B. Ravi Kumar, S. Gajanana, K. Hemachandra Reddy, K. Udayani
Abstract:
Physically into various derived shapes and sizes under the effect of externally applied forces. The spinning process is an advanced plastic working technology and is frequently used for manufacturing axisymmetric shapes. Over the last few decades, Sheet metal spinning has developed significantly and spun products have widely used in various industries. Nowadays the process has been expanded to new horizons in industries, since tendency to use minimum tool and equipment costs and also using lower forces with the output of excellent surface quality and good mechanical properties. The automation of the process is of greater importance, due to its wider applications like decorative household goods, rocket nose cones, gas cylinders, etc. This paper aims to gain insight into the conventional spinning process by employing experimental and numerical methods. The present work proposes an approach for optimizing process parameters are mandrel speed (rpm), roller nose radius (mm), thickness of the sheet (mm). Forming force, surface roughness and strain are the responses.in spinning of Aluminum (2024-T3) using DOE-Response Surface Methodology (RSM) and Analysis of variance (ANOVA). The FEA software is used for modeling and analysis. The process parameters considered in the experimentation.Keywords: FEA, RSM, process parameters, sheet metal spinning
Procedia PDF Downloads 3191025 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 181024 Effect of Alloying Elements on Particle Incorporation of Boron Carbide Reinforced Aluminum Matrix Composites
Authors: Steven Ploetz, Andreas Lohmueller, Robert F. Singer
Abstract:
The outstanding performance of aluminum matrix composites (AMCs) regarding stiffness/weight ratio makes AMCs attractive material for lightweight construction. Low-density boride compounds promise simultaneously an increase in stiffness and decrease in composite density. This is why boron carbide is chosen for composite manufacturing. The composites are fabricated with the stir casting process. To avoid gas entrapment during mixing and ensure nonporous composites, partial vacuum is adapted during particle feeding and stirring. Poor wettability of boron carbide with liquid aluminum hinders particle incorporation, but alloying elements such as magnesium and titanium could improve wettability and thus particle incorporation. Next to alloying elements, adapted stirring parameters and impeller geometries improve particle incorporation and enable homogenous particle distribution and high particle volume fractions of boron carbide. AMCs with up to 15 vol.% of boron carbide particles are produced via melt stirring, resulting in an increase in stiffness and strength.Keywords: aluminum matrix composites, boron carbide, stiffness, stir casting
Procedia PDF Downloads 3081023 Lean and Six Sigma in the Freight Railway Supplier Base in South Africa: Factors Leading to Their Application
Authors: Hilda Kundai Chikwanda, Lawrence Thabo Mokhadi
Abstract:
The study aimed to review the factors that lead the freight railway suppliers base in South Africa (SA) to apply the Lean and Six Sigma (L&SS) methodologies. A thorough review of the factors that lead organisations, in the different industries, to implement these methodologies was done. L&SS applications were found to be prominent in the automotive industry. In particular, the railway industry in SA and the region were reviewed in terms of challenges in capturing the freight logistics market and growing market share. Qualitative methods have been used to collect primary data and descriptive statistics was used to calculate, describe, and summarize collected research data. The results show that external factors have a greater influence on the implementation of L&SS. The study drew inferences between freight railway supplier base and the application of Lean and Six Sigma (L&SS) methodologies in the SA context. It identified challenges that leads the SA freight railway to lose market share to road freight users. It further observes and recommends that L&SS methodologies are the ideal strategy required to implement a turnaround in the trajectory of freight railways as a competitive freight transport solution.Keywords: production, methodology, manufacturing, lean, six sigma
Procedia PDF Downloads 451022 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair
Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira
Abstract:
A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.Keywords: bottleneck, golgohar iron ore mining & industrial company, maintainability, maintenance costs, reliability
Procedia PDF Downloads 3631021 Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor
Authors: Junting Xiang, Jörg Uwe Schlüter, Fei Duan
Abstract:
The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressors are selected as the configuration in this study and Computational Fluid Dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.Keywords: axial compressor, CFD, heat transfer, miniature gas turbines, Reynolds number
Procedia PDF Downloads 4161020 Deterministic and Stochastic Modeling of a Micro-Grid Management for Optimal Power Self-Consumption
Authors: D. Calogine, O. Chau, S. Dotti, O. Ramiarinjanahary, P. Rasoavonjy, F. Tovondahiniriko
Abstract:
Mafate is a natural circus in the north-western part of Reunion Island, without an electrical grid and road network. A micro-grid concept is being experimented in this area, composed of a photovoltaic production combined with electrochemical batteries, in order to meet the local population for self-consumption of electricity demands. This work develops a discrete model as well as a stochastic model in order to reach an optimal equilibrium between production and consumptions for a cluster of houses. The management of the energy power leads to a large linearized programming system, where the time interval of interest is 24 hours The experimental data are solar production, storage energy, and the parameters of the different electrical devices and batteries. The unknown variables to evaluate are the consumptions of the various electrical services, the energy drawn from and stored in the batteries, and the inhabitants’ planning wishes. The objective is to fit the solar production to the electrical consumption of the inhabitants, with an optimal use of the energies in the batteries by satisfying as widely as possible the users' planning requirements. In the discrete model, the different parameters and solutions of the linear programming system are deterministic scalars. Whereas in the stochastic approach, the data parameters and the linear programming solutions become random variables, then the distributions of which could be imposed or established by estimation from samples of real observations or from samples of optimal discrete equilibrium solutions.Keywords: photovoltaic production, power consumption, battery storage resources, random variables, stochastic modeling, estimations of probability distributions, mixed integer linear programming, smart micro-grid, self-consumption of electricity.
Procedia PDF Downloads 1101019 Durability Study of Binary Blended High Performance Concrete
Authors: Vatsal Patel, Niraj Shah
Abstract:
This paper presents the results of a laboratory study on the properties of binary blended High Performance cementitious systems containing blends of ordinary Portland cement (OPC), Porcelain Powder or Marble Powder blend proportions of 100:00, 95:05, 90:10, 85:15, 80:20 for OPC: Porcelain Powder/Marble Powder. Studies on the Engineering Properties of the cementitious concrete, namely compressive strength, flexural strength, sorptivity, rapid chloride penetration test and accelerated corrosion test have been performed and those of OPC concrete. The results show that the inclusion of Porcelain powder or Marble Powder as binary blended cement alters to a great degree the properties of the binder as well as the resulting concrete. In addition, the results show that the Porcelain powder with 85:15 proportions and Marble powder with 90:10 proportions as binary systems to produce high-performance concrete could potentially be used in the concrete construction industry particular in lowering down the volume of OPC used and lowering emission of CO2 produces during manufacturing of cement.Keywords: accelerated corrosion, binary blended cementitious system, rapid chloride penetration, sorptivity
Procedia PDF Downloads 3861018 Experimental Study of the Electrical Conductivity and Thermal Conductivity Property of Micro-based Al-Cu-Nb-Mo Alloy
Abstract:
Aluminum based alloys with a certain compositional blend and manufacturing method have been reported to have excellent electrical conductors. In the current investigation, metal powders of Aluminum (Al), Copper (Cu), Niobium (Nb), and Molybdenum (Mo) were weighed in accordance with certain ratios and spread equally by combining the powder particles. The metal particles were mixed using a tube mixer for 12 hours. Before pouring into a 30mm-diameter graphite mold, pre-pressed, and placed into an SPS furnace, the thermal conductivity of the mixed metal powders was evaluated using a portable Thermtest device. Axial pressure of 50 MPa was used at a heating rate of 50 oC/min, and a multi-stage heating procedure with a holding period of 10 min. was used to sinter at temperatures between 300 oC and 480 oC. After being cooled to room temperature, the specimens were unmolded to produce the aluminum, copper, niobium, and molybdenum alloy material. The HPS 2662 Precision Four-point Probe Meter was used to determine the electrical resistivity and the values used to calculate the electrical conductivity of the sintered alloy samples. Finally, the alloy with the highest electrical conductivity and thermal conductivity qualities was the one with the following composition: Al 93.5Cu4Nb1.5Mo1. It also had a density of 3.23 g/cm3. It could be advisable for usage in automobile radiator and electric transmission line components.Keywords: Al-Cu-Nb-Mo, electrical conductivity, alloy, sintering, thermal conductivity
Procedia PDF Downloads 911017 The Impact of Experiential Learning on the Success of Upper Division Mechanical Engineering Students
Authors: Seyedali Seyedkavoosi, Mohammad Obadat, Seantorrion Boyle
Abstract:
The purpose of this study is to assess the effectiveness of a nontraditional experiential learning strategy in improving the success and interest of mechanical engineering students, using the Kinematics/Dynamics of Machine course as a case study. This upper-division technical course covers a wide range of topics, including mechanism and machine system analysis and synthesis, yet the complexities of ideas like acceleration, motion, and machine component relationships are hard to explain using standard teaching techniques. To solve this problem, a thorough design project was created that gave students hands-on experience developing, manufacturing, and testing their inventions. The main goals of the project were to improve students' grasp of machine design and kinematics, to develop problem-solving and presenting abilities, and to familiarize them with professional software. A questionnaire survey was done to evaluate the effect of this technique on students' performance and interest in mechanical engineering. The outcomes of the study shed light on the usefulness of nontraditional experiential learning approaches in engineering education.Keywords: experiential learning, nontraditional teaching, hands-on design project, engineering education
Procedia PDF Downloads 971016 Exploring the Relationships between Job Satisfaction, Work Engagement, and Loyalty of Academic Staff
Authors: Iveta Ludviga, Agita Kalvina
Abstract:
This paper aims to link together the concepts of job satisfaction, work engagement, trust, job meaningfulness and loyalty to the organisation focusing on specific type of employment–academic jobs. The research investigates the relationships between job satisfaction, work engagement and loyalty as well as the impact of trust and job meaningfulness on the work engagement and loyalty. The survey was conducted in one of the largest Latvian higher education institutions and the sample was drawn from academic staff (n=326). Structured questionnaire with 44 reflective type questions was developed to measure toe constructs. Data was analysed using SPSS and Smart-PLS software. Variance based structural equation modelling (PLS-SEM) technique was used to test the model and to predict the most important factors relevant to employee engagement and loyalty. The first order model included two endogenous constructs (loyalty and intention to stay and recommend, and employee engagement), as well as six exogenous constructs (feeling of fair treatment and trust in management; career growth opportunities; compensation, pay and benefits; management; colleagues; teamwork; and finally job meaningfulness). Job satisfaction was developed as second order construct and both: first and second order models were designed for data analysis. It was found that academics are more engaged than satisfied with their work and main reason for that was found to be job meaningfulness, which is significant predictor for work engagement, but not for job satisfaction. Compensation is not significantly related to work engagement, but only to job satisfaction. Trust was not significantly related neither to engagement, nor to satisfaction, however, it appeared to be significant predictor of loyalty and intentions to stay with the University. This paper revealed academic jobs as specific kind of employment where employees can be more engaged than satisfied and highlighted the specific role of job meaningfulness in the University settings.Keywords: job satisfaction, job meaningfulness, higher education, work engagement
Procedia PDF Downloads 2511015 A Study on the Influence of Planet Pin Parallelism Error to Load Sharing Factor
Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Yong Yang, Gang Shen
Abstract:
In this paper, planet pin parallelism error, which is one of manufacturing error of planet carrier, is employed as a main variable to influence planet load sharing factor. This error is categorize two group: (i) pin parallelism error with rotation on the axis perpendicular to the tangent of base circle of gear(x axis rotation in this paper) (ii) pin parallelism error with rotation on the tangent axis of base circle of gear(y axis rotation in this paper). For this study, the planetary gear system in 1.5MW wind turbine is applied and pure torsional rigid body model of this planetary gear is built using Solidworks and MSC.ADAMS. Based on quantified parallelism error and simulation model, dynamics simulation of planetary gear is carried out to obtain dynamic mesh load results with each type of error and load sharing factor is calculated with mesh load results. Load sharing factor formula and the suggestion for planetary reliability design is proposed with the conclusion of this study.Keywords: planetary gears, planet load sharing, MSC. ADAMS, parallelism error
Procedia PDF Downloads 3991014 Impact of Charging PHEV at Different Penetration Levels on Power System Network
Authors: M. R. Ahmad, I. Musirin, M. M. Othman, N. A. Rahmat
Abstract:
Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level.Keywords: plug-in hybrid electric vehicle, transportation electrification, impact of charging PHEV, electricity demand profile, load profile
Procedia PDF Downloads 2871013 Remote Wireless Patient Monitoring System
Authors: Sagar R. Patil, Dinesh R. Gawade, Sudhir N. Divekar
Abstract:
One of the medical devices we found when we visit a hospital care unit such device is ‘patient monitoring system’. This device (patient monitoring system) informs doctors and nurses about the patient’s physiological signals. However, this device (patient monitoring system) does not have a remote monitoring capability, which is necessitates constant onsite attendance by support personnel (doctors and nurses). Thus, we have developed a Remote Wireless Patient Monitoring System using some biomedical sensors and Android OS, which is a portable patient monitoring. This device(Remote Wireless Patient Monitoring System) monitors the biomedical signals of patients in real time and sends them to remote stations (doctors and nurse’s android Smartphone and web) for display and with alerts when necessary. Wireless Patient Monitoring System different from conventional device (Patient Monitoring system) in two aspects: First its wireless communication capability allows physiological signals to be monitored remotely and second, it is portable so patients can move while there biomedical signals are being monitor. Wireless Patient Monitoring is also notable because of its implementation. We are integrated four sensors such as pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate and electrocardiogram (ECG) in this device (Wireless Patient Monitoring System) and Monitoring and communication applications are implemented on the Android OS using threads, which facilitate the stable and timely manipulation of signals and the appropriate sharing of resources. The biomedical data will be display on android smart phone as well as on web Using web server and database system we can share these physiological signals with remote place medical personnel’s or with any where in the world medical personnel’s. We verified that the multitasking implementation used in the system was suitable for patient monitoring and for other Healthcare applications.Keywords: patient monitoring, wireless patient monitoring, bio-medical signals, physiological signals, embedded system, Android OS, healthcare, pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate, electrocardiogram (ECG)
Procedia PDF Downloads 5711012 Use of DNA Barcoding and UPLC-MS to Authenticate Agathosma spp. in South African Herbal Products
Authors: E. Pretorius, A. M. Viljoen, M. van der Bank
Abstract:
Introduction: The phytochemistry of Agathosma crenulata and A. betulina has been studied extensively, while their molecular analysis through DNA barcoding remains virtually unexplored. This technique can confirm the identity of plant species included in a herbal product, thereby ensuring the efficacy of the herbal product and the accuracy of its label. Materials and methods: Authentic Agathosma reference material of A. betulina (n=16) and A. crenulata (n=10) were obtained. Thirteen commercial products were purchased from various health shops around Johannesburg, South Africa, using the search term “Agathosma” or “Buchu.” The plastid regions matK and ycf1 were used to barcode the Buchu products, and BRONX analysis confirmed the taxonomic identity of the samples. UPLC-MS analyses were also performed. Results: Only (30/60) 60% of the traded samples tested from 13 suppliers contained A. betulina in their herbal products. Similar results were also obtained for the UPLC-MS analysis. Conclusion: In this study, we demonstrate the application of DNA barcoding in combination with phytochemical analysis to authenticate herbal products claiming to contain Agathosma plants as an ingredient in their products. This supports manufacturing efforts to ensure that herbal products that are safe for the consumer.Keywords: Buchu, substitution, barcoding, BRONX algorithm, matK, ycf1, UPLC-MS
Procedia PDF Downloads 1291011 Low-Density Lipoproteins Mediated Delivery of Paclitaxel and MRI Imaging Probes for Personalized Medicine Applications
Authors: Sahar Rakhshan, Simonetta Geninatti Crich, Diego Alberti, Rachele Stefania
Abstract:
The combination of imaging and therapeutic agents in the same smart nanoparticle is a promising option to perform a minimally invasive imaging guided therapy. In this study, Low density lipoproteins (LDL), one of the most attractive biodegradable and biocompatible nanoparticles, were used for the simultaneous delivery of Paclitaxel (PTX), a hydrophobic antitumour drug and an amphiphilic contrast agent, Gd-AAZTA-C17, in B16-F10 melanoma cell line. These cells overexpress LDL receptors, as assessed by Flow cytometry analysis. PTX and Gd-AAZTA-C17 loaded LDLs (LDL-PTX-Gd) have been prepared, characterized and their stability was assessed under 72 h incubation at 37 ◦C and compared to LDL loaded with Gd-AAZTA-C17 (LDL-Gd) and LDL-PTX. The cytotoxic effect of LDL-PTX-Gd was evaluated by MTT assay. The anti-tumour drug loaded into LDLs showed a significantly higher toxicity on B16-F10 cells with respect to the commercially available formulation Paclitaxel Kabi (PTX Kabi) used in clinical applications. It was possible to demonstrate a high uptake of LDL-Gd in B16-F10 cells. As a consequence of the high cell uptake, melanoma cells showed significantly high cytotoxic effect when incubated in the presence of PTX (LDL-PTX-Gd). Furthermore, B16-F10 have been used to perform Magnetic Resonance Imaging. By the analysis of the image signal intensity, it was possible to extrapolate the amount of internalized PTX indirectly by the decrease of relaxation times caused by Gd, proportional to its concentration. Finally, the treatment with PTX loaded LDL on B16-F10 tumour bearing mice resulted in a marked reduction of tumour growth compared to the administration of PTX Kabi alone. In conclusion, LDLs are selectively taken-up by tumour cells and can be successfully exploited for the selective delivery of Paclitaxel and imaging agents.Keywords: low density lipoprotein, melanoma cell lines, MRI, paclitaxel, personalized medicine application, theragnostic System
Procedia PDF Downloads 1251010 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels
Authors: Woo Young Jung, Sung Min Park, Ho Young Son, Viriyavudh Sim
Abstract:
This study presents a way to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, high-tech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).Keywords: aftershock, composite material, GFRP, infill panel
Procedia PDF Downloads 3341009 Evaluation and Analysis of ZigBee-Based Wireless Sensor Network: Home Monitoring as Case Study
Authors: Omojokun G. Aju, Adedayo O. Sule
Abstract:
ZigBee wireless sensor and control network is one of the most popularly deployed wireless technologies in recent years. This is because ZigBee is an open standard lightweight, low-cost, low-speed, low-power protocol that allows true operability between systems. It is built on existing IEEE 802.15.4 protocol and therefore combines the IEEE 802.15.4 features and newly added features to meet required functionalities thereby finding applications in wide variety of wireless networked systems. ZigBee‘s current focus is on embedded applications of general-purpose, inexpensive, self-organising networks which requires low to medium data rates, high number of nodes and very low power consumption such as home/industrial automation, embedded sensing, medical data collection, smart lighting, safety and security sensor networks, and monitoring systems. Although the ZigBee design specification includes security features to protect data communication confidentiality and integrity, however, when simplicity and low-cost are the goals, security is normally traded-off. A lot of researches have been carried out on ZigBee technology in which emphasis has mainly been placed on ZigBee network performance characteristics such as energy efficiency, throughput, robustness, packet delay and delivery ratio in different scenarios and applications. This paper investigate and analyse the data accuracy, network implementation difficulties and security challenges of ZigBee network applications in star-based and mesh-based topologies with emphases on its home monitoring application using the ZigBee ProBee ZE-10 development boards for the network setup. The paper also expose some factors that need to be considered when designing ZigBee network applications and suggest ways in which ZigBee network can be designed to provide more resilient to network attacks.Keywords: home monitoring, IEEE 802.14.5, topology, wireless security, wireless sensor network (WSN), ZigBee
Procedia PDF Downloads 3831008 A Damage Level Assessment Model for Extra High Voltage Transmission Towers
Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang
Abstract:
Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.Keywords: damage level monitoring, drift ratio, fragility curve, smart grid, transmission tower
Procedia PDF Downloads 2991007 Study the Effect of Tolerances for Press Tool Assembly: Computer Aided Tolerance Analysis
Authors: Subodh Kumar, Ramkisan Pawar, Gopal D. Belurkar
Abstract:
This paper describes a study for simple blanking tool. In blanking or piercing operation, punch and die should be concentric for proper cutting. In this study, tolerance analysis method is used to analyze the variation in the press tool assembly. Variation results into the eccentricity in between die and punch due to cumulative tolerance of parts used in assembly. 1D variation analysis were performed by CREO parametric computer aided design (CAD) Software Powered by CETOL 6σ computer aided tolerance analysis software. Use of CAD analysis software given the opportunity to find out the cause of variation in tool assembly. Accordingly, the new specification of tolerance and process setting for die set manufacturing has determined. Tolerance allocation and tolerance analysis method were performed iteratively to conclude that position tolerance as well as size tolerance of hole in top plate for bush and size tolerance of guide pillar were more responsible for eccentricity in punch and die. This work proposes optimum tolerance for press tool assembly parts to achieve 100 % yield for specified .015mm minimum tolerance zone.Keywords: blanking, GD&T (Geometric Dimension and Tolerancing), DPMU (defects per million unit), press tool, stackup analysis, tolerance allocation, yield percentage
Procedia PDF Downloads 3611006 Analysis of Performance Improvement Factors in Supply Chain Manufacturing Using Analytic Network Process and Kaizen
Authors: Juliza Hidayati, Yesie M. Sinuhaji, Sawarni Hasibuan
Abstract:
A company producing drinking water through many incompatibility issues that affect supply chain performance. The study was conducted to determine the factors that affect the performance of the supply chain and improve it. To obtain the dominant factors affecting the performance of the supply chain used Analytic Network Process, while to improve performance is done by using Kaizen. Factors affecting the performance of the supply chain to be a reference to identify the cause of the non-conformance. Results weighting using ANP indicates that the dominant factor affecting the level of performance is the precision of the number of shipments (15%), the ability of the fulfillment of the booking amount (12%), and the number of rejected products when signing (12%). Incompatibility of the factors that affect the performance of the supply chain are identified, so that found the root cause of the problem is most dominant. Based on the weight of Risk Priority Number (RPN) gained the most dominant root cause of the problem, namely the poorly maintained engine, the engine worked for three shifts, machine parts that are not contained in the plant. Improvements then performed using the Kaizen method of systematic and sustainable.Keywords: analytic network process, booking amount, risk priority number, supply chain performance
Procedia PDF Downloads 2941005 Hardness Properties of 3D Printed PLA Parts by Fused Deposition Modeling Process
Authors: Anis A. Ansari, M. Kamil
Abstract:
The development of 3D printing technology has allowed the manufacturing industry to create parts with a high degree of automation, increased design freedom, and improved mechanical performance. Fused deposition modelling (FDM) is a 3D printing technique in which successive layers of thermoplastic polymer are deposited and controlled to create a three-dimensional product. In this study, process parameters such as nozzle temperature and printing speed were chosen to investigate their effects on hardness properties. 3D printed specimens were fabricated by an FDM 3D printer from Polylactic acid (PLA) polymer. After analysis, it was observed that the hardness property is much influenced by print speed and nozzle temperature parameters. Maximum hardness was achieved at higher print speed which indicates that the Shore D hardness is directly proportional to the print speed. Moreover, at higher print speed, it has no significant dependence on the nozzle temperature. Hardness is also influenced by nozzle temperature, though to a lesser extent. The hardness slightly lowers when the nozzle temperature is raised from 190 to 210 oC, but due to improved bonding between each raster, a further rise in temperature increases the hardness property.Keywords: 3D printing, fused deposition modeling (FDM), polylactic acid (PLA), print speed, nozzle temperature, hardness property
Procedia PDF Downloads 961004 Development of Piezoelectric Gas Micropumps with the PDMS Check Valve Design
Authors: Chiang-Ho Cheng, An-Shik Yang, Hon-Yi Cheng, Ming-Yu Lai
Abstract:
This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micropump with check valve having the advantages of miniature size, light weight and low power consumption. The micropump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micropump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump and the displacement of the piezoelectric actuator, simultaneously. The gas micropump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micropump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.Keywords: PDMS, check valve, micropump, piezoelectric
Procedia PDF Downloads 4561003 The Status of Precision Agricultural Technology Adoption on Row Crop Farms vs. Specialty Crop Farms
Authors: Shirin Ghatrehsamani
Abstract:
Higher efficiency and lower environmental impact are the consequence of using advanced technology in farming. They also help to decrease yield variability by diminishing weather variability impact, optimizing nutrient and pest management as well as reducing competition from weeds. A better understanding of the pros and cons of applying technology and finding the main reason for preventing the utilization of the technology has a significant impact on developing technology adoption among farmers and producers in the digital agriculture era. The results from two surveys carried out in 2019 and 2021 were used to investigate whether the crop types had an impact on the willingness to utilize technology on the farms. The main focus of the questionnaire was on utilizing precision agriculture (PA) technologies among farmers in some parts of the united states. Collected data was analyzed to determine the practical application of various technologies. The survey results showed more similarities in the main reason not to use PA between the two crop types, but the present application of using technology in specialty crops is generally five times larger than in row crops. GPS receiver applications were reported similar for both types of crops. Lack of knowledge and high cost of data handling were cited as the main problems. The most significant difference was among using variable rate technology, which was 43% for specialty crops while was reported 0% for row crops. Pest scouting and mapping were commonly used for specialty crops, while they were rarely applied for row crops. Survey respondents found yield mapping, soil sampling map, and irrigation scheduling were more valuable for specialty crops than row crops in management decisions. About 50% of the respondents would like to share the PA data in both types of crops. Almost 50 % of respondents got their PA information from retailers in both categories, and as the second source, using extension agents were more common in specialty crops than row crops.Keywords: precision agriculture, smart farming, digital agriculture, technology adoption
Procedia PDF Downloads 1141002 Unbreakable Obedience of Safety Regulation: The Study of Authoritarian Leadership and Safety Performance
Authors: Hong-Yi Kuo
Abstract:
Leadership is a key factor of improving workplace safety, and there have been abundant of studies which support the positive effects of appropriate leadership on employee safety performance in the western academic. However, little safety research focus on the Chinese leadership style like paternalistic leadership. To fill this gap, the resent study aims to examine the relationship between authoritarian leadership (one of the ternary mode in paternalistic leadership) and safety outcomes. This study makes hypothesis on different levels. First, on the group level, as an authoritarian leader regards safety value as the most important tasks, there would be positive effect on group safety outcomes through strengthening safety group norms by the emphasis on etiquette. Second, on the cross level, when a leader with authoritarian style has high priority on safety, employees may more obey the safety rules because of fear due to emphasis on absolute authority over the leader. Therefore, employees may show more safety performance and then increase individual safety outcomes. Survey data would be collected from 50 manufacturing groups (each group with more than 5 members and a leader) and a hierarchical linear modeling analysis would be conducted to analyze the hypothesis. Above the predictive result, the study expects to be a cornerstone of safety leadership research in the Chinese academic and practice.Keywords: safety leadership, authoritarian leadership, group norms, safety behavior, supervisor safety priority
Procedia PDF Downloads 2331001 Strategic Investment in Infrastructure Development to Facilitate Economic Growth in the United States
Authors: Arkaprabha Bhattacharyya, Makarand Hastak
Abstract:
The COVID-19 pandemic is unprecedented in terms of its global reach and economic impacts. Historically, investment in infrastructure development projects has been touted to boost the economic growth of a nation. The State and Local governments responsible for delivering infrastructure assets work under tight budgets. Therefore, it is important to understand which infrastructure projects have the highest potential of boosting economic growth in the post-pandemic era. This paper presents relationships between infrastructure projects and economic growth. Statistical relationships between investment in different types of infrastructure projects (transit, water and wastewater, highways, power, manufacturing etc.) and indicators of economic growth are presented using historic data between 2002 and 2020 from the U.S. Census Bureau and U.S. Bureau of Economic Analysis (BEA). The outcome of the paper is the comparison of statistical correlations between investment in different types of infrastructure projects and indicators of economic growth. The comparison of the statistical correlations is useful in ranking the types of infrastructure projects based on their ability to influence economic prosperity. Therefore, investment in the infrastructures with the higher rank will have a better chance of boosting the economic growth. Once, the ranks are derived, they can be used by the decision-makers in infrastructure investment related decision-making process.Keywords: economic growth, infrastructure development, infrastructure projects, strategic investment
Procedia PDF Downloads 1711000 Survey of Communication Technologies for IoT Deployments in Developing Regions
Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen
Abstract:
The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them. A detailed review of each of the list of papers selected for the study is included in section III of this document. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs), as summarized in Table 1, are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The prevailing challenges of the different architectures are discussed and summarized in Table 3 of the IV section, where the main problem is the obstruction of communication paths by buildings, trees, hills, etc.Keywords: communication technologies, environmental monitoring, Internet of Things, IoT deployment challenges
Procedia PDF Downloads 85999 Factors Influencing the Voluntary Disclosure of Vietnamese Listed Companies
Authors: Pham Duc Hieu, Do Thi Huong Lan
Abstract:
The aim of this paper is to investigate the factors affecting the extent of voluntary disclosure by examining the annual reports of 205 industrial and manufacturing companies listing on Ho Chi Minh Stock Exchange (HSX) and Hanoi Stock Exchange (HNX) for the year end of 2012. Those factors include company size, profitability, leverage, state ownership, managerial ownership, and foreign ownership, board independence, role duality and type of external auditors. Evidence from this study suggests two main findings. (1) Companies with high foreign ownership have a high level of voluntary disclosure. (2) The company size is an important factor related to the increased level of voluntary disclosure in annual reports made by Vietnamese listed companies. The larger the company, the higher the information is disclosed. However, no significant associations are found between profitability, leverage, state ownership, managerial ownership, board independence, role duality and type of external auditors as hypothesized in this study.Keywords: voluntary disclosure, Vietnamese listed companies, voluntary, duality
Procedia PDF Downloads 410