Search results for: real-time data acquisition and reporting
23846 Healthcare in COVID-19 and It’s Impact on Children with Cochlear Implants
Authors: Amirreza Razzaghipour, Mahdi Khalili
Abstract:
References from the World Health Organization and the Center for Disease Control for deceleration the spread of the Novel COVID-19, comprises social estrangement, frequent handwashing, and covering your mouth when around others. As hearing healthcare specialists, the influence of existenceinvoluntary to boundary social interactions on persons with hearing impairment was significant for us to understand. We found ourselves delaying cochlear implant (CI) surgeries. All children, and chiefly those with hearing loss, are susceptible to reductions in spoken communication. Hearing plans, such as cochlear implants, provide children with hearing loss access to spoken communication and provision language development. when provided early and used consistently, these supplies help children with hearing loss to engage in spoken connections. Cochlear implant (CI) is a standard medical-surgical treatment for bilateral severe to profound hearing loss with no advantage with the hearing aid. Hearing is one of the most important senses in humans. Pediatric hearing loss establishes one of the most important public health challenges. Children with hearing loss are recognized early and habilitated via hearing aids or with cochlear implants (CIs). Suitable care and maintenance as well as continuous auditory verbal therapy (AVT) are also essential in reaching for the successful attainment of language acquisition. Children with hearing loss posture important challenges to their parents, particularly when there is limited admission to their hearing care providers. The disruption in the routine of their hearing and therapy follow-up services has had substantial effects on the children as well as their parents.Keywords: healthcare, covid-19, cochlear implants, spoken communication, hearing loss
Procedia PDF Downloads 16623845 Frequent Itemset Mining Using Rough-Sets
Authors: Usman Qamar, Younus Javed
Abstract:
Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining
Procedia PDF Downloads 43723844 Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data
Authors: Salihah Alghamdi, Surajit Ray
Abstract:
Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data.Keywords: irregularly shaped domain, partial differential equations, finite element analysis, complex boundray
Procedia PDF Downloads 14023843 Utilising an Online Data Collection Platform for the Development of a Community Engagement Database: A Case Study on Building Inter-Institutional Partnerships at UWC
Authors: P. Daniels, T. Adonis, P. September-Brown, R. Comalie
Abstract:
The community engagement unit at the University of the Western Cape was tasked with establishing a community engagement database. The database would store information of all community engagement projects related to the university. The wealth of knowledge obtained from the various disciplines would be used to facilitate interdisciplinary collaboration within the university, as well as facilitating community university partnership opportunities. The purpose of this qualitative study was to explore electronic data collection through the development of a database. Two types of electronic data collection platforms were used, namely online questionnaire and email. The semi structured questionnaire was used to collect data related to community engagement projects from different faculties and departments at the university. There are many benefits for using an electronic data collection platform, such as reduction of costs and time, ease in reaching large numbers of potential respondents, and the possibility of providing anonymity to participants. Despite all the advantages of using the electronic platform, there were as many challenges, as depicted in our findings. The findings suggest that certain barriers existed by using an electronic platform for data collection, even though it was in an academic environment, where knowledge and resources were in abundance. One of the challenges experienced in this process was the lack of dissemination of information via email to staff within faculties. The actual online software used for the questionnaire had its own limitations, such as only being able to access the questionnaire from the same electronic device. In a few cases, academics only completed the questionnaire after a telephonic prompt or face to face meeting about "Is higher education in South Africa ready to embrace electronic platform in data collection?"Keywords: community engagement, database, data collection, electronic platform, electronic tools, knowledge sharing, university
Procedia PDF Downloads 26423842 Women Entrepreneurial Resiliency Amidst COVID-19
Authors: Divya Juneja, Sukhjeet Kaur Matharu
Abstract:
Purpose: The paper is aimed at identifying the challenging factors experienced by the women entrepreneurs in India in operating their enterprises amidst the challenges posed by the COVID-19 pandemic. Methodology: The sample for the study comprised 396 women entrepreneurs from different regions of India. A purposive sampling technique was adopted for data collection. Data was collected through a self-administered questionnaire. Analysis was performed using the SPSS package for quantitative data analysis. Findings: The results of the study state that entrepreneurial characteristics, resourcefulness, networking, adaptability, and continuity have a positive influence on the resiliency of women entrepreneurs when faced with a crisis situation. Practical Implications: The findings of the study have some important implications for women entrepreneurs, organizations, government, and other institutions extending support to entrepreneurs.Keywords: women entrepreneurs, analysis, data analysis, positive influence, resiliency
Procedia PDF Downloads 11423841 Partial Least Square Regression for High-Dimentional and High-Correlated Data
Authors: Mohammed Abdullah Alshahrani
Abstract:
The research focuses on investigating the use of partial least squares (PLS) methodology for addressing challenges associated with high-dimensional correlated data. Recent technological advancements have led to experiments producing data characterized by a large number of variables compared to observations, with substantial inter-variable correlations. Such data patterns are common in chemometrics, where near-infrared (NIR) spectrometer calibrations record chemical absorbance levels across hundreds of wavelengths, and in genomics, where thousands of genomic regions' copy number alterations (CNA) are recorded from cancer patients. PLS serves as a widely used method for analyzing high-dimensional data, functioning as a regression tool in chemometrics and a classification method in genomics. It handles data complexity by creating latent variables (components) from original variables. However, applying PLS can present challenges. The study investigates key areas to address these challenges, including unifying interpretations across three main PLS algorithms and exploring unusual negative shrinkage factors encountered during model fitting. The research presents an alternative approach to addressing the interpretation challenge of predictor weights associated with PLS. Sparse estimation of predictor weights is employed using a penalty function combining a lasso penalty for sparsity and a Cauchy distribution-based penalty to account for variable dependencies. The results demonstrate sparse and grouped weight estimates, aiding interpretation and prediction tasks in genomic data analysis. High-dimensional data scenarios, where predictors outnumber observations, are common in regression analysis applications. Ordinary least squares regression (OLS), the standard method, performs inadequately with high-dimensional and highly correlated data. Copy number alterations (CNA) in key genes have been linked to disease phenotypes, highlighting the importance of accurate classification of gene expression data in bioinformatics and biology using regularized methods like PLS for regression and classification.Keywords: partial least square regression, genetics data, negative filter factors, high dimensional data, high correlated data
Procedia PDF Downloads 4923840 The Use of Voice in Online Public Access Catalog as Faster Searching Device
Authors: Maisyatus Suadaa Irfana, Nove Eka Variant Anna, Dyah Puspitasari Sri Rahayu
Abstract:
Technological developments provide convenience to all the people. Nowadays, the communication of human with the computer is done via text. With the development of technology, human and computer communications have been conducted with a voice like communication between human beings. It provides an easy facility for many people, especially those who have special needs. Voice search technology is applied in the search of book collections in the OPAC (Online Public Access Catalog), so library visitors will find it faster and easier to find books that they need. Integration with Google is needed to convert the voice into text. To optimize the time and the results of searching, Server will download all the book data that is available in the server database. Then, the data will be converted into JSON format. In addition, the incorporation of some algorithms is conducted including Decomposition (parse) in the form of array of JSON format, the index making, analyzer to the result. It aims to make the process of searching much faster than the usual searching in OPAC because the data are directly taken to the database for every search warrant. Data Update Menu is provided with the purpose to enable users perform their own data updates and get the latest data information.Keywords: OPAC, voice, searching, faster
Procedia PDF Downloads 34423839 Prospects in Teaching Arabic Grammatical Structures to Non-Arab Learners
Authors: Yahya Toyin Muritala, Nonglaksana Kama, Ahmad Yani
Abstract:
The aim of the paper is to investigate various linguistic techniques in enhancing and facilitating the acquisition of the practical knowledge of Arabic grammatical structuring among non-Arab learners of the standard classical Arabic language in non-Arabic speaking academic settings in the course of the current growth of the internationalism and cultural integration in some higher institutions. As the nature of the project requires standard investigations into the unique principal features of Arabic structurings and implications, the findings of the research work suggest some principles to follow in solving the problems faced by learners while acquiring grammatical aspects of Arabic language. The work also concentrates on the the structural features of the language in terms of inflection/parsing, structural arrangement order, functional particles, morphological formation and conformity etc. Therefore, grammatical aspect of Arabic which has gone through major stages in its early evolution of the classical stages up to the era of stagnation, development and modern stage of revitalization is a main subject matter of the paper as it is globally connected with communication and religion of Islam practiced by millions of Arabs and non-Arabs nowadays. The conclusion of the work shows new findings, through the descriptive and analytical methods, in terms of teaching language for the purpose of effective global communication with focus on methods of second language acquisitions by application.Keywords: language structure, Arabic grammar, classical Arabic, intercultural communication, non-Arabic speaking environment and prospects
Procedia PDF Downloads 40023838 A Fast Calculation Approach for Position Identification in a Distance Space
Authors: Dawei Cai, Yuya Tokuda
Abstract:
The market of localization based service (LBS) is expanding. The acquisition of physical location is the fundamental basis for LBS. GPS, the de facto standard for outdoor localization, does not work well in indoor environment due to the blocking of signals by walls and ceiling. To acquire high accurate localization in an indoor environment, many techniques have been developed. Triangulation approach is often used for identifying the location, but a heavy and complex computation is necessary to calculate the location of the distances between the object and several source points. This computation is also time and power consumption, and not favorable to a mobile device that needs a long action life with battery. To provide a low power consumption approach for a mobile device, this paper presents a fast calculation approach to identify the location of the object without online solving solutions to simultaneous quadratic equations. In our approach, we divide the location identification into two parts, one is offline, and other is online. In offline mode, we make a mapping process that maps the location area to distance space and find a simple formula that can be used to identify the location of the object online with very light computation. The characteristic of the approach is a good tradeoff between the accuracy and computational amount. Therefore, this approach can be used in smartphone and other mobile devices that need a long work time. To show the performance, some simulation experimental results are provided also in the paper.Keywords: indoor localization, location based service, triangulation, fast calculation, mobile device
Procedia PDF Downloads 17423837 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data
Authors: Chen Chou, Feng-Tyan Lin
Abstract:
Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.Keywords: Big Data, ITS, influence range, living area, central place theory, visualization
Procedia PDF Downloads 27923836 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data
Authors: Tapan Jain, Davender Singh Saini
Abstract:
Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network
Procedia PDF Downloads 61523835 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images
Authors: Sophia Shi
Abstract:
Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG
Procedia PDF Downloads 13123834 Qualitative Data Analysis for Health Care Services
Authors: Taner Ersoz, Filiz Ersoz
Abstract:
This study was designed enable application of multivariate technique in the interpretation of categorical data for measuring health care services satisfaction in Turkey. The data was collected from a total of 17726 respondents. The establishment of the sample group and collection of the data were carried out by a joint team from The Ministry of Health and Turkish Statistical Institute (Turk Stat) of Turkey. The multiple correspondence analysis (MCA) was used on the data of 2882 respondents who answered the questionnaire in full. The multiple correspondence analysis indicated that, in the evaluation of health services females, public employees, younger and more highly educated individuals were more concerned and complainant than males, private sector employees, older and less educated individuals. Overall 53 % of the respondents were pleased with the improvements in health care services in the past three years. This study demonstrates the public consciousness in health services and health care satisfaction in Turkey. It was found that most the respondents were pleased with the improvements in health care services over the past three years. Awareness of health service quality increases with education levels. Older individuals and males would appear to have lower expectancies in health services.Keywords: multiple correspondence analysis, multivariate categorical data, health care services, health satisfaction survey
Procedia PDF Downloads 24223833 Entrepreneurship Skills Acquisition through Education: Impact of the Nurturance of Knowledge, Skills, and Attitude on New Venture Creation
Authors: Satya Ranjan Acharya, Yamini Chandra
Abstract:
Entrepreneurship through higher education has taken a paradigm shift from traditional classroom lecture series method to a modern approach, which lay emphasis on nurturing competencies, enhancing knowledge, skills, attitudes/abilities (KSA), which has positive impact on the development of core capabilities. The present paper was focused on the analysis of entrepreneurship education as a pedagogical intervention for the post-graduate program offered at the Entrepreneurship Development Institute of India, Gujarat, India. The study is focused on a model with special emphasis on developing KSA and its effect on nurturing entrepreneurial spirit within students. The findings represent demographic and thematic assessment of the implemented pedagogical model with an outcome of students choosing a career in new venture creation or growth/diversification of family owned businesses. This research will be helpful for academicians, research scholars, potential entrepreneurs, ecosystem enablers and students to infer the effectiveness of nurturing entrepreneurial skills and bringing more changes in personal attitudes by the way of enhancing the knowledge and skills required for the execution of an entrepreneurial career. This research is original in nature as it provides an in-depth insight into an implemented model of curriculum, focused on the development and nurturance of basic skills and its impact on the career choice of students.Keywords: attitude, entrepreneurship education, knowledge, new venture creation, pedagogical intervention, skills
Procedia PDF Downloads 19223832 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 10123831 Retrospective/Prospective Analysis of Guideline Implementation and Transfusion Rates
Authors: B. Kenny
Abstract:
The complications associated with transfusions are well documented, with the serious hazards of transfusion (SHOT) reporting system continuing to report deaths and serious morbidity due to the transfusion of allogenic blood. Many different sources including the TRICC trial, NHMRC and Cochrane recommending similar transfusion triggers/guidelines. Recent studies found the rate of infection (deep infection, wound infection, chest infection, urinary tract infection, and others) were purely a dose response relationship, increasing the Relative Risk by 3.44. It was also noted that each transfused patient stayed in hospital for one additional day. We hypothesise that providing an approved/standardised, guideline with a graphical summary of decision pathways for anaemic patients will reduce unnecessary transfusions. We retrospectively assessed patients undergoing primary knee or hip arthroplasties over a 4 year period, 1459 patients. Of these, 339 (23.24%) patients received allogenic blood transfusions and 858 units of blood were transfused, 9.14% of patients transfused had haemoglobin levels above 100 g/L, 7.67% of patients were transfused without knowing the haemoglobin level, 24 hours prior to transfusion initiation and 4.5% had possible transfusion reactions. Overall, 17% of allogenic transfusions topatients admitted to the Orthopaedic department within a 4 year period were outside NHMRC and Cochrane guidelines/recommendations. If our transfusion frequency is compared with that of other authors/hospitals, transfusion rates are consistently being high. We subsequently implemented a simple guideline for transfusion initiation. This guideline was then assessed. We found the transfusion rate post transfusion implementation to be significantly lower, without increase in patient morbidity or mortalitiy, p <0.001). Transfusion rates and patient outcome can be optimized by a simple graphical aid for decision making.Keywords: transfusion, morbidity, mortality, neck of femur, fracture, arthroplasty, rehabilitation
Procedia PDF Downloads 24223830 Risk Factors Associated with Increased Emergency Department Visits and Hospital Admissions Among Child and Adolescent Patients
Authors: Lalanthica Yogendran, Manassa Hany, Saira Pasha, Benjamin Chaucer, Simarpreet Kaur, Christopher Janusz
Abstract:
Children and adolescent patients visit the Psychiatric Emergency Department (ED) for multiple reasons. Visiting the Psychiatric ED itself can be a traumatic experience that can affect an adolescents mental well-being, regardless of a history of mental illness. Despite this, limited research exists in this domain. Prospective studies have correlated adverse psychosocial determinants among adolescents to risk factors for poor well-being and unfavorable behavior outcomes. Studies have also shown that physiological stress is a contributor in the development of health problems and an increase in substance abuse in adolescents. This study aimed to retrospectively determine which psychosocial factors are associated with an increase in psychiatric ED visits. 600 charts of patients who had a psychiatric ED and inpatient admission visit from January 2014 through December 2014 were reviewed. Sociodemographics, diagnoses, ED visits and inpatient admissions were collected. Descriptive statistics, chi-square tests and independent t-test analyses were utilized to examine differences in the sample to determine which factors affected ED visits and admissions. The sample was 50% female, 35.2% self-identified black, and had a mean age of 13 years. The majority, 85%, went to public school and 17% were in special education. Attention Deficit Hyperactivity Disorder was the most common admitting diagnosis, found in 132(23%) responders. Most patients came from single parent household 305 (53%). The mean ages of patients that were sexually active, with legal issues, and reporting marijuana substance abuse were 15, 14.35, and 15 years respectively. Patients from two biological parent households had significantly fewer ED visits (1.2 vs. 1.7, p < 0.01) and admissions (0.09 vs. 0.26, p < 0.01). Among social factors, those who reported sexual, physical or emotional abuse had a significantly greater number of ED visits (2.1 vs. 1.5, p < 0.01) and admissions (0.61 vs. 0.14, p < 0.01) than those who did not. Patients that were sexually active or had legal issues or substance abuse with marijuana had a significantly greater number of admissions (0.43 vs. 0.17, p < 0.01), (0.54 vs. .18, p < 0.01) and (0.46 vs. 0.18, p < 0.01) respectively. This data supports the theory of the stability of a two parent home. Dual parenting plays a role in creating a safe space where a child can develop; this is shown by subsequent decreases in psychiatric ED visits and admissions. This may highlight the psychological protective role of a two parent household. Abuse can exacerbate existing psychiatric illness or initiate the onset of new disease. Substance abuse and legal issues result in early induction to the criminal system. Results show that this causes an increase in frequency of visits and severity of symptoms. Only marijuana, but not other illicit substances, correlated with higher incidence of psychiatric ED visits. This may speak to the psychotropic nature of tetrahydrocannabinols and their role in mental illness. This study demonstrates the array of psychosocial factors that lead to increased ED visits and admissions in children and adolescents.Keywords: adolescent, child psychiatry, emergency department, substance abuse
Procedia PDF Downloads 33323829 Impact of Foreign Trade on Economic Growth: A Panel Data Analysis for OECD Countries
Authors: Burcu Guvenek, Duygu Baysal Kurt
Abstract:
The impact of foreign trade on economic growth has been discussed since the Classical Economists. Today, foreign trade has become more important for the country's economy with the increasing globalization. When it comes to foreign trade, policies which may vary from country to country and from time to time as protectionism or free trade are implemented. In general, the positive effect of foreign trade on economic growth is alleged. However, as studies supporting this general acceptance take place in the economics literature, there are also studies in the opposite direction. In this paper, the impact of foreign trade on economic growth will be investigated with the help of panel data analysis. For this research, 24 OECD countries’ GDP and foreign trade data, including the period of 1990 and 2010, will be used.Keywords: foreign trade, economic growth, OECD countries, panel data analysis
Procedia PDF Downloads 38623828 Computer-Aided Depression Screening: A Literature Review on Optimal Methodologies for Mental Health Screening
Authors: Michelle Nighswander
Abstract:
Suicide can be a tragic response to mental illness. It is difficult for people to disclose or discuss suicidal impulses. The stigma surrounding mental health can create a reluctance to seek help for mental illness. Patients may feel pressure to exhibit a socially desirable demeanor rather than reveal these issues, especially if they sense their healthcare provider is pressed for time or does not have an extensive history with their provider. Overcoming these barriers can be challenging. Although there are several validated depression and suicide risk instruments, varying processes used to administer these tools may impact the truthfulness of the responses. A literature review was conducted to find evidence of the impact of the environment on the accuracy of depression screening. Many investigations do not describe the environment and fewer studies use a comparison design. However, three studies demonstrated that computerized self-reporting might be more likely to elicit truthful and accurate responses due to increased privacy when responding compared to a face-to-face interview. These studies showed patients reported positive reactions to computerized screening for other stigmatizing health conditions such as alcohol use during pregnancy. Computerized self-screening for depression offers the possibility of more privacy and patient reflection, which could then send a targeted message of risk to the healthcare provider. This could potentially increase the accuracy while also increasing time efficiency for the clinic. Considering the persistent effects of mental health stigma, how these screening questions are posed can impact patients’ responses. This literature review analyzes trends in depression screening methodologies, the impact of setting on the results and how this may assist in overcoming one barrier caused by stigma.Keywords: computerized self-report, depression, mental health stigma, suicide risk
Procedia PDF Downloads 13123827 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems
Authors: Emanuel Koseos
Abstract:
Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools
Procedia PDF Downloads 17423826 Data about Loggerhead Sea Turtle (Caretta caretta) and Green Turtle (Chelonia mydas) in Vlora Bay, Albania
Authors: Enerit Sacdanaku, Idriz Haxhiu
Abstract:
This study was conducted in the area of Vlora Bay, Albania. Data about Sea Turtles Caretta caretta and Chelonia mydas, belonging to two periods of time (1984–1991; 2008–2014) are given. All data gathered were analyzed using recent methodologies. For all turtles captured (as by catch), the Curve Carapace Length (CCL) and Curved Carapace Width (CCW) were measured. These data were statistically analyzed, where the mean was 67.11 cm for CCL and 57.57 cm for CCW of all individuals studied (n=13). All untagged individuals of marine turtles were tagged using metallic tags (Stockbrand’s titanium tag) with an Albanian address. Sex was determined and resulted that 45.4% of individuals were females, 27.3% males and 27.3% juveniles. All turtles were studied for the presence of the epibionts. The area of Vlora Bay is used from marine turtles (Caretta caretta) as a migratory corridor to pass from the Mediterranean to the northern part of the Adriatic Sea.Keywords: Caretta caretta, Chelonia mydas, CCL, CCW, tagging, Vlora Bay
Procedia PDF Downloads 17923825 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms
Authors: Farhat Imtiaz, Umar Farooq
Abstract:
In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation
Procedia PDF Downloads 13523824 The Impact of a Lower Health Literacy in the Self-Management of Patients with a Multiple Sclerosis: A Literature Review
Authors: Helga Martins, Idália Matias
Abstract:
Background:Multiple sclerosis is a chronic inflammatory autoimmune demyelinating disease that affects young adults. Multiple sclerosis is a chronic disease in which the patient needs to self-manage the disease and the therapeutic regimen. Consequently, the promotion of health literacy assumes a relevant role for the accessibility, understanding, and use of information in order to promote and maintain the health of patients with multiple sclerosis. Aim: To determine the impact of lower health literacy in the self-management of patients with a multiple sclerosis. Methods: Literature review based on a search on the following electronic databases: CINAHLand MEDLINE; comprising all results published between September 2016 and September 2021. The search strategy was: (“Self-management [MeSH]” AND “Multiple sclerosis[MeSH]”AND “Health literacy[MeSH]”). The inclusion criteria were: original papers reporting about multiple sclerosis patients; participants with age above 18 years old, written in English, Spanish, French, or Portuguese. Two independent reviewers have done the screening and analysis of the results. 38 citations were identified, and after duplicates removal, a total of 25 results were screened; 14 were included after the application of the inclusion criteria. Results: The lower health literacy in the self-management of patients with a multiple sclerosis is related toless healthy choices, riskier health behavior, poor health outcomes, decreased of adhering to the therapeutic regimen after discharge, less self-management of chronic illness, and increased the time of hospitalization. Conclusion: Inadequate levels of health literacy contribute to poor health outcomes, unsuccessful self-management of chronic illness, and inadequate adherence to the therapeutic regimen. Therefore, health literacy is important for health policy and the healthcare services, as it can be understood as a mediator of self-management of multiple sclerosis disease.Keywords: health literacy, multiple sclerosis, review, self-management
Procedia PDF Downloads 15323823 Design of Incident Information System in IoT Virtualization Platform
Authors: Amon Olimov, Umarov Jamshid, Dae-Ho Kim, Chol-U Lee, Ryum-Duck Oh
Abstract:
This paper proposes IoT virtualization platform based incident information system. IoT information based environment is the platform that was developed for the purpose of collecting a variety of data by managing regionally scattered IoT devices easily and conveniently in addition to analyzing data collected from roads. Moreover, this paper configured the platform for the purpose of providing incident information based on sensed data. It also provides the same input/output interface as UNIX and Linux by means of matching IoT devices with the directory of file system and also the files. In addition, it has a variety of approaches as to the devices. Thus, it can be applied to not only incident information but also other platforms. This paper proposes the incident information system that identifies and provides various data in real time as to urgent matters on roads based on the existing USN/M2M and IoT visualization platform.Keywords: incident information system, IoT, virtualization platform, USN, M2M
Procedia PDF Downloads 35123822 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses
Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson
Abstract:
This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies
Procedia PDF Downloads 14723821 Gender, Social Media Usage, and Type of Gym Activity on Body Image Among Urban Emerging Adults
Authors: Pranav Saxena
Abstract:
This study examines the influence of social media usage, gym activities (weightlifting vs. cardiovascular exercise), and gender on body image perceptions among urban emerging adults in India. The research aimed to assess how these factors interact to shape body esteem, a crucial aspect of psychological well-being in a society increasingly influenced by media portrayals of idealized bodies. A purposive sample of 317 participants aged 18–27 years (167 male, 150 female) was recruited through snowball sampling across diverse urban areas. Body esteem was measured using the Body-Esteem Scale for Adolescents and Adults (BESAA), which evaluates perceptions related to appearance, weight, and how individuals perceive others’ view their bodies. Data was collected via online surveys, and Mann-Whitney U tests were used to examine differences in body esteem scores based on the type of gym activity, gender, and social media usage. Results revealed that participants who engaged in cardiovascular activities had significantly higher body esteem compared to those who participated in weightlifting (p = 0.020). Gender differences were also notable, with females reporting higher body esteem than males (p = 0.01). These findings suggest that women may experience more positive body perceptions, possibly influenced by the broader body positivity movement. Contrary to expectations, social media usage was found to be significantly associated with the drive for thinness (p = 0.030) but not with overall body esteem scores (p = 0.329). This suggests that while social media may contribute to specific body dissatisfaction related to thinness, it does not appear to be a major factor influencing overall body esteem in this sample. These results underscore the significant role of physical activity and gender in shaping body image perceptions while challenging the view that social media is the primary driver of negative body image in emerging adults. The findings indicate that physical activity, particularly cardiovascular exercise, may have a protective effect on body esteem, whereas weightlifting could potentially contribute to body dissatisfaction, especially among males. The study also highlights the need for a nuanced understanding of social media's role in shaping body image, suggesting that its impact may be less pronounced than previously thought when compared to other social factors such as gender and physical activity. This study contributes to the growing body of literature on body image in emerging adults, particularly in the context of urban India, where media and fitness culture heavily influence perceptions of the ideal body. It calls for further research into the long-term effects of social media on body image, the role of specific fitness cultures, and how gender norms continue to shape body image concerns. The findings have important implications for designing mental health and fitness interventions that are tailored to address the unique challenges faced by young adults, especially those who may experience heightened dissatisfaction with their bodies due to societal pressures or media portrayals.Keywords: body image, gender, gym activity, social media usage
Procedia PDF Downloads 023820 Mobile Learning: Toward Better Understanding of Compression Techniques
Authors: Farouk Lawan Gambo
Abstract:
Data compression shrinks files into fewer bits then their original presentation. It has more advantage on internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature therefore making them difficult to digest by some students (Engineers in particular). To determine the best approach toward learning data compression technique, this paper first study the learning preference of engineering students who tend to have strong active, sensing, visual and sequential learning preferences, the paper also study the advantage that mobility of learning have experienced; Learning at the point of interest, efficiency, connection, and many more. A survey is carried out with some reasonable number of students, through random sampling to see whether considering the learning preference and advantages in mobility of learning will give a promising improvement over the traditional way of learning. Evidence from data analysis using Ms-Excel as a point of concern for error-free findings shows that there is significance different in the students after using learning content provided on smart phone, also the result of the findings presented in, bar charts and pie charts interpret that mobile learning has to be promising feature of learning.Keywords: data analysis, compression techniques, learning content, traditional learning approach
Procedia PDF Downloads 34723819 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011
Authors: S. Abera, T. Gidey, W. Terefe
Abstract:
Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.Keywords: data mining, HIV, testing, ethiopia
Procedia PDF Downloads 49623818 Possible Impact of Shunt Surgeries on the Spatial Learning of Congenitally-Blind Children
Authors: Waleed Jarjoura
Abstract:
In various cases of visual impairments, the individuals are referred to expert Ophthalmologists in order to establish a correct diagnosis. Children with visual-impairments confront various challenging experiences in life since early childhood throughout lifespan. In some cases, blind infants, especially due to congenital hydrocephalus, suffer from high intra-cranial pressure and, consequently, go through a ventriculo-peritoneal shunt surgery in order to limit the neurological symptoms or decrease the cognitive impairments. In this article, a detailed description of numerous crucial implications of the V/P shunt surgery, through the right posterior-inferior parieto-temporal cortex, on the observed preliminary capabilities that are pre-requisites for the acquisition of literacy skills in braille, basic Math competencies, braille printing which suggest Gerstmann syndrome in the blind. In addition, significant difficultiesorientation and mobility skills using the Cane, in general, organizational skills, and social interactions were observed. The primary conclusion of this report focuses on raising awareness among neuro-surgeons towards the need for alternative intracranial routes for V/P shunt implantation in blind infants that preserve the right posterior-inferior parieto-temporal cortex that is hypothesized to modulate the tactual-spatial cues in braille discrimination. A second conclusion targets educators and therapists that address the acquired dysfunctionsin blind individuals due to V/P shunt surgeries.Keywords: congenital blindness, hydrocephalus, shunt surgery, spatial orientation
Procedia PDF Downloads 8923817 Assessing Flood Risk and Mapping Inundation Zones in the Kelantan River Basin: A Hydrodynamic Modeling Approach
Authors: Fatemehsadat Mortazavizadeh, Amin Dehghani, Majid Mirzaei, Nurulhuda Binti Mohammad Ramli, Adnan Dehghani
Abstract:
Flood is Malaysia's most common and serious natural disaster. Kelantan River Basin is a tropical basin that experiences a rainy season during North-East Monsoon from November to March. It is also one of the hardest hit areas in Peninsular Malaysia during the heavy monsoon rainfall. Considering the consequences of the flood events, it is essential to develop the flood inundation map as part of the mitigation approach. In this study, the delineation of flood inundation zone in the area of Kelantan River basin using a hydrodynamic model is done by HEC-RAS, QGIS and ArcMap. The streamflow data has been generated with the weather generator based on the observation data. Then, the data is statistically analyzed with the Extreme Value (EV1) method for 2-, 5-, 25-, 50- and 100-year return periods. The minimum depth, maximum depth, mean depth, and the standard deviation of all the scenarios, including the OBS, are observed and analyzed. Based on the results, generally, the value of the data increases with the return period for all the scenarios. However, there are certain scenarios that have different results, which not all the data obtained are increasing with the return period. Besides, OBS data resulted in the middle range within Scenario 1 to Scenario 40.Keywords: flood inundation, kelantan river basin, hydrodynamic model, extreme value analysis
Procedia PDF Downloads 70