Search results for: in vitro toxicity
36 A Textile-Based Scaffold for Skin Replacements
Authors: Tim Bolle, Franziska Kreimendahl, Thomas Gries, Stefan Jockenhoevel
Abstract:
The therapeutic treatment of extensive, deep wounds is limited. Autologous split-skin grafts are used as a so-called ‘gold standard’. Most common deficits are the defects at the donor site, the risk of scarring as well as the limited availability and quality of the autologous grafts. The aim of this project is a tissue engineered dermal-epidermal skin replacement to overcome the limitations of the gold standard. A key requirement for the development of such a three-dimensional implant is the formation of a functional capillary-like network inside the implant to ensure a sufficient nutrient and gas supply. Tailored three-dimensional warp knitted spacer fabrics are used to reinforce the mechanically week fibrin gel-based scaffold and further to create a directed in vitro pre-vascularization along the parallel-oriented pile yarns within a co-culture. In this study various three-dimensional warp knitted spacer fabrics were developed in a factorial design to analyze the influence of the machine parameters such as the stitch density and the pattern of the fabric on the scaffold performance and further to determine suitable parameters for a successful fibrin gel-incorporation and a physiological performance of the scaffold. The fabrics were manufactured on a Karl Mayer double-bar raschel machine DR 16 EEC/EAC. A fine machine gauge of E30 was used to ensure a high pile yarn density for sufficient nutrient, gas and waste exchange. In order to ensure a high mechanical stability of the graft, the fabrics were made of biocompatible PVDF yarns. Key parameters such as the pore size, porosity and stress/strain behavior were investigated under standardized, controlled climate conditions. The influence of the input parameters on the mechanical and morphological properties as well as the ability of fibrin gel incorporation into the spacer fabric was analyzed. Subsequently, the pile yarns of the spacer fabrics were colonized with Human Umbilical Vein Endothelial Cells (HUVEC) to analyze the ability of the fabric to further function as a guiding structure for a directed vascularization. The cells were stained with DAPI and investigated using fluorescence microscopy. The analysis revealed that the stitch density and the binding pattern have a strong influence on both the mechanical and morphological properties of the fabric. As expected, the incorporation of the fibrin gel was significantly improved with higher pore sizes and porosities, whereas the mechanical strength decreases. Furthermore, the colonization trials revealed a high cell distribution and density on the pile yarns of the spacer fabrics. For a tailored reinforcing structure, the minimum porosity and pore size needs to be evaluated which still ensures a complete incorporation of the reinforcing structure into the fibrin gel matrix. That will enable a mechanically stable dermal graft with a dense vascular network for a sufficient nutrient and oxygen supply of the cells. The results are promising for subsequent research in the field of reinforcing mechanically weak biological scaffolds and develop functional three-dimensional scaffolds with an oriented pre-vascularization.Keywords: fibrin-gel, skin replacement, spacer fabric, pre-vascularization
Procedia PDF Downloads 25735 Plant Regeneration via Somatic Embryogenesis and Agrobacterium-Mediated Transformation in Alfalfa (Medicago sativa L.)
Authors: Sarwan Dhir, Suma Basak, Dipika Parajulee
Abstract:
Alfalfa is renowned for its nutritional and biopharmaceutical value as a perennial forage legume. However, establishing a rapid plant regeneration protocol using somatic embryogenesis and efficient transformation frequency are the crucial prerequisites for gene editing in alfalfa. This study was undertaken to establish and improve the protocol for somatic embryogenesis and subsequent plant regeneration. The experiments were conducted in response to natural sensitivity using various antibiotics such as cefotaxime, carbenicillin, gentamycin, hygromycin, and kanamycin. Using 3-week-old leaf tissue, somatic embryogenesis was initiated on Gamborg’s B5 basal (B5H) medium supplemented with 3% maltose, 0.9µM Kinetin, and 4.5µM 2,4-D. Embryogenic callus (EC) obtained from the B5H medium exhibited a high rate of somatic embryo formation (97.9%) after 3 weeks when the cultures were placed in the dark. Different developmental stages of somatic embryos and cotyledonary stages were then transferred to Murashige and Skoog’s (MS) basal medium under light, resulting in a 94% regeneration rate of plantlets. Our results indicate that leaf segments can grow (tolerate) up to 450 mg/L of cefotaxime and 400 mg/L of carbenicillin in the culture medium. However, the survival threshold for hygromycin at 12.5 mg/L, kanamycin at 250 mg/L, gentamycin at 50 mg/L, and timentin (300 mg/L). The experiment to improve the protocol for achieving efficient transient gene expression in alfalfa through genetic transformation with the Agrobacterium tumefaciens pCAMBIA1304 vector was also conducted. The vector contains two reporter genes such as β-glucuronidase (GUS) and green fluorescent protein (GFP), along with a selectable hygromycin B phosphotransferase gene (HPT), all driven under the CaMV 35s promoter. Various transformation parameters were optimized using 3-week-old in vitro-grown plantlets. The different parameters such as types of explant, leaf ages, preculture days, segment sizes, wounding types, bacterial concentrations, infection periods, co-cultivation periods, different concentrations of acetosyringone, silver nitrate, and calcium chloride were optimized for transient gene expression. The transient gene expression was confirmed via histochemical GUS and GFP visualization under fluorescent microscopy. The data were analyzed based on the semi-quantitative observation of the percentage and number of blue GUS spots on different days of agro-infection. The highest percentage of GUS positivity (76.2%) was observed in 3-week-old leaf segments wounded using a scalpel blade of 11 size- after 3 days of post-incubation at a bacterial concentration of 0.6, with 2 days of preculture, 30 min of bacterial-leaf segment co-cultivation, with the addition of 150 µM acetosyringone, 4 mM calcium chloride, and 75 µM silver nitrate. Our results suggest that various factors influence T-DNA delivery in the Agrobacterium-mediated transformation of alfalfa. The stable gene expression in the putative transgenic tissue was confirmed using PCR amplification of both marker genes, indicating that gene expression in explants was not solely due to Agrobacterium, but also from transformed cells. The improved protocol could be used for generating transgenic alfalfa plants using genome editing techniques such as CRISPR/Cas9.Keywords: Medicago sativa l. (Alfalfa), agrobacterium tumefaciens, β-glucuronidase, green fluorescent protein, transient gene
Procedia PDF Downloads 1434 Phage Therapy of Staphylococcal Pyoderma in Dogs
Authors: Jiri Nepereny, Vladimir Vrzal
Abstract:
Staphylococcus intermedius/pseudintermedius bacteria are commonly found on the skin of healthy dogs and can cause pruritic skin diseases under certain circumstances (trauma, allergy, immunodeficiency, ectoparasitosis, endocrinological diseases, glucocorticoid therapy, etc.). These can develop into complicated superficial or deep pyoderma, which represent a large group of problematic skin diseases in dogs. These are predominantly inflammations of a secondary nature, associated with the occurrence of coagulase-positive Staphylococcus spp. A major problem is increased itching, which greatly complicates the healing process. The aim of this work is to verify the efficacy of the developed preparation Bacteriophage SI (Staphylococcus intermedius). The tested preparation contains a lysate of bacterial cells of S. intermedius host culture including culture medium and live virions of specific phage. Sodium Merthiolate is added as a preservative in a safe concentration. Validation of the efficacy of the product was demonstrated by monitoring the therapeutic effect after application to indicated cases from clinical practice. The indication for inclusion of the patient into the trial was an adequate history and clinical examination accompanied by sample collection for bacteriological examination and isolation of the specific causative agent. Isolate identification was performed by API BioMérieux identification system (API ID 32 STAPH) and rep-PCR typing. The suitability of therapy for a specific case was confirmed by in vitro testing of the lytic ability of the bacteriophage to lyse the specific isolate = formation of specific plaques on the culture isolate on the surface of the solid culture medium. So far, a total of 32 dogs of different sexes, ages and breed affiliations with different symptoms of staphylococcal dermatitis have been included in the testing. Their previous therapy consisted of more or less successful systemic or local application of broad-spectrum antibiotics. The presence of S. intermedius/pseudintermedius has been demonstrated in 26 cases. The isolates were identified as a S. pseudintermedius, in all cases. Contaminant bacterial microflora was always present in the examined samples. The test product was applied subcutaneously in gradually increasing doses over a period of 1 month. After improvement in health status, maintenance therapy was followed by application of the product once a week for 3 months. Adverse effects associated with the administration of the product (swelling at the site of application) occurred in only 2 cases. In all cases, there was a significant reduction in clinical signs (healing of skin lesions and reduction of inflammation) after therapy and an improvement in the well-being of the treated animals. A major problem in the treatment of pyoderma is the frequent resistance of the causative agents to antibiotics, especially the increasing frequency of multidrug-resistant and methicillin-resistant S. pseudintermedius (MRSP) strains. Specific phagolysate using for the therapy of these diseases could solve this problem and to some extent replace or reduce the use of antibiotics, whose frequent and widespread application often leads to the emergence of resistance. The advantage of the therapeutic use of bacteriophages is their bactericidal effect, high specificity and safety. This work was supported by Project FV40213 from Ministry of Industry and Trade, Czech Republic.Keywords: bacteriophage, pyoderma, staphylococcus spp, therapy
Procedia PDF Downloads 17333 Formulation of a Submicron Delivery System including a Platelet Lysate to Be Administered in Damaged Skin
Authors: Sergio A. Bernal-Chavez, Sergio Alcalá-Alcalá, Doris A. Cerecedo-Mercado, Adriana Ganem-Rondero
Abstract:
The prevalence of people with chronic wounds has increased dramatically by many factors including smoking, obesity and chronic diseases, such as diabetes, that can slow the healing process and increase the risk of becoming chronic. Because of this situation, the improvement of chronic wound treatments is a necessity, which has led to the scientific community to focus on improving the effectiveness of current therapies and the development of new treatments. The wound formation is a physiological complex process, which is characterized by an inflammatory stage with the presence of proinflammatory cells that create a proteolytic microenvironment during the healing process, which includes the degradation of important growth factors and cytokines. This decrease of growth factors and cytokines provides an interesting strategy for wound healing if they are administered externally. The use of nanometric drug delivery systems, such as polymer nanoparticles (NP), also offers an interesting alternative around dermal systems. An interesting strategy would be to propose a formulation based on a thermosensitive hydrogel loaded with polymeric nanoparticles that allows the inclusion and application of a platelet lysate (PL) on damaged skin, with the aim of promoting wound healing. In this work, NP were prepared by a double emulsion-solvent evaporation technique, using polylactic-co-glycolic acid (PLGA) as biodegradable polymer. Firstly, an aqueous solution of PL was emulsified into a PLGA organic solution, previously prepared in dichloromethane (DCM). Then, this disperse system (W/O) was poured into a polyvinyl alcohol (PVA) solution to get the double emulsion (W/O/W), finally the DCM was evaporated by magnetic stirring resulting in the NP formation containing PL. Once the NP were obtained, these systems were characterized by morphology, particle size, Z-potential, encapsulation efficiency (%EE), physical stability, infrared spectrum, calorimetric studies (DSC) and in vitro release profile. The optimized nanoparticles were included in a thermosensitive gel formulation of Pluronic® F-127. The gel was prepared by the cold method at 4 °C and 20% of polymer concentration. Viscosity, sol-gel phase transition, time of no flow solid-gel at wound temperature, changes in particle size by temperature-effect using dynamic light scattering (DLS), occlusive effect, gel degradation, infrared spectrum and micellar point by DSC were evaluated in all gel formulations. PLGA NP of 267 ± 10.5 nm and Z-potential of -29.1 ± 1 mV were obtained. TEM micrographs verified the size of NP and evidenced their spherical shape. The %EE for the system was around 99%. Thermograms and in infrared spectra mark the presence of PL in NP. The systems did not show significant changes in the parameters mentioned above, during the stability studies. Regarding the gel formulation, the transition sol-gel occurred at 28 °C with a time of no flow solid-gel of 7 min at 33°C (common wound temperature). Calorimetric, DLS and infrared studies corroborated the physical properties of a thermosensitive gel, such as the micellar point. In conclusion, the thermosensitive gel described in this work, contains therapeutic amounts of PL and fulfills the technological properties to be used in damaged skin, with potential application in wound healing and tissue regeneration.Keywords: growth factors, polymeric nanoparticles, thermosensitive hydrogels, tissue regeneration
Procedia PDF Downloads 17232 Stent Surface Functionalisation via Plasma Treatment to Promote Fast Endothelialisation
Authors: Irene Carmagnola, Valeria Chiono, Sandra Pacharra, Jochen Salber, Sean McMahon, Chris Lovell, Pooja Basnett, Barbara Lukasiewicz, Ipsita Roy, Xiang Zhang, Gianluca Ciardelli
Abstract:
Thrombosis and restenosis after stenting procedure can be prevented by promoting fast stent wall endothelialisation. It is well known that surface functionalisation with antifouling molecules combining with extracellular matrix proteins is a promising strategy to design biomimetic surfaces able to promote fast endothelialization. In particular, REDV has gained much attention for the ability to enhance rapid endothelialization due to its specific affinity with endothelial cells (ECs). In this work, a two-step plasma treatment was performed to polymerize a thin layer of acrylic acid, used to subsequently graft PEGylated-REDV and polyethylene glycol (PEG) at different molar ratio with the aim to selectively promote endothelial cell adhesion avoiding platelet activation. PEGylate-REDV was provided by Biomatik and it is formed by 6 PEG monomer repetitions (Chempep Inc.), with an NH2 terminal group. PEG polymers were purchased from Chempep Inc. with two different chain lengths: m-PEG6-NH2 (295.4 Da) with 6 monomer repetitions and m-PEG12-NH2 (559.7 Da) with 12 monomer repetitions. Plasma activation was obtained by operating at 50W power, 5 min of treatment and at an Ar flow rate of 20 sccm. Pure acrylic acid (99%, AAc) vapors were diluted in Ar (flow = 20 sccm) and polymerized by a pulsed plasma discharge applying a discharge RF power of 200 W, a duty cycle of 10% (on time = 10 ms, off time = 90 ms) for 10 min. After plasma treatment, samples were dipped into an 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) solution (ratio 4:1, pH 5.5) for 1 h at 4°C and subsequently dipped in PEGylate-REDV and PEGylate-REDV:PEG solutions at different molar ratio (100 μg/mL in PBS) for 20 h at room temperature. Surface modification was characterized through physico-chemical analyses and in vitro cell tests. PEGylated-REDV peptide and PEG were successfully bound to the carboxylic groups that are formed on the polymer surface after plasma reaction. FTIR-ATR spectroscopy, X -ray Photoelectron Spectroscopy (XPS) and contact angle measurement gave a clear indication of the presence of the grafted molecules. The use of PEG as a spacer allowed for an increase in wettability of the surface, and the effect was more evident by increasing the amount of PEG. Endothelial cells adhered and spread well on the surfaces functionalized with the REDV sequence. In conclusion, a selective coating able to promote a new endothelial cell layer on polymeric stent surface was developed. In particular, a thin AAc film was polymerised on the polymeric surface in order to expose –COOH groups, and PEGylate-REDV and PEG were successful grafted on the polymeric substrates. The REDV peptide demonstrated to encourage cell adhesion with a consequent, expected improvement of the hemocompatibility of these polymeric surfaces in vivo. Acknowledgements— This work was funded by the European Commission 7th Framework Programme under grant agreement number 604251- ReBioStent (Reinforced Bioresorbable Biomaterials for Therapeutic Drug Eluting Stents). The authors thank all the ReBioStent partners for their support in this work.Keywords: endothelialisation, plasma treatment, stent, surface functionalisation
Procedia PDF Downloads 31331 Photobleaching Kinetics and Epithelial Distribution of Hexylaminoleuilinate Induced PpIX in Rat Bladder Cancer
Authors: Sami El Khatib, Agnès Leroux, Jean-Louis Merlin, François Guillemin, Marie-Ange D’Hallewin
Abstract:
Photodynamic therapy (PDT) is a treatment modality based on the cytotoxic effect occurring on the target tissues by interaction of a photosensitizer with light in the presence of oxygen. One of the major advances in PDT can be attributed to the use of topical aminolevulinic (ALA) to induce Protoporphyrin IX (PpIX) for the treatment of early stage cancers as well as diagnosis. ALA is a precursor of the heme synthesis pathway. Locally delivered to the target tissue ALA overcomes the negative feedback exerted by heme and promotes the transient formation of PpIX in situ to reach critical effective levels in cells and tissue. Whereas early steps of the heme pathway occur in the cytosol, PpIX synthesis is shown to be held in the mitochondrial membranes and PpIX fluorescence is expected to accumulate in close vicinity of the initial building site and to progressively diffuse to the neighboring cytoplasmic compartment or other lipophylic organelles. PpIX is known to be highly reactive and will be degraded when irradiated with light. PpIX photobleaching is believed to be governed by a singlet oxygen mediated mechanism in the presence of oxidized amino acids and proteins. PpIX photobleaching and subsequent spectral phototransformation were described widely in tumor cells incubated in vitro with ALA solution, or ex vivo in human and porcine mucosa superfused with hexylaminolevulinate (hALA). PpIX photobleaching was also studied in vivo, using animal models such as normal or tumor mice skin and orthotopic rat bladder model. Hexyl aminolevulinate a more potent lipophilic derivative of ALA was proposed as an adjunct to standard cystoscopy in the fluorescence diagnosis of bladder cancer and other malignancies. We have previously reported the effectiveness of hALA mediated PDT of rat bladder cancer. Although normal and tumor bladder epithelium exhibit similar fluorescence intensities after intravesical instillation of two hALA concentrations (8 and 16 mM), the therapeutic response at 8mM and 20J/cm2 was completely different from the one observed at 16mM irradiated with the same light dose. Where the tumor is destroyed, leaving the underlying submucosa and muscle intact after an 8 mM instillation, 16mM sensitization and subsequent illumination results in the complete destruction of the underlying bladder wall but leaves the tumor undamaged. The object of the current study is to try to unravel the underlying mechanism for this apparent contradiction. PpIX extraction showed identical amounts of photosensitizer in tumor bearing bladders at both concentrations. Photobleaching experiments revealed mono-exponential decay curves in both situations but with a two times faster decay constant in case of 16mM bladders. Fluorescence microscopy shows an identical fluorescence pattern for normal bladders at both concentrations and tumor bladders at 8mM with bright spots. Tumor bladders at 16 mM exhibit a more diffuse cytoplasmic fluorescence distribution. The different response to PDT with regard to the initial pro-drug concentration can thus be attributed to the different cellular localization.Keywords: bladder cancer, hexyl-aminolevulinate, photobleaching, confocal fluorescence microscopy
Procedia PDF Downloads 40830 Metabolic Changes during Reprogramming of Wheat and Triticale Microspores
Authors: Natalia Hordynska, Magdalena Szechynska-Hebda, Miroslaw Sobczak, Elzbieta Rozanska, Joanna Troczynska, Zofia Banaszak, Maria Wedzony
Abstract:
Albinism is a common problem encountered in wheat and triticale breeding programs, which require in vitro culture steps e.g. generation of doubled haploids via androgenesis process. Genetic factor is a major determinant of albinism, however, environmental conditions such as temperature and media composition influence the frequency of albino plant formation. Cold incubation of wheat and triticale spikes induced a switch from gametophytic to sporophytic development. Further, androgenic structures formed from anthers of the genotypes susceptible to androgenesis or treated with cold stress, had a pool of structurally primitive plastids, with small starch granules or swollen thylakoids. High temperature was a factor inducing andro-genesis of wheat and triticale, but at the same time, it was a factor favoring the formation of albino plants. In genotypes susceptible to albinism or after heat stress conditions, cells formed from anthers were vacuolated, and plastids were eliminated. Partial or complete loss of chlorophyll pigments and incomplete differentiation of chloroplast membranes result in formation of tissues or whole plant unable to perform photosynthesis. Indeed, susceptibility to the andro-genesis process was associated with an increase of total concentration of photosynthetic pigments in anthers, spikes and regenerated plants. The proper balance of the synthesis of various pigments, was the starting point for their proper incorporation into photosynthetic membranes. In contrast, genotypes resistant to the androgenesis process and those treated with heat, contained 100 times lower content of photosynthetic pigments. In particular, the synthesis of violaxanthin, zeaxanthin, lutein and chlorophyll b was limited. Furthermore, deregulation of starch and lipids synthesis, which led to the formation of very complex starch granules and an increased number of oleosomes, respectively, correlated with the reduction of the efficiency of androgenesis. The content of other sugars varied depending on the genotype and the type of stress. The highest content of various sugars was found for genotypes susceptible to andro-genesis, and highly reduced for genotypes resistant to androgenesis. The most important sugars seem to be glucose and fructose. They are involved in sugar sensing and signaling pathways, which affect the expression of various genes and regulate plant development. Sucrose, on the other hand, seems to have minor effect at each stage of the androgenesis. The sugar metabolism was related to metabolic activity of microspores. The genotypes susceptible to androgenesis process had much faster mitochondrium- and chloroplast-dependent energy conversion and higher heat production by tissues. Thus, the effectiveness of metabolic processes, their balance and the flexibility under the stress was a factor determining the direction of microspore development, and in the later stages of the androgenesis process, a factor supporting the induction of androgenic structures, chloroplast formation and the regeneration of green plants. The work was financed by Ministry of Agriculture and Rural Development within Program: ‘Biological Progress in Plant Production’, project no HOR.hn.802.15.2018.Keywords: androgenesis, chloroplast, metabolism, temperature stress
Procedia PDF Downloads 26129 In vivo Evaluation of LAB Probiotic Potential with the Zebrafish Animal Model
Authors: Iñaki Iturria, Pasquale Russo, Montserrat Nacher-Vázquez, Giuseppe Spano, Paloma López, Miguel Angel Pardo
Abstract:
Introduction: It is known that some Lactic Acid Bacteria (LAB) present an interesting probiotic effect. Probiotic bacteria stimulate host resistance to microbial pathogens and thereby aid in immune response, and modulate the host's immune responses to antigens with a potential to down-regulate hypersensitivity reactions. Therefore, probiotic therapy is valuable against intestinal infections and may be beneficial in the treatment of Inflammatory Bowel Disease (IBD). Several in vitro tests are available to evaluate the probiotic potential of a LAB strain. However, an in vivo model is required to understand the interaction between the host immune system and the bacteria. During the last few years, zebrafish (Danio rerio) has gained interest as a promising vertebrate model in this field. This organism has been extensively used to study the interaction between the host and the microbiota, as well as the host immune response under several microbial infections. In this work, we report on the use of the zebrafish model to investigate in vivo the colonizing ability and the immunomodulatory effect of probiotic LAB. Methods: Lactobacillus strains belonging to different LAB species were fluorescently tagged and used to colonize germ-free zebrafish larvae gastrointestinal tract (GIT). Some of the strains had a well-documented probiotic effect (L. acidophilus LA5); while others presented an exopolysaccharide (EPS) producing phenotype, thus allowing evaluating the influence of EPS in the colonization and immunomodulatory effect. Bacteria colonization was monitored for 72 h by direct observation in real time using fluorescent microscopy. CFU count per larva was also evaluated at different times. The immunomodulatory effect was assessed analysing the differential expression of several innate immune system genes (MyD88, NF-κB, Tlr4, Il1β and Il10) by qRT- PCR. The anti-inflammatory effect was evaluated using a chemical enterocolitis zebrafish model. The protective effect against a pathogen was also studied. To that end, a challenge test was developed using a fluorescently tagged pathogen (Vibrio anguillarum-GFP+). The progression of the infection was monitored up to 3 days using a fluorescent stereomicroscope. Mortality rates and CFU counts were also registered. Results and conclusions: Larvae exposed to EPS-producing bacteria showed a higher fluorescence and CFU count than those colonized with no-EPS phenotype LAB. In the same way, qRT-PCR results revealed an immunomodulatory effect on the host after the administration of the strains with probiotic activity. A downregulation of proinflammatory cytoquines as well as other cellular mediators of inflammation was observed. The anti-inflammatory effect was found to be particularly marked following exposure to LA% strain, as well as EPS producing strains. Furthermore, the challenge test revealed a protective effect of probiotic administration. As a matter of fact, larvae fed with probiotics showed a decrease in the mortality rate ranging from 20 to 35%. Discussion: In this work, we developed a promising model, based on the use of gnotobiotic zebrafish coupled with a bacterial fluorescent tagging in order to evaluate the probiotic potential of different LAB strains. We have successfully used this system to monitor in real time the colonization and persistence of exogenous LAB within the gut of zebrafish larvae, to evaluate their immunomodulatory effect and for in vivo competition assays. This approach could bring further insights into the complex microbial-host interactions at intestinal level.Keywords: gnotobiotic, immune system, lactic acid bacteria, probiotics, zebrafish
Procedia PDF Downloads 33028 Application of Flow Cytometry for Detection of Influence of Abiotic Stress on Plants
Authors: Dace Grauda, Inta Belogrudova, Alexei Katashev, Linda Lancere, Isaak Rashal
Abstract:
The goal of study was the elaboration of easy applicable flow cytometry method for detection of influence of abiotic stress factors on plants, which could be useful for detection of environmental stresses in urban areas. The lime tree Tillia vulgaris H. is a popular tree species used for urban landscaping in Europe and is one of the main species of street greenery in Riga, Latvia. Tree decline and low vitality has observed in the central part of Riga. For this reason lime trees were select as a model object for the investigation. During the period of end of June and beginning of July 12 samples from different urban environment locations as well as plant material from a greenhouse were collected. BD FACSJazz® cell sorter (BD Biosciences, USA) with flow cytometer function was used to test viability of plant cells. The method was based on changes of relative fluorescence intensity of cells in blue laser (488 nm) after influence of stress factors. SpheroTM rainbow calibration particles (3.0–3.4 μm, BD Biosciences, USA) in phosphate buffered saline (PBS) were used for calibration of flow cytometer. BD PharmingenTM PBS (BD Biosciences, USA) was used for flow cytometry assays. The mean fluorescence intensity information from the purified cell suspension samples was recorded. Preliminary, multiple gate sizes and shapes were tested to find one with the lowest CV. It was found that low CV can be obtained if only the densest part of plant cells forward scatter/side scatter profile is analysed because in this case plant cells are most similar in size and shape. The young pollen cells in one nucleus stage were found as the best for detection of influence of abiotic stress. For experiments only fresh plant material was used– the buds of Tillia vulgaris with diameter 2 mm. For the cell suspension (in vitro culture) establishment modified protocol of microspore culture was applied. The cells were suspended in the MS (Murashige and Skoog) medium. For imitation of dust of urban area SiO2 nanoparticles with concentration 0.001 g/ml were dissolved in distilled water. Into 10 ml of cell suspension 1 ml of SiO2 nanoparticles suspension was added, then cells were incubated in speed shaking regime for 1 and 3 hours. As a stress factor the irradiation of cells for 20 min by UV was used (Hamamatsu light source L9566-02A, L10852 lamp, A10014-50-0110), maximum relative intensity (100%) at 365 nm and at ~310 nm (75%). Before UV irradiation the suspension of cells were placed onto a thin layer on a filter paper disk (diameter 45 mm) in a Petri dish with solid MS media. Cells without treatment were used as a control. Experiments were performed at room temperature (23-25 °C). Using flow cytometer BS FACS Software cells plot was created to determine the densest part, which was later gated using oval-shaped gate. Gate included from 95 to 99% of all cells. To determine relative fluorescence of cells logarithmic fluorescence scale in arbitrary fluorescence units were used. 3x103 gated cells were analysed from the each sample. The significant differences were found among relative fluorescence of cells from different trees after treatment with SiO2 nanoparticles and UV irradiation in comparison with the control.Keywords: flow cytometry, fluorescence, SiO2 nanoparticles, UV irradiation
Procedia PDF Downloads 41527 Differential Expression Profile Analysis of DNA Repair Genes in Mycobacterium Leprae by qPCR
Authors: Mukul Sharma, Madhusmita Das, Sundeep Chaitanya Vedithi
Abstract:
Leprosy is a chronic human disease caused by Mycobacterium leprae, that cannot be cultured in vitro. Though treatable with multidrug therapy (MDT), recently, bacteria reported resistance to multiple antibiotics. Targeting DNA replication and repair pathways can serve as the foundation of developing new anti-leprosy drugs. Due to the absence of an axenic culture medium for the propagation of M. leprae, studying cellular processes, especially those belonging to DNA repair pathways, is challenging. Genomic understanding of M. Leprae harbors several protein-coding genes with no previously assigned function known as 'hypothetical proteins'. Here, we report identification and expression of known and hypothetical DNA repair genes from a human skin biopsy and mouse footpads that are involved in base excision repair, direct reversal repair, and SOS response. Initially, a bioinformatics approach was employed based on sequence similarity, identification of known protein domains to screen the hypothetical proteins in the genome of M. leprae, that are potentially related to DNA repair mechanisms. Before testing on clinical samples, pure stocks of bacterial reference DNA of M. leprae (NHDP63 strain) was used to construct standard graphs to validate and identify lower detection limit in the qPCR experiments. Primers were designed to amplify the respective transcripts, and PCR products of the predicted size were obtained. Later, excisional skin biopsies of newly diagnosed untreated, treated, and drug resistance leprosy cases from SIHR & LC hospital, Vellore, India were taken for the extraction of RNA. To determine the presence of the predicted transcripts, cDNA was generated from M. leprae mRNA isolated from clinically confirmed leprosy skin biopsy specimen across all the study groups. Melting curve analysis was performed to determine the integrity of the amplification and to rule out primer‑dimer formation. The Ct values obtained from qPCR were fitted to standard curve to determine transcript copy number. Same procedure was applied for M. leprae extracted after processing a footpad of nude mice of drug sensitive and drug resistant strains. 16S rRNA was used as positive control. Of all the 16 genes involved in BER, DR, and SOS, differential expression pattern of the genes was observed in terms of Ct values when compared to human samples; this was because of the different host and its immune response. However, no drastic variation in gene expression levels was observed in human samples except the nth gene. The higher expression of nth gene could be because of the mutations that may be associated with sequence diversity and drug resistance which suggests an important role in the repair mechanism and remains to be explored. In both human and mouse samples, SOS system – lexA and RecA, and BER genes AlkB and Ogt were expressing efficiently to deal with possible DNA damage. Together, the results of the present study suggest that DNA repair genes are constitutively expressed and may provide a reference for molecular diagnosis, therapeutic target selection, determination of treatment and prognostic judgment in M. leprae pathogenesis.Keywords: DNA repair, human biopsy, hypothetical proteins, mouse footpads, Mycobacterium leprae, qPCR
Procedia PDF Downloads 10426 Broad Host Range Bacteriophage Cocktail for Reduction of Staphylococcus aureus as Potential Therapy for Atopic Dermatitis
Authors: Tamar Lin, Nufar Buchshtab, Yifat Elharar, Julian Nicenboim, Rotem Edgar, Iddo Weiner, Lior Zelcbuch, Ariel Cohen, Sharon Kredo-Russo, Inbar Gahali-Sass, Naomi Zak, Sailaja Puttagunta, Merav Bassan
Abstract:
Background: Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder that is characterized by dry skin and flares of eczematous lesions and intense pruritus. Multiple lines of evidence suggest that AD is associated with increased colonization by Staphylococcus aureus, which contributes to disease pathogenesis through the release of virulence factors that affect both keratinocytes and immune cells, leading to disruption of the skin barrier and immune cell dysfunction. The aim of the current study is to develop a bacteriophage-based product that specifically targets S. aureus. Methods: For the discovery of phage, environmental samples were screened on 118 S. aureus strains isolated from skin samples, followed by multiple enrichment steps. Natural phages were isolated, subjected to Next-generation Sequencing (NGS), and analyzed using proprietary bioinformatics tools for undesirable genes (toxins, antibiotic resistance genes, lysogeny potential), taxonomic classification, and purity. Phage host range was determined by an efficiency of plating (EOP) value above 0.1 and the ability of the cocktail to completely lyse liquid bacterial culture under different growth conditions (e.g., temperature, bacterial stage). Results: Sequencing analysis demonstrated that the 118 S. aureus clinical strains were distributed across the phylogenetic tree of all available Refseq S. aureus (~10,750 strains). Screening environmental samples on the S. aureus isolates resulted in the isolation of 50 lytic phages from different genera, including Silviavirus, Kayvirus, Podoviridae, and a novel unidentified phage. NGS sequencing confirmed the absence of toxic elements in the phages’ genomes. The host range of the individual phages, as measured by the efficiency of plating (EOP), ranged between 41% (48/118) to 79% (93/118). Host range studies in liquid culture revealed that a subset of the phages can infect a broad range of S. aureus strains in different metabolic states, including stationary state. Combining the single-phage EOP results of selected phages resulted in a broad host range cocktail which infected 92% (109/118) of the strains. When tested in vitro in a liquid infection assay, clearance was achieved in 87% (103/118) of the strains, with no evidence of phage resistance throughout the study (24 hours). A S. aureus host was identified that can be used for the production of all the phages in the cocktail at high titers suitable for large-scale manufacturing. This host was validated for the absence of contaminating prophages using advanced NGS methods combined with multiple production cycles. The phages are produced under optimized scale-up conditions and are being used for the development of a topical formulation (BX005) that may be administered to subjects with atopic dermatitis. Conclusions: A cocktail of natural phages targeting S. aureus was effective in reducing bacterial burden across multiple assays. Phage products may offer safe and effective steroid-sparing options for atopic dermatitis.Keywords: atopic dermatitis, bacteriophage cocktail, host range, Staphylococcus aureus
Procedia PDF Downloads 15525 Comparative Production of Secondary Metabolites by Prunus africana (Hook. F.) Kalkman Provenances in Cameroon and Some Associated Endophytic Fungi
Authors: Gloria M. Ntuba-Jua, Afui M. Mih, Eneke E. T. Bechem
Abstract:
Prunus africana (Hook. F.) Kalkman, commonly known as Pygeum or African cherry belongs to the Rosaceae family. It is a medium to large, evergreen tree with a spreading crown of 10 to 20 m. It is used by the traditional medical practitioners for the treatment of over 45ailments in Cameroon and sub-Sahara Africa. In modern medicine, it is used in the treatment of benign prostrate hyperplasia (BPH), prostate gland hypertrophy (enlarged prostate glands). This is possible because of its ability to produce some secondary metabolites which are believed to have bioactivity against these ailments. The ready international market for the sale of Prunus bark, uncontrolled exploitation, illegal harvesting using inappropriate techniques and poor timing of harvesting have contributed enormously to making the plant endangered. It is known to harbor a large number of endophytic fungi with the potential to produce similar secondary metabolites as the parent plant. Alternative sourcing of medicinal principles through endophytic fungi requires succinct knowledge of the endophytic fungi. This will serve as a conservation measure for Prunus africana by reducing dependence on Prunus bark for such metabolites. This work thus sought to compare the production of some major secondary metabolites produced by P. africana and some of its associated endophytic fungi. The leaves and stem bark of the plant from different provenances were soaked in methanol for 72 hrs to yield the methanolic crude extract. The phytochemical screening of the methanolic crude extracts using different standard procedures revealed the presence of tannins, flavonoids, terpenoids, saponins, phenolics and steroids. Pure cultures of some predominantly isolated endophyte species from the difference Prunus provenances such as Curvularia sp, and Morphospecies P001 were also grown in Potato Dextrose Broth (PDB) for 21 days and later extracted with Methylene dichloride (MDC) solvent after 24hrs to produce crude culture extracts. Qualitative assessment of crude culture extracts showed the presence of tannins, terpenoids, phenolics and steroids particularly β-Sitosterol, (a major bioactive metabolite) as did the plant tissues. Qualitative analysis by thin layer chromatography (TLC) was done to confirm and compare the production of β-Sitosterol (as marker compounds) in the crude extracts of the plant and endophyte. Samples were loaded on TLC silica gel aluminium barked plate (Kieselgel 60 F254, 0.2 mm, Merck) using acetone/hexane, (3.0:7.0) solvent system. They were visualized under an ultra violet lamp (UV254 and UV360). TLC revealed that leaves had a higher concentration of β-sitosterol in terms of band intensity than stem barks from the different provenances. The intensity of β-sitosterol bands in the culture extracts of endophytes was comparable to the plant extracts except for Curvularia sp (very minute) whose band was very faint. The ability of these fungi to make β-sitosterol was confirmed by TLC analysis with the compound having chromatographic properties (retention factor) similar to those of β-sitosterol standard. The ability of these major endophytes to produce secondary metabolites similar to the host has therefore been demonstrated. There is, therefore, the potential of developing the in vitro production system of Prunus secondary metabolites thereby enhancing its conservation.Keywords: Caneroon, endophytic fungi, Prunus africana, secondary metabolite
Procedia PDF Downloads 23524 Isolation and Probiotic Characterization of Lactobacillus plantarum and Lactococcus lactis from Gut Microbiome of Rohu (Labeo rohita)
Authors: Prem Kumar, Anuj Tyagi, Harsh Panwar, Vaneet Inder Kaur
Abstract:
Though aquaculture started as an occupation for poor and weak farmers for livelihood, it has now acquired the shape of one of the biggest industry to grow live protein in the form of aquatic organisms. Industrialization of the aquaculture sector has led to intensification resulting in stress on aquatic organisms and frequent disease outbreaks leading to huge economic impacts. Indiscriminate use of antibiotics as growth promoter and prophylactic agent in aquaculture has resulted in rapid emergence and spread of antibiotic resistance in bacterial pathogens. Over the past few years, use of probiotics (as an alternative of antibiotics) in aquaculture has gained attention due to their immunostimulant and growth promoting properties. It has now well known that after administration, a probiotic bacterium has to compete and establish itself against native microbiota to show its eventual beneficial properties. Due to their non-fish origin, commercial probiotics sometimes may display poor probiotic functionalities and antagonistic effects. Thus, isolation and characterization of probiotic bacteria from same fish host is very much necessary. In this study, attempts were made to isolate potent probiotic lactic acid bacteria (LAB) from intestinal microflora of rohu fish. Twenty-five experimental rohu fishes (mean weight 400 ± 20gm, mean standard length 20 ± 3cm) were used in the study to collect fish gut after dissection in a sterile condition. A total of 150 tentative LAB isolates from selective agar media (de Man-Rogosa-Sharpe (MRS)) were screened for their antimicrobial activity against Aeromonas hydrophila and Microccocus leuteus. A total of 17 isolates, identified as Lactobacillus plantarum and Lactococcus lactis, identified by biochemical tests and PCR amplification and sequencing of 16S rRNA gene fragment, displayed promising antimicrobial activity against both the pathogens. Two isolates from each species (FLB1, FLB2 from L. plantarum; and FLC1, FLC2 from L. lactis) were subjected to downstream probiotic potential characterization. These isolates were compared in vitro for their hemolytic activity, acid and bile tolerance for growth kinetics, auto-aggregation, cell-surface hydrophobicity against xylene, and chloroform, tolerance to phenol, cell adhesion, and safety parameters (by intraperitoneal and intramuscular injections). None of the tested isolates showed any hemolytic activity indicating their potential safety. Moreover, these isolates were tolerant to 0.3% bile (75-82% survival), phenol stress (96-99% survival) with 100% viability at pH 3 over a period of 3 h. Antibiotic sensitivity test revealed that all the tested LAB isolates were resistant to vancomycin, gentamicin, streptomycin, and erythromycin and sensitive to Erythromycin, Chloramphenicol, Ampicillin, Trimethoprim, and Nitrofurantoin. Tetracycline resistance was found in L. plantarum (FLB1 and FLB2 isolates), whereas L. lactis were susceptible to it. Intramuscular and intraperitoneal challenges to fingerlings of rohu fish (5 ± 1gm weight) with FLB1 showed no pathogenicity and occurrence of disease symptoms in fishes over an observation period of 7 days. The results revealed FLB1 as a potential probiotic candidate for aquaculture application among other isolates.Keywords: aquaculture, Lactobacillus plantarum, Lactococcus lactis, probiotics
Procedia PDF Downloads 13723 Angiopermissive Foamed and Fibrillar Scaffolds for Vascular Graft Applications
Authors: Deon Bezuidenhout
Abstract:
Pre-seeding with autologous endothelial cells improves the long-term patency of synthetic vascular grafts levels obtained with autografts, but is limited to a single centre due to resource, time and other constraints. Spontaneous in vivo endothelialization would obviate the need for pre-seeding, but has been shown to be absent in man due to limited transanastomotic and fallout healing, and the lack of transmural ingrowth due to insufficient porosity. Two types of graft scaffolds with increased interconnected porosity for improved tissue ingrowth and healing are thus proposed and described. Foam-type polyurethane (PU) scaffolds with small, medium and large, interconnected pores were made by phase inversion and spherical porogen extraction, with and without additional surface modification with covalently attached heparin and subsequent loading with and delivery of growth factors. Fibrillar scaffolds were made either by standard electrospinning using degradable PU (Degrapol®), or by dual electrospinning using non-degradable PU. The latter process involves sacrificial fibres that are co-spun with structural fibres and subsequently removed to increased porosity and pore size. Degrapol samples were subjected to in vitro degradation, and all scaffold types were evaluated in vivo for tissue ingrowth and vascularization using rat subcutaneous model. The foam scaffolds were additionally evaluated in a circulatory (rat infrarenal aortic interposition) model that allows for the grafts to be anastomotically and/or ablumenally isolated to discern and determine endothelialization mode. Foam-type grafts with large (150 µm) pores showed improved subcutaneous healing in terms of vascularization and inflammatory response over smaller pore sizes (60 and 90µm), and vascularization of the large porosity scaffolds was significantly increased by more than 70% by heparin modification alone, and by 150% to 400% when combined with growth factors. In the circulatory model, extensive transmural endothelialization (95±10% at 12 w) was achieved. Fallout healing was shown to be sporadic and limited in groups that were ablumenally isolated to prevent transmural ingrowth (16±30% wrapped vs. 80±20% control; p<0.002). Heparinization and GF delivery improved both mural vascularization and lumenal endothelialization. Degrapol electrospun scaffolds showed decrease in molecular mass and corresponding tensile strength over the first 2 weeks, but very little decrease in mass over the 4w test period. Studies on the effect of tissue ingrowth with and without concomitant degradation of the scaffolds, are being used to develop material models for the finite element modelling. In the case of the dual-spun scaffolds, the PU fibre fraction could be controlled shown to vary linearly with porosity (P = −0.18FF +93.5, r2=0.91), which in turn showed inverse linear correlation with tensile strength and elastic modulus (r2 > 0.96). Calculated compliance and burst pressures of the scaffolds increased with fibre fraction, and compliances matching the human popliteal artery (5-10 %/100 mmHg), and high burst pressures (> 2000 mmHg) could be achieved. Increasing porosity (76 to 82 and 90%) resulted in increased tissue ingrowth from 33±7 to 77±20 and 98±1% after 28d. Transmural endothelialization of highly porous foamed grafts is achievable in a circulatory model, and the enhancement of porosity and tissue ingrowth may hold the key the development of spontaneously endothelializing electrospun grafts.Keywords: electrospinning, endothelialization, porosity, scaffold, vascular graft
Procedia PDF Downloads 29622 Amifostine Analogue, Drde-30, Attenuates Radiation-Induced Lung Injury in Mice
Authors: Aastha Arora, Vikas Bhuria, Saurabh Singh, Uma Pathak, Shweta Mathur, Puja P. Hazari, Rajat Sandhir, Ravi Soni, Anant N. Bhatt, Bilikere S. Dwarakanath
Abstract:
Radiotherapy is an effective curative and palliative option for patients with thoracic malignancies. However, lung injury, comprising of pneumonitis and fibrosis, remains a significant clin¬ical complication of thoracic radiation, thus making it a dose-limiting factor. Also, injury to the lung is often reported as part of multi-organ failure in victims of accidental radiation exposures. Radiation induced inflammatory response in the lung, characterized by leukocyte infiltration and vascular changes, is an important contributing factor for the injury. Therefore, countermeasure agents to attenuate radiation induced inflammatory response are considered as an important approach to prevent chronic lung damage. Although Amifostine, the widely used, FDA approved radio-protector, has been found to reduce the radiation induced pneumonitis during radiation therapy of non-small cell lung carcinoma, its application during mass and field exposure is limited due to associated toxicity and ineffectiveness with the oral administration. The amifostine analogue (DRDE-30) overcomes this limitation as it is orally effective in reducing the mortality of whole body irradiated mice. The current study was undertaken to investigate the potential of DRDE-30 to ameliorate radiation induced lung damage. DRDE-30 was administered intra-peritoneally, 30 minutes prior to 13.5 Gy thoracic (60Co-gamma) radiation in C57BL/6 mice. Broncheo- alveolar lavage fluid (BALF) and lung tissues were harvested at 12 and 24 weeks post irradiation for studying inflammatory and fibrotic markers. Lactate dehydrogenase (LDH) leakage, leukocyte count and protein content in BALF were used as parameters to evaluate lung vascular permeability. Inflammatory cell signaling (p38 phosphorylation) and anti-oxidant status (MnSOD and Catalase level) was assessed by Western blot, while X-ray CT scan, H & E staining and trichrome staining were done to study the lung architecture and collagen deposition. Irradiation of the lung increased the total protein content, LDH leakage and total leukocyte count in the BALF, reflecting endothelial barrier dysfunction. These disruptive effects were significantly abolished by DRDE-30, which appear to be linked to the DRDE-30 mediated abrogation of activation of the redox-sensitive pro- inflammatory signaling cascade, the MAPK pathway. Concurrent administration of DRDE-30 with radiation inhibited radiation-induced oxidative stress by strengthening the anti-oxidant defense system and abrogated p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and macrophage recruitment to the lungs. Histopathological examination (by H & E staining) of the lung showed radiation-induced inflammation of the lungs, characterized by cellular infiltration, interstitial oedema, alveolar wall thickening, perivascular fibrosis and obstruction of alveolar spaces, which were all reduced by pre-administration of DRDE-30. Structural analysis with X-ray CT indicated lung architecture (linked to the degree of opacity) comparable to un-irradiated mice that correlated well with the lung morphology and reduced collagen deposition. Reduction in the radiation-induced inflammation and fibrosis brought about by DRDE-30 resulted in a profound increase in animal survival (72 % in the combination vs 24% with radiation) observed at the end of 24 weeks following irradiation. These findings establish the potential of the Amifostine analogue, DRDE-30, in reducing radiation induced pulmonary injury by attenuating the inflammatory and fibrotic responses.Keywords: amifostine, fibrosis, inflammation, lung injury radiation
Procedia PDF Downloads 51021 Phytochemical Analysis and in vitro Biological Activities of an Ethyl Acetate Extract from the Peel of Punica granatum L. var. Dente di Cavallo
Authors: Silvia Di Giacomo, Marcello Locatelli, Simone Carradori, Francesco Cacciagrano, Chiara Toniolo, Gabriela Mazzanti, Luisa Mannina, Stefania Cesa, Antonella Di Sotto
Abstract:
Hyperglycemia represents the main pathogenic factor in the development of diabetes complications and has been found associated with mitochondrial dysfunction and oxidative stress, which in turn increase cell dysfunction. Therefore, counteract oxidative species appears to be a suitable strategy for preventing the hyperglycemia-induce cell damage and support the pharmacotherapy of diabetes and metabolic diseases. Antidiabetic potential of many food sources has been linked to the presence of polyphenolic metabolites, particularly flavonoids such as quercetin and its glycosylated form rutin. In line with this evidence, in the present study, we assayed the potential anti-hyperglycemic activity of an ethyl acetate extract from the peel of Punica granatum L. var. Dente di Cavallo (PGE), a fruit well known to traditional medicine for the beneficial properties of its edible juice. The effect of the extract on the glucidic metabolism has been evaluated by assessing its ability to inhibit α-amylase and α-glucosidase, two digestive enzymes responsible for the hydrolysis of dietary carbohydrates: their inhibition can delay the carbohydrate digestion and reduce glucose absorption, thus representing an important strategy for the management of hyperglycemia. Also, the PGE ability to block the release of advanced glycated end-products (AGEs), whose accumulation is known to be responsible for diabetic vascular complications, was studied. The iron-reducing and chelating activities, which are the primary mechanisms by which AGE inhibitors stop their metal-catalyzed formation, were evaluated as possible antioxidant mechanisms. At last, the phenolic content of PGE was characterized by chromatographic and spectrophotometric methods. Our results displayed the ability of PGE to inhibit α-amylase enzyme with a similar potency to the positive control: the IC₅₀ values were 52.2 (CL 27.7 - 101.2) µg/ml and 35.6 (CL 22.8 - 55.5) µg/ml for acarbose and PGE, respectively. PGE also inhibited the α-glucosidase enzyme with about a 25 higher potency than the positive controls of acarbose and quercetin. Furthermore, the extract exhibited ferrous and ferric ion chelating ability, with a maximum effect of 82.1% and 80.6% at a concentration of 250 µg/ml respectively, and reducing properties, reaching the maximum effect of 80.5% at a concentration of 10 µg/ml. At last, PGE was found able to inhibit the AGE production (maximum inhibition of 82.2% at the concentration of 1000 µg/ml), although with lower potency with respect to the positive control rutin. The phytochemical analysis of PGE displayed the presence of high levels of total polyphenols, tannins, and flavonoids, among which ellagic acid, gallic acid and catechin were identified. Altogether these data highlight the ability of PGE to control the carbohydrate metabolism at different levels, both by inhibiting the metabolic enzymes and by affecting the AGE formation likely by chelating mechanisms. It is also noteworthy that peel from pomegranate, although being a waste of juice production, can be reviewed as a nutraceutical source. In conclusion, present results suggest the possible role of PGE as a remedy for preventing hyperglycemia complications and encourage further in vivo studies.Keywords: anti-hyperglycemic activity, antioxidant properties, nutraceuticals, polyphenols, pomegranate
Procedia PDF Downloads 18720 The Potential of Rhizospheric Bacteria for Mycotoxigenic Fungi Suppression
Authors: Vanja Vlajkov, Ivana PajčIn, Mila Grahovac, Marta Loc, Dragana Budakov, Jovana Grahovac
Abstract:
The rhizosphere soil refers to the plant roots' dynamic environment characterized by their inhabitants' high biological activity. Rhizospheric bacteria are recognized as effective biocontrol agents and considered cardinal in alternative strategies for securing ecological plant diseases management. The need to suppress fungal pathogens is an urgent task, not only because of the direct economic losses caused by infection but also due to their ability to produce mycotoxins with harmful effects on human health. Aspergillus and Fusarium species are well-known producers of toxigenic metabolites with a high capacity to colonize crops and enter the food chain. The bacteria belonging to the Bacillus genus has been conceded as a plant beneficial species in agricultural practice and identified as plant growth-promoting rhizobacteria (PGPR). Besides incontestable potential, the full commercialization of microbial biopesticides is in the preliminary phase. Thus, there is a constant need for estimating the suitability of novel strains to be used as a central point of viable bioprocess leading to market-ready product development. In the present study, 76 potential producing strains were isolated from the rhizosphere soil, sampled from different localities in the Autonomous Province of Vojvodina, Republic of Serbia. The selective isolation process of strains started by resuspending 1 g of soil samples in 9 ml of saline and incubating at 28° C for 15 minutes at 150 rpm. After homogenization, thermal treatment at 100° C for 7 minutes was performed. Dilution series (10-1-10-3) were prepared, and 500 µl of each was inoculated on nutrient agar plates and incubated at 28° C for 48 h. The pure cultures of morphologically different strains indicating belonging to the Bacillus genus were obtained by the spread-plate technique. The cultivation of the isolated strains was carried out in an Erlenmeyer flask for 96 h, at 28 °C, 170 rpm. The antagonistic activity screening included two phytopathogenic fungi as test microorganisms: Aspergillus sp. and Fusarium sp. The mycelial growth inhibition was estimated based on the antimicrobial activity testing of cultivation broth by the diffusion method. For the Aspergillus sp., the highest antifungal activity was recorded for the isolates Kro-4a and Mah-1a. In contrast, for the Fusarium sp., following 15 isolates exhibited the highest antagonistic effect Par-1, Par-2, Par-3, Par-4, Kup-4, Paš-1b, Pap-3, Kro-2, Kro-3a, Kro-3b, Kra-1a, Kra-1b, Šar-1, Šar-2b and Šar-4. One-way ANOVA was performed to determine the antagonists' effect statistical significance on inhibition zone diameter. Duncan's multiple range test was conducted to define homogenous groups of antagonists with the same level of statistical significance regarding their effect on antimicrobial activity of the tested cultivation broth against tested pathogens. The study results have pointed out the significant in vitro potential of the isolated strains to be used as biocontrol agents for the suppression of the tested mycotoxigenic fungi. Further research should include the identification and detailed characterization of the most promising isolates and mode of action of the selected strains as biocontrol agents. The following research should also involve bioprocess optimization steps to fully reach the selected strains' potential as microbial biopesticides and design cost-effective biotechnological production.Keywords: Bacillus, biocontrol, bioprocess, mycotoxigenic fungi
Procedia PDF Downloads 19819 Comparative Proteomic Profiling of Planktonic and Biofilms from Staphylococcus aureus Using Tandem Mass Tag-Based Mass Spectrometry
Authors: Arifur Rahman, Ardeshir Amirkhani, Honghua Hu, Mark Molloy, Karen Vickery
Abstract:
Introduction and Objectives: Staphylococcus aureus and coagulase-negative staphylococci comprises approximately 65% of infections associated with medical devices and are well known for their biofilm formatting ability. Biofilm-related infections are extremely difficult to eradicate owing to their high tolerance to antibiotics and host immune defences. Currently, there is no efficient method for early biofilm detection. A better understanding to enable detection of biofilm specific proteins in vitro and in vivo can be achieved by studying planktonic and different growth phases of biofilms using a proteome analysis approach. Our goal was to construct a reference map of planktonic and biofilm associated proteins of S. aureus. Methods: S. aureus reference strain (ATCC 25923) was used to grow 24 hours planktonic, 3-day wet biofilm (3DWB), and 12-day wet biofilm (12DWB). Bacteria were grown in tryptic soy broth (TSB) liquid medium. Planktonic growth was used late logarithmic bacteria, and the Centres for Disease Control (CDC) biofilm reactor was used to grow 3 days, and 12-day hydrated biofilms, respectively. Samples were subjected to reduction, alkylation and digestion steps prior to Multiplex labelling using Tandem Mass Tag (TMT) 10-plex reagent (Thermo Fisher Scientific). The labelled samples were pooled and fractionated by high pH RP-HPLC which followed by loading of the fractions on a nanoflow UPLC system (Eksigent UPLC system, AB SCIEX). Mass spectrometry (MS) data were collected on an Orbitrap Elite (Thermo Fisher Scientific) Mass Spectrometer. Protein identification and relative quantitation of protein levels were performed using Proteome Discoverer (version 1.3, Thermo Fisher Scientific). After the extraction of protein ratios with Proteome Discoverer, additional processing, and statistical analysis was done using the TMTPrePro R package. Results and Discussion: The present study showed that a considerable proteomic difference exists among planktonic and biofilms from S. aureus. We identified 1636 total extracellular secreted proteins, of which 350 and 137 proteins of 3DWB and 12DWB showed significant abundance variation from planktonic preparation, respectively. Of these, simultaneous up-regulation in between 3DWB and 12DWB proteins such as extracellular matrix-binding protein ebh, enolase, transketolase, triosephosphate isomerase, chaperonin, peptidase, pyruvate kinase, hydrolase, aminotransferase, ribosomal protein, acetyl-CoA acetyltransferase, DNA gyrase subunit A, glycine glycyltransferase and others we found in this biofilm producer. On the contrary, simultaneous down-regulation in between 3DWB and 12DWB proteins such as alpha and delta-hemolysin, lipoteichoic acid synthase, enterotoxin I, serine protease, lipase, clumping factor B, regulatory protein Spx, phosphoglucomutase, and others also we found in this biofilm producer. In addition, we also identified a big percentage of hypothetical proteins including unique proteins. Therefore, a comprehensive knowledge of planktonic and biofilm associated proteins identified by S. aureus will provide a basis for future studies on the development of vaccines and diagnostic biomarkers. Conclusions: In this study, we constructed an initial reference map of planktonic and various growth phase of biofilm associated proteins which might be helpful to diagnose biofilm associated infections.Keywords: bacterial biofilms, CDC bioreactor, S. aureus, mass spectrometry, TMT
Procedia PDF Downloads 17118 Preliminary Results on a Study of Antimicrobial Susceptibility Testing of Bacillus anthracis Strains Isolated during Anthrax Outbreaks in Italy from 2001 to 2017
Authors: Viviana Manzulli, Luigina Serrecchia, Adelia Donatiello, Valeria Rondinone, Sabine Zange, Alina Tscherne, Antonio Parisi, Antonio Fasanella
Abstract:
Anthrax is a zoonotic disease that affects a wide range of animal species (primarily ruminant herbivores), and can be transmitted to humans through consumption or handling of contaminated animal products. The etiological agent B.anthracis is able to survive in unfavorable environmental conditions by forming endospore which remain viable in the soil for many decades. Furthermore, B.anthracis is considered as one of the most feared agents to be potentially misused as a biological weapon and the importance of the disease and its treatment in humans has been underscored before the bioterrorism events in the United States in 2001. Due to the often fatal outcome of human cases, antimicrobial susceptibility testing plays especially in the management of anthrax infections an important role. In Italy, animal anthrax is endemic (predominantly found in the southern regions and on islands) and is characterized by sporadic outbreaks occurring mainly during summer. Between 2012 and 2017 single human cases of cutaneous anthrax occurred. In this study, 90 diverse strains of B.anthracis, isolated in Italy from 2001 to 2017, were screened to their susceptibility to sixteen clinically relevant antimicrobial agents by using the broth microdilution method. B.anthracis strains selected for this study belong to the strain collection stored at the Anthrax Reference Institute of Italy located inside the Istituto Zooprofilattico Sperimentale of Puglia and Basilicata. The strains were isolated at different time points and places from various matrices (human, animal and environmental). All strains are a representative of over fifty distinct MLVA 31 genotypes. The following antibiotics were used for testing: gentamicin, ceftriaxone, streptomycin, penicillin G, clindamycin, chloramphenicol, vancomycin, linezolid, cefotaxime, tetracycline, erythromycin, rifampin, amoxicillin, ciprofloxacin, doxycycline and trimethoprim. A standard concentration of each antibiotic was prepared in a specific diluent, which were then twofold serial diluted. Therefore, each wells contained: bacterial suspension of 1–5x104 CFU/mL in Mueller-Hinton Broth (MHB), the antibiotic to be tested at known concentration and resazurin, an indicator of cell growth. After incubation overnight at 37°C, the wells were screened for color changes caused by the resazurin: a change from purple to pink/colorless indicated cell growth. The lowest concentration of antibiotic that prevented growth represented the minimal inhibitory concentration (MIC). This study suggests that B.anthracis remains susceptible in vitro to many antibiotics, in addition to doxycycline (MICs ≤ 0,03 µg/ml), ciprofloxacin (MICs ≤ 0,03 µg/ml) and penicillin G (MICs ≤ 0,06 µg/ml), recommend by CDC for the treatment of human cases and for prophylactic use after exposure to the spores. In fact, the good activity of gentamicin (MICs ≤ 0,25 µg/ml), streptomycin (MICs ≤ 1 µg/ml), clindamycin (MICs ≤ 0,125 µg/ml), chloramphenicol(MICs ≤ 4 µg/ml), vancomycin (MICs ≤ 2 µg/ml), linezolid (MICs ≤ 2 µg/ml), tetracycline (MICs ≤ 0,125 µg/ml), erythromycin (MICs ≤ 0,25 µg/ml), rifampin (MICs ≤ 0,25 µg/ml), amoxicillin (MICs ≤ 0,06 µg/ml), towards all tested B.anthracis strains demonstrates an appropriate alternative choice for prophylaxis and/or treatment. All tested B.anthracis strains showed intermediate susceptibility to the cephalosporins (MICs ≥ 16 µg/ml) and resistance to trimethoprim (MICs ≥ 128 µg/ml).Keywords: Bacillus anthracis, antibiotic susceptibility, treatment, minimum inhibitory concentration
Procedia PDF Downloads 21517 Modeling Competition Between Subpopulations with Variable DNA Content in Resource-Limited Microenvironments
Authors: Parag Katira, Frederika Rentzeperis, Zuzanna Nowicka, Giada Fiandaca, Thomas Veith, Jack Farinhas, Noemi Andor
Abstract:
Resource limitations shape the outcome of competitions between genetically heterogeneous pre-malignant cells. One example of such heterogeneity is in the ploidy (DNA content) of pre-malignant cells. A whole-genome duplication (WGD) transforms a diploid cell into a tetraploid one and has been detected in 28-56% of human cancers. If a tetraploid subclone expands, it consistently does so early in tumor evolution, when cell density is still low, and competition for nutrients is comparatively weak – an observation confirmed for several tumor types. WGD+ cells need more resources to synthesize increasing amounts of DNA, RNA, and proteins. To quantify resource limitations and how they relate to ploidy, we performed a PAN cancer analysis of WGD, PET/CT, and MRI scans. Segmentation of >20 different organs from >900 PET/CT scans were performed with MOOSE. We observed a strong correlation between organ-wide population-average estimates of Oxygen and the average ploidy of cancers growing in the respective organ (Pearson R = 0.66; P= 0.001). In-vitro experiments using near-diploid and near-tetraploid lineages derived from a breast cancer cell line supported the hypothesis that DNA content influences Glucose- and Oxygen-dependent proliferation-, death- and migration rates. To model how subpopulations with variable DNA content compete in the resource-limited environment of the human brain, we developed a stochastic state-space model of the brain (S3MB). The model discretizes the brain into voxels, whereby the state of each voxel is defined by 8+ variables that are updated over time: stiffness, Oxygen, phosphate, glucose, vasculature, dead cells, migrating cells and proliferating cells of various DNA content, and treat conditions such as radiotherapy and chemotherapy. Well-established Fokker-Planck partial differential equations govern the distribution of resources and cells across voxels. We applied S3MB on sequencing and imaging data obtained from a primary GBM patient. We performed whole genome sequencing (WGS) of four surgical specimens collected during the 1ˢᵗ and 2ⁿᵈ surgeries of the GBM and used HATCHET to quantify its clonal composition and how it changes between the two surgeries. HATCHET identified two aneuploid subpopulations of ploidy 1.98 and 2.29, respectively. The low-ploidy clone was dominant at the time of the first surgery and became even more dominant upon recurrence. MRI images were available before and after each surgery and registered to MNI space. The S3MB domain was initiated from 4mm³ voxels of the MNI space. T1 post and T2 flair scan acquired after the 1ˢᵗ surgery informed tumor cell densities per voxel. Magnetic Resonance Elastography scans and PET/CT scans informed stiffness and Glucose access per voxel. We performed a parameter search to recapitulate the GBM’s tumor cell density and ploidy composition before the 2ⁿᵈ surgery. Results suggest that the high-ploidy subpopulation had a higher Glucose-dependent proliferation rate (0.70 vs. 0.49), but a lower Glucose-dependent death rate (0.47 vs. 1.42). These differences resulted in spatial differences in the distribution of the two subpopulations. Our results contribute to a better understanding of how genomics and microenvironments interact to shape cell fate decisions and could help pave the way to therapeutic strategies that mimic prognostically favorable environments.Keywords: tumor evolution, intra-tumor heterogeneity, whole-genome doubling, mathematical modeling
Procedia PDF Downloads 7516 Biochemical and Antiviral Study of Peptides Isolated from Amaranthus hypochondriacus on Tomato Yellow Leaf Curl Virus Replication
Authors: José Silvestre Mendoza Figueroa, Anders Kvarnheden, Jesús Méndez Lozano, Edgar Antonio Rodríguez Negrete, Manuel Soriano García
Abstract:
Agroindustrial plants such as cereals and pseudo cereals offer a substantial source of biomacromolecules, as they contain large amounts per tissue-gram of proteins, polysaccharides and lipids in comparison with other plants. In particular, Amaranthus hypochondriacus seeds have high levels of proteins in comparison with other cereal and pseudo cereal species, which makes the plant a good source of bioactive molecules such as peptides. Geminiviruses are one principal class of pathogens that causes important economic losses in crops, affecting directly the development and production of the plant. One such virus is the Tomato yellow leaf curl virus (TYLCV), which affects mainly Solanacea family plants such as tomato species. The symptoms of the disease are curling of leaves, chlorosis, dwarfing and floral abortion. The aim of this work was to get peptides derived from enzymatic hydrolysis of globulins and albumins from amaranth seeds with specific recognition of the replication origin in the TYLCV genome, and to test the antiviral activity on host plants with the idea to generate a direct control of this viral infection. Globulins and albumins from amaranth were extracted, the fraction was enzymatically digested with papain, and the aromatic peptides fraction was selected for further purification. Six peptides were tested against the replication origin (OR) using affinity assays, surface resonance plasmon and fluorescent titration, and two of these peptides showed high affinity values to the replication origin of the virus, dissociation constant values were calculated and showed specific interaction between the peptide Ampep1 and the OR. An in vitro replication test of the total TYLCV DNA was performed, in which the peptide AmPep1 was added in different concentrations to the system reaction, which resulted in a decrease of viral DNA synthesis when the peptide concentration increased. Also, we showed that the peptide can decrease the complementary DNA chain of the virus in Nicotiana benthamiana leaves, confirming that the peptide binds to the OR and that its expected mechanism of action is to decrease the replication rate of the viral genome. In an infection assay, N. benthamiana plants were agroinfected with TYLCV-Israel and TYLCV-Guasave. After confirming systemic infection, the peptide was infiltrated in new infected leaves, and the plants treated with the peptide showed a decrease of virus symptoms and viral titer. In order to confirm the antiviral activity in a commercial crop, tomato plants were infected with TYLCV. After confirming systemic infection, plants were infiltrated with peptide solution as above, and the symptom development was monitored 21 days after treatment, showing that tomato plants treated with peptides had lower symptom rates and viral titer. The peptide was also tested against other begomovirus such as Pepper huasteco yellow vein virus (PHYVV-Guasave), showing a decrease of symptoms in N. benthamiana infected plants. The model of direct biochemical control of TYLCV infection shown in this work can be extrapolated to other begomovirus infections, and the methods reported here can be used for design of antiviral agrochemicals for other plant virus infections.Keywords: agrochemical screening, antiviral, begomovirus, geminivirus, peptides, plasmon, TYLCV
Procedia PDF Downloads 27815 A 3d Intestine-On-Chip Model Allows Colonization with Commensal Bacteria to Study Host-Microbiota Interaction
Authors: Michelle Maurer, Antonia Last, Mark S. Gresnigt, Bernhard Hube, Alexander S. Mosig
Abstract:
The intestinal epithelium forms an essential barrier to prevent translocation of microorganisms, toxins or other potentially harmful molecules into the bloodstream. In particular, dendritic cells of the intestinal epithelium orchestrate an adapted response of immune tolerance to commensals and immune defense against invading pathogens. Systemic inflammation is typically associated with a dysregulation of this adapted immune response and is accompanied by a disruption of the epithelial and endothelial gut barrier which enables dissemination of pathogens within the human body. To understand the pathophysiological mechanisms underlying the inflammation-associated gut barrier breakdown, it is crucial to elucidate the complex interplay of the host and the intestinal microbiome. A microfluidically perfused three-dimensional intestine-on-chip model was established to emulate these processes in the presence of immune cells, commensal bacteria, and facultative pathogens. Multi-organ tissue flow (MOTiF) biochips made from polystyrene were used for microfluidic perfusion of the intestinal tissue model. The biochips are composed of two chambers separated by a microporous membrane. Each chamber is connected to inlet and outlet channels allowing independent perfusion of the individual channels and application of microfluidic shear stress. Human umbilical vein endothelial cells (HUVECs), monocyte-derived macrophages and intestinal epithelial cells (Caco-2) were assembled on the biochip membrane. Following 7 – 14 days of growth in the presence of physiological flow conditions, the epithelium was colonized with the commensal bacterium Lactobacillus rhamnosus, while the endothelium was perfused with peripheral blood mononuclear cells (PBMCs). Additionally, L. rhamnosus was co-cultivated with the opportunistic fungal pathogen Candida albicans. Within one week of perfusion, the epithelial cells formed self-organized and well-polarized villus- and crypt-like structures that resemble essential morphological characteristics of the human intestine. Dendritic cells were differentiated in the epithelial tissue that specifically responds to bacterial lipopolysaccharide (LPS) challenge. LPS is well-tolerated at the luminal epithelial side of the intestinal model without signs of tissue damage or induction of an inflammatory response, even in the presence of circulating PBMC at the endothelial lining. In contrast, LPS stimulation at the endothelial side of the intestinal model triggered the release of pro-inflammatory cytokines such as TNF, IL-1β, IL-6, and IL-8 via activation of macrophages residing in the endothelium. Perfusion of the endothelium with PBMCs led to an enhanced cytokine release. L. rhamnosus colonization of the model was tolerated in the immune competent tissue model and was demonstrated to reduce damage induced by C. albicans infection. A microfluidic intestine-on-chip model was developed to mimic a systemic infection with a dysregulated immune response under physiological conditions. The model facilitates the colonization of commensal bacteria and co-cultivation with facultative pathogenic microorganisms. Both, commensal bacteria alone and facultative pathogens controlled by commensals, are tolerated by the host and contribute to cell signaling. The human intestine-on-chip model represents a promising tool to mimic microphysiological conditions of the human intestine and paves the way for more detailed in vitro studies of host-microbiota interactions under physiologically relevant conditions.Keywords: host-microbiota interaction, immune tolerance, microfluidics, organ-on-chip
Procedia PDF Downloads 13214 Bioinspired Green Synthesis of Magnetite Nanoparticles Using Room-Temperature Co-Precipitation: A Study of the Effect of Amine Additives on Particle Morphology in Fluidic Systems
Authors: Laura Norfolk, Georgina Zimbitas, Jan Sefcik, Sarah Staniland
Abstract:
Magnetite nanoparticles (MNP) have been an area of increasing research interest due to their extensive applications in industry, such as in carbon capture, water purification, and crucially, the biomedical industry. The use of MNP in the biomedical industry is rising, with studies on their effect as Magnetic resonance imaging contrast agents, drug delivery systems, and as hyperthermic cancer treatments becoming prevalent in the nanomaterial research community. Particles used for biomedical purposes must meet stringent criteria; the particles must have consistent shape and size between particles. Variation between particle morphology can drastically alter the effective surface area of the material, making it difficult to correctly dose particles that are not homogeneous. Particles of defined shape such as octahedral and cubic have been shown to outperform irregular shaped particles in some applications, leading to the need to synthesize particles of defined shape. In nature, highly homogeneous MNP are found within magnetotactic bacteria, a unique bacteria capable of producing magnetite nanoparticles internally under ambient conditions. Biomineralisation proteins control the properties of the MNPs, enhancing their homogeneity. One of these proteins, Mms6, has been successfully isolated and used in vitro as an additive in room-temperature co-precipitation reactions (RTCP) to produce particles of defined mono-dispersed size & morphology. When considering future industrial scale-up it is crucial to consider the costs and feasibility of an additive, as an additive that is not readily available or easily synthesized at a competitive price will not be sustainable. As such, additives selected for this research are inspired by the functional groups of biomineralisation proteins, but cost-effective, environmentally friendly, and compatible with scale-up. Diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA) have been successfully used in RTCP to modulate the properties of particles synthesized, leading to the formation of octahedral nanoparticles with no use of organic solvents, heating, or toxic precursors. By extending this principle to a fluidic system, ongoing research will reveal whether the amine additives can also exert morphological control in an environment which is suited toward higher particle yield. Two fluidic systems have been employed; a peristaltic turbulent flow mixing system suitable for the rapid production of MNP, and a macrofluidic system for the synthesis of tailored nanomaterials under a laminar flow regime. The presence of the amine additives in the turbulent flow system in initial results appears to offer similar morphological control as observed under RTCP conditions, with higher proportions of octahedral particles formed. This is a proof of concept which may pave the way to green synthesis of tailored MNP on an industrial scale. Mms6 and amine additives have been used in the macrofluidic system, with Mms6 allowing magnetite to be synthesized at unfavourable ferric ratios, but no longer influencing particle size. This suggests this synthetic technique while still benefiting from the addition of additives, may not allow additives to fully influence the particles formed due to the faster timescale of reaction. The amine additives have been tested at various concentrations, the results of which will be discussed in this paper.Keywords: bioinspired, green synthesis, fluidic, magnetite, morphological control, scale-up
Procedia PDF Downloads 11413 Effects of Delphinidin on Lipid Metabolism in HepG2 Cells and Diet-Induced Obese Mice
Authors: Marcela Parra-Vargas, Ana Sandoval-Rodriguez, Roberto Rodriguez-Echevarria, Jose Dominguez-Rosales, Juan Armendariz-Borunda
Abstract:
Non-alcoholic fatty liver disease (NAFLD) is characterized by an excess of hepatic lipids, and it is to author’s best knowledge, the most prevalent chronic liver disorder. Anthocyanin-rich food consumption is linked to health benefits in metabolic disorders associated with obesity and NAFLD, although the precise functional role of anthocyanidin delphinidin (Dp) has yet to be established. The aim of this study was to investigate the effect of the Dp in NAFLD metabolic alterations by evaluating prevention or amelioration of hepatic lipid accumulation, as well as molecular mechanisms in two experimental obesity-related models of NALFD. In vitro: HepG2 cells were incubated with sodium palmitate (PA, 1 mM) to induce lipotoxic damage, and concomitantly treated with Dp (180 uM) for 24 h. Subsequently, total lipid accumulation was measured by colorimetric staining with Oil Red O, and total intrahepatic triglycerides were determined by an enzymatic assay. To assess molecular mechanisms, cells were pre-treated with PA for 24 h and then exposed to Dp for 1 h. In vivo: four-week-old male C57BL/6Nhsd mice were allocated in two main groups. Mice were fed with standard diet (control) or high-fat and high-carbohydrate diet (45% fat, HFD) for 16 wk to induce NAFLD. Then HFD was divided into subgroups: one treated orally with Dp (15 mg/kg bw, HFD-Dp) every day for 4 wk, while HFD group treated with vehicle (DMSO). Weight and fasting glucose were recorded weekly, while dietary ingestion was measured daily. Insulin tolerance test was performed at the end of treatment. Liver histology was evaluated with H&E and Masson’s trichrome stain. RT-PCR was used to evaluate gene expression and Western Blot to determine levels of protein in both experimental models. Parametric data were analyzed with one-way ANOVA and Tukey’s post-hoc test. Kruskal-Wallis and Mann-Whitney U test for non-parametric data, and P < 0.5 were considered significant. Dp prevented hepatic lipid accumulation by PA in HepG2 hepatocytes. Furthermore, Dp down-regulated gene expression of SREBP1c, FAS, and CPT1a without modifying AMPK phosphorylation levels. In vivo, Dp oral administration did not ameliorate lipid metabolic alterations raised by HFD. Adiposity, dietary ingestion, fasting glucose, and insulin sensitivity after Dp treatment remained similar to HFD group. Histological analysis showed hepatic damage in HFD groups and no differences between HFD and HFD-Dp groups were found. Hepatic gene expression of ACC and FAS were not altered by HFD. SREBP1c was similar in both HFD and HFD-Dp groups. No significant changes were observed in SREBP1c, ACC, and FAS adipose tissue gene expression by HFD or Dp treatment. Additionally, immunoblotting analysis revealed no changes in pathway SIRT1-LKB-AMPK and PPAR alpha by both HFD groups compared to control. In conclusion, the antioxidant Dp may provoke beneficial effects in the prevention of hepatic lipid accumulation. Nevertheless, the oral dose administrated in mice that simulated the total intake of anthocyanins consumed daily by humans has no effect as a treatment on hepatic lipid metabolic alterations and histological abnormalities associated with exposure to chronic HFD. A healthy lifestyle with regular intake of antioxidants such as anthocyanins may prevent metabolic alterations in NAFLD.Keywords: anthocyanins, antioxidants, delphinidin, non-alcoholic fatty liver disease, obesity
Procedia PDF Downloads 20212 Magnetic Single-Walled Carbon Nanotubes (SWCNTs) as Novel Theranostic Nanocarriers: Enhanced Targeting and Noninvasive MRI Tracking
Authors: Achraf Al Faraj, Asma Sultana Shaik, Baraa Al Sayed
Abstract:
Specific and effective targeting of drug delivery systems (DDS) to cancerous sites remains a major challenge for a better diagnostic and therapy. Recently, SWCNTs with their unique physicochemical properties and the ability to cross the cell membrane show promising in the biomedical field. The purpose of this study was first to develop a biocompatible iron oxide tagged SWCNTs as diagnostic nanoprobes to allow their noninvasive detection using MRI and their preferential targeting in a breast cancer murine model by placing an optimized flexible magnet over the tumor site. Magnetic targeting was associated to specific antibody-conjugated SWCNTs active targeting. The therapeutic efficacy of doxorubicin-conjugated SWCNTs was assessed, and the superiority of diffusion-weighted (DW-) MRI as sensitive imaging biomarker was investigated. Short Polyvinylpyrrolidone (PVP) stabilized water soluble SWCNTs were first developed, tagged with iron oxide nanoparticles and conjugated with Endoglin/CD105 monoclonal antibodies. They were then conjugated with doxorubicin drugs. SWCNTs conjugates were extensively characterized using TEM, UV-Vis spectrophotometer, dynamic light scattering (DLS) zeta potential analysis and electron spin resonance (ESR) spectroscopy. Their MR relaxivities (i.e. r1 and r2*) were measured at 4.7T and their iron content and metal impurities quantified using ICP-MS. SWCNTs biocompatibility and drug efficacy were then evaluated both in vitro and in vivo using a set of immunological assays. Luciferase enhanced bioluminescence 4T1 mouse mammary tumor cells (4T1-Luc2) were injected into the right inguinal mammary fat pad of Balb/c mice. Tumor bearing mice received either free doxorubicin (DOX) drug or SWCNTs with or without either DOX or iron oxide nanoparticles. A multi-pole 10x10mm high-energy flexible magnet was maintained over the tumor site during 2 hours post-injections and their properties and polarity were optimized to allow enhanced magnetic targeting of SWCNTs toward the primary tumor site. Tumor volume was quantified during the follow-up investigation study using a fast spin echo MRI sequence. In order to detect the homing of SWCNTs to the main tumor site, susceptibility-weighted multi-gradient echo (MGE) sequence was used to generate T2* maps. Apparent diffusion coefficient (ADC) measurements were also performed as a sensitive imaging biomarker providing early and better assessment of disease treatment. At several times post-SWCNT injection, histological analysis were performed on tumor extracts and iron-loaded SWCNT were quantified using ICP-MS in tumor sites, liver, spleen, kidneys, and lung. The optimized multi-poles magnet revealed an enhanced targeting of magnetic SWCNTs to the primary tumor site, which was found to be much higher than the active targeting achieved using antibody-conjugated SWCNTs. Iron-loading allowed their sensitive noninvasive tracking after intravenous administration using MRI. The active targeting of doxorubicin through magnetic antibody-conjugated SWCNTs nanoprobes was found to considerably decrease the primary tumor site and may have inhibited the development of metastasis in the tumor-bearing mice lung. ADC measurements in DW-MRI were found to significantly increase in a time-dependent manner after the injection of DOX-conjugated SWCNTs complexes.Keywords: single-walled carbon nanotubes, nanomedicine, magnetic resonance imaging, cancer diagnosis and therapy
Procedia PDF Downloads 32911 Impact of Elevated Temperature on Spot Blotch Development in Wheat and Induction of Resistance by Plant Growth Promoting Rhizobacteria
Authors: Jayanwita Sarkar, Usha Chakraborty, Bishwanath Chakraborty
Abstract:
Plants are constantly interacting with various abiotic and biotic stresses. In changing climate scenario plants are continuously modifying physiological processes to adapt to changing environmental conditions which profoundly affect plant-pathogen interactions. Spot blotch in wheat is a fast-rising disease in the warmer plains of South Asia where the rise in minimum average temperature over most of the year already affecting wheat production. Hence, the study was undertaken to explore the role of elevated temperature in spot blotch disease development and modulation of antioxidative responses by plant growth promoting rhizobacteria (PGPR) for biocontrol of spot blotch at high temperature. Elevated temperature significantly increases the susceptibility of wheat plants to spot blotch causing pathogen Bipolaris sorokiniana. Two PGPR Bacillus safensis (W10) and Ochrobactrum pseudogrignonense (IP8) isolated from wheat (Triticum aestivum L.) and blady grass (Imperata cylindrical L.) rhizophere respectively, showing in vitro antagonistic activity against Bipolaris sorokiniana were tested for growth promotion and induction of resistance against spot blotch in wheat. GC-MS analysis showed that Bacillus safensis (W10) and Ochrobactrum pseudogrignonense (IP8) produced antifungal and antimicrobial compounds in culture. Seed priming with these two bacteria significantly increase growth, modulate antioxidative signaling and induce resistance and eventually reduce disease incidence in wheat plants at optimum as well as elevated temperature which was further confirmed by indirect immunofluorescence assay using polyclonal antibody raised against Bipolaris sorokiniana. Application of the PGPR led to enhancement in activities of plant defense enzymes- phenylalanine ammonia lyase, peroxidase, chitinase and β-1,3 glucanase in infected leaves. Immunolocalization of chitinase and β-1,3 glucanase in PGPR primed and pathogen inoculated leaf tissue was further confirmed by transmission electron microscopy using PAb of chitinase, β-1,3 glucanase and gold labelled conjugates. Activity of ascorbate-glutathione redox cycle related enzymes such as ascorbate peroxidase, superoxide dismutase and glutathione reductase along with antioxidants such as carotenoids, glutathione and ascorbate and osmolytes like proline and glycine betain accumulation were also increased during disease development in PGPR primed plant in comparison to unprimed plants at high temperature. Real-time PCR analysis revealed enhanced expression of defense genes- chalcone synthase and phenyl alanineammonia lyase. Over expression of heat shock proteins like HSP 70, small HSP 26.3 and heat shock factor HsfA3 in PGPR primed plants effectively protect plants against spot blotch infection at elevated temperature as compared with control plants. Our results revealed dynamic biochemical cross talk between elevated temperature and spot blotch disease development and furthermore highlight PGPR mediated array of antioxidative and molecular alterations responsible for induction of resistance against spot blotch disease at elevated temperature which seems to be associated with up-regulation of defense genes, heat shock proteins and heat shock factors, less ROS production, membrane damage, increased expression of redox enzymes and accumulation of osmolytes and antioxidants.Keywords: antioxidative enzymes, defense enzymes, elevated temperature, heat shock proteins, PGPR, Real-Time PCR, spot blotch, wheat
Procedia PDF Downloads 17210 Cellular Mechanisms Involved in the Radiosensitization of Breast- and Lung Cancer Cells by Agents Targeting Microtubule Dynamics
Authors: Elsie M. Nolte, Annie M. Joubert, Roy Lakier, Maryke Etsebeth, Jolene M. Helena, Marcel Verwey, Laurence Lafanechere, Anne E. Theron
Abstract:
Treatment regimens for breast- and lung cancers may include both radiation- and chemotherapy. Ideally, a pharmaceutical agent which selectively sensitizes cancer cells to gamma (γ)-radiation would allow administration of lower doses of each modality, yielding synergistic anti-cancer benefits and lower metastasis occurrence, in addition to decreasing the side-effect profiles. A range of 2-methoxyestradiol (2-ME) analogues, namely 2-ethyl-3-O-sulphamoyl-estra-1,3,5 (10) 15-tetraene-3-ol-17one (ESE-15-one), 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-17-ol (ESE-15-ol) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16) were in silico-designed by our laboratory, with the aim of improving the parent compound’s bioavailability in vivo. The main effect of these compounds is the disruption of microtubule dynamics with a resultant mitotic accumulation and induction of programmed cell death in various cancer cell lines. This in vitro study aimed to determine the cellular responses involved in the radiation sensitization effects of these analogues at low doses in breast- and lung cancer cell lines. The oestrogen receptor positive MCF-7-, oestrogen receptor negative MDA-MB-231- and triple negative BT-20 breast cancer cell lines as well as the A549 lung cancer cell line were used. The minimal compound- and radiation doses able to induce apoptosis were determined using annexin-V and cell cycle progression markers. These doses (cell line dependent) were used to pre-sensitize the cancer cells 24 hours prior to 6 gray (Gy) radiation. Experiments were conducted on samples exposed to the individual- as well as the combination treatment conditions in order to determine whether the combination treatment yielded an additive cell death response. Morphological studies included light-, fluorescence- and transmission electron microscopy. Apoptosis induction was determined by flow cytometry employing annexin V, cell cycle analysis, B-cell lymphoma 2 (Bcl-2) signalling, as well as reactive oxygen species (ROS) production. Clonogenic studies were performed by allowing colony formation for 10 days post radiation. Deoxyribonucleic acid (DNA) damage was quantified via γ-H2AX foci and micronuclei quantification. Amplification of the p53 signalling pathway was determined by western blot. Results indicated that exposing breast- and lung cancer cells to nanomolar concentrations of these analogues 24 hours prior to γ-radiation induced more cell death than the compound- and radiation treatments alone. Hypercondensed chromatin, decreased cell density, a damaged cytoskeleton and an increase in apoptotic body formation were observed in cells exposed to the combination treatment condition. An increased number of cells present in the sub-G1 phase as well as increased annexin-V staining, elevation of ROS formation and decreased Bcl-2 signalling confirmed the additive effect of the combination treatment. In addition, colony formation decreased significantly. p53 signalling pathways were significantly amplified in cells exposed to the analogues 24 hours prior to radiation, as was the amount of DNA damage. In conclusion, our results indicated that pre-treatment of breast- and lung cancer cells with low doses of 2-ME analogues sensitized breast- and lung cancer cells to γ-radiation and induced apoptosis more so than the individual treatments alone. Future studies will focus on the effect of the combination treatment on non-malignant cellular counterparts.Keywords: cancer, microtubule dynamics, radiation therapy, radiosensitization
Procedia PDF Downloads 2099 Nanocarriers Made of Amino Acid Based Biodegradable Polymers: Poly(Ester Amide) and Related Cationic and PEGylating Polymers
Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava
Abstract:
Polymeric nanoparticles-based drug delivery systems and therapeutics have a great potential in the treatment of a numerous diseases, due to they are characterizing the flexible properties which is giving possibility to modify their structures with a complex definition over their structures, compositions and properties. Important characteristics of the polymeric nanoparticles (PNPs) used as drug carriers are high particle’s stability, high carrier capacity, feasibility of encapsulation of both hydrophilic and hydrophobic drugs, and feasibility of variable routes of administration, including oral application and inhalation; NPs are especially effective for intracellular drug delivery since they penetrate into the cells’ interior though endocytosis. A variety of PNPs based drug delivery systems including charged and neutral, degradable and non-degradable polymers of both natural and synthetic origin have been developed. Among these huge varieties the biodegradable PNPs which can be cleared from the body after the fulfillment of their function could be considered as one of the most promising. For intracellular uptake it is highly desirable to have positively charged PNPs since they can penetrate deep into cell membranes. For long-lasting circulation of PNPs in the body it is important they have so called “stealth coatings” to protect them from the attack of immune system of the organism. One of the effective ways to render the PNPs “invisible” for immune system is their PEGylation which represent the process of pretreatment of polyethylene glycol (PEG) on the surface of PNPs. The present work deals with constructing PNPs from amino acid based biodegradable polymers – regular poly(ester amide) (PEA) composed of sebacic acid, leucine and 1,6-hexandiol (labeled as 8L6), cationic PEA composed of sebacic acid, arginine and 1,6-hexandiol (labeled as 8R6), and comb-like co-PEA composed of sebacic acid, malic acid, leucine and 1,6-hexandiol (labeled as PEG-PEA). The PNPs were fabricated using the polymer deposition/solvent displacement (nanoprecipitation) method. The regular PEA 8L6 form stable negatively charged (zeta-potential within 2-12 mV) PNPs of desired size (within 150-200 nm) in the presence of various surfactants (Tween 20, Tween 80, Brij 010, etc.). Blending the PEAs 8L6 and 8R6 gave the 130-140 nm sized positively charged PNPs having zeta-potential within +20 ÷ +28 mV depending 8L6/8R6 ratio. The PEGylating PEA PEG-PEA was synthesized by interaction of epoxy-co-PEA [8L6]0,5-[tES-L6]0,5 with mPEG-amine-2000 The stable and positively charged PNPs were fabricated using pure PEG-PEA as a surfactant. A firm anchoring of the PEG-PEA with 8L6/8R6 based PNPs (owing to a high afinity of the backbones of all three PEAs) provided good stabilization of the NPs. In vitro biocompatibility study of the new PNPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed they are biocompatible. Considering high stability and cell compatibility of the elaborated PNPs one can conclude that they are promising for subsequent therapeutic applications. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 “New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications”.Keywords: biodegradable poly(ester amide)s, cationic poly(ester amide), pegylating poly(ester amide), nanoparticles
Procedia PDF Downloads 1218 Cardiolipin-Incorporated Liposomes Carrying Curcumin and Nerve Growth Factor to Rescue Neurons from Apoptosis for Alzheimer’s Disease Treatment
Authors: Yung-Chih Kuo, Che-Yu Lin, Jay-Shake Li, Yung-I Lou
Abstract:
Curcumin (CRM) and nerve growth factor (NGF) were entrapped in liposomes (LIP) with cardiolipin (CL) to downregulate the phosphorylation of mitogen-activated protein kinases for Alzheimer’s disease (AD) management. AD belongs to neurodegenerative disorder with a gradual loss of memory, yielding irreversible dementia. CL-conjugated LIP loaded with CRM (CRM-CL/LIP) and that with NGF (NGF-CL/LIP) were applied to AD models of SK-N-MC cells and Wistar rats with an insult of β-amyloid peptide (Aβ). Lipids comprising 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (Avanti Polar Lipids, Alabaster, AL), 1',3'-bis[1,2- dimyristoyl-sn-glycero-3-phospho]-sn-glycerol (CL; Avanti Polar Lipids), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy(polyethylene glycol)-2000] (Avanti Polar Lipids), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (Avanti Polar Lipids) and CRM (Sigma–Aldrich, St. Louis, MO) were dissolved in chloroform (J. T. Baker, Phillipsburg, NJ) and condensed using a rotary evaporator (Panchum, Kaohsiung, Taiwan). Human β-NGF (Alomone Lab, Jerusalem, Israel) was added in the aqueous phase. Wheat germ agglutinin (WGA; Medicago AB, Uppsala, Sweden) was grafted on LIP loaded with CRM for (WGA-CRM-LIP) and CL-conjugated LIP loaded with CRM (WGA-CRM-CL/LIP) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (Sigma–Aldrich) and N-hydroxysuccinimide (Alfa Aesar, Ward Hill, MA). The protein samples of SK-N-MC cells (American Type Tissue Collection, Rockville, MD) were used for sodium dodecyl sulfate (Sigma–Aldrich) polyacrylamide gel (Sigma–Aldrich) electrophoresis. In animal study, the LIP formulations were administered by intravenous injection via a tail vein of male Wistar rats (250–280 g, 8 weeks, BioLasco, Taipei, Taiwan), which were housed in the Animal Laboratory of National Chung Cheng University in accordance with the institutional guidelines and the guidelines of Animal Protection Committee under the Council of Agriculture of the Republic of China. We found that CRM-CL/LIP could inhibit the expressions of phosphorylated p38 (p-p38), p-Jun N-terminal kinase (p-JNK), and p-tau protein at serine 202 (p-Ser202) to retard the neuronal apoptosis. Free CRM and released CRM from CRM-LIP and CRM-CL/LIP were not in a straightforward manner to effectively inhibit the expression of p-p38 and p-JNK in the cytoplasm. In addition, NGF-CL/LIP enhanced the quantities of p-neurotrophic tyrosine kinase receptor type 1 (p-TrkA) and p-extracellular-signal-regulated kinase 5 (p-ERK5), preventing the Aβ-induced degeneration of neurons. The membrane fusion of NGF-LIP activated the ERK5 pathway and the targeting capacity of NGF-CL/LIP enhanced the possibility of released NGF to affect the TrkA level. Moreover, WGA-CRM-LIP improved the permeation of CRM across the blood–brain barrier (BBB) and significantly reduced the Aβ plaque deposition and malondialdehyde level and increased the percentage of normal neurons and cholinergic function in the hippocampus of AD rats. This was mainly because the encapsulated CRM was protected by LIP against a rapid degradation in the blood. Furthermore, WGA on LIP could target N-acetylglucosamine on endothelia and increased the quantity of CRM transported across the BBB. In addition, WGA-CRM-CL/LIP could be effective in suppressing the synthesis of acetylcholinesterase and reduced the decomposition of acetylcholine for better neurotransmission. Based on the in vitro and in vivo evidences, WGA-CRM-CL/LIP can rescue neurons from apoptosis in the brain and can be a promising drug delivery system for clinical AD therapy.Keywords: Alzheimer’s disease, β-amyloid, liposome, mitogen-activated protein kinase
Procedia PDF Downloads 3317 Anti-Infective Potential of Selected Philippine Medicinal Plant Extracts against Multidrug-Resistant Bacteria
Authors: Demetrio L. Valle Jr., Juliana Janet M. Puzon, Windell L. Rivera
Abstract:
From the various medicinal plants available in the Philippines, crude ethanol extracts of twelve (12) Philippine medicinal plants, namely: Senna alata L. Roxb. (akapulko), Psidium guajava L. (bayabas), Piper betle L. (ikmo), Vitex negundo L. (lagundi), Mitrephora lanotan (Blanco) Merr. (Lanotan), Zingiber officinale Roscoe (luya), Curcuma longa L. (Luyang dilaw), Tinospora rumphii Boerl (Makabuhay), Moringga oleifera Lam. (malunggay), Phyllanthus niruri L. (sampa-sampalukan), Centella asiatica (L.) Urban (takip kuhol), and Carmona retusa (Vahl) Masam (tsaang gubat) were studied. In vitro methods of evaluation against selected Gram-positive and Gram-negative multidrug-resistant (MDR), bacteria were performed on the plant extracts. Although five of the plants showed varying antagonistic activities against the test organisms, only Piper betle L. exhibited significant activities against both Gram-negative and Gram-positive multidrug-resistant bacteria, exhibiting wide zones of growth inhibition in the disk diffusion assay, and with the lowest concentrations of the extract required to inhibit the growth of the bacteria, as supported by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Further antibacterial studies of the Piper betle L. leaf, obtained by three extraction methods (ethanol, methanol, supercritical CO2), revealed similar inhibitory activities against a multitude of Gram-positive and Gram-negative MDR bacteria. Thin layer chromatography (TLC) assay of the leaf extract revealed a maximum of eight compounds with Rf values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV-366 nm. TLC- agar overlay bioautography of the isolated compounds showed the compounds with Rf values of 0.86 and 0.13 having inhibitory activities against Gram-positive MDR bacteria (MRSA and VRE). The compound with an Rf value of 0.86 also possesses inhibitory activity against Gram-negative MDR bacteria (CRE Klebsiella pneumoniae and MBL Acinetobacter baumannii). Gas Chromatography-Mass Spectrometry (GC-MS) was able to identify six volatile compounds, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include 4-(2-propenyl)phenol and eugenol; and the new four compounds were ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, and 3-fluoro-2-propynenitrite. Phytochemical screening and investigation of its antioxidant, cytotoxic, possible hemolytic activities, and mechanisms of antibacterial activity were also done. The results showed that the local variant of Piper betle leaf extract possesses significant antioxidant, anti-cancer and antimicrobial properties, attributed to the presence of bioactive compounds, particularly of flavonoids (condensed tannin, leucoanthocyanin, gamma benzopyrone), anthraquinones, steroids/triterpenes and 2-deoxysugars. Piper betle L. is also traditionally known to enhance wound healing, which could be primarily due to its antioxidant, anti-inflammatory and antimicrobial activities. In vivo studies on mice using 2.5% and 5% of the ethanol leaf extract cream formulations in the excised wound models significantly increased the process of wound healing in the mice subjects, the results and values of which are at par with the current antibacterial cream (Mupirocin). From the results of the series of studies, we have definitely proven the value of Piper betle L. as a source of bioactive compounds that could be developed into therapeutic agents against MDR bacteria.Keywords: Philippine herbal medicine, multidrug-resistant bacteria, Piper betle, TLC-bioautography
Procedia PDF Downloads 771