Search results for: heavy metal resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6546

Search results for: heavy metal resistance

4326 Opto-Thermal Frequency Modulation of Phase Change Micro-Electro-Mechanical Systems

Authors: Syed A. Bukhari, Ankur Goswmai, Dale Hume, Thomas Thundat

Abstract:

Here we demonstrate mechanical detection of photo-induced Insulator to metal transition (MIT) in ultra-thin vanadium dioxide (VO₂) micro strings by using < 100 µW of optical power. Highly focused laser beam heated the string locally resulting in through plane and along axial heat diffusion. Localized temperature increase can cause temperature rise > 60 ºC. The heated region of VO₂ can transform from insulating (monoclinic) to conducting (rutile) phase leading to lattice compressions and stiffness increase in the resonator. The mechanical frequency of the resonator can be tuned by changing optical power and wavelength. The first mode resonance frequency was tuned in three different ways. A decrease in frequency below a critical optical power, a large increase between 50-120 µW followed by a large decrease in frequency for optical powers greater than 120 µW. The dynamic mechanical response was studied as a function of incident optical power and gas pressure. The resonance frequency and amplitude of vibration were found to be decreased with increasing laser power from 25-38 µW and increased by1-2 % when the laser power was further increased to 52 µW. The transition in films was induced and detected by a single pump and probe source and by employing external optical sources of different wavelengths. This trend in dynamic parameters of the strings can be co-related with reversible Insulator to metal transition in VO₂ films which creates change in density of the material and hence the overall stiffness of the strings leading to changes in string dynamics. The increase in frequency at a particular optical power manifests a transition to a more ordered metallic phase which tensile stress onto the string. The decrease in frequency at higher optical powers can be correlated with poor phonon thermal conductivity of VO₂ in conducting phase. Poor thermal conductivity of VO₂ can force in-plane penetration of heat causing the underneath SiN supporting VO₂ which can result as a decrease in resonance frequency. This noninvasive, non-contact laser-based excitation and detection of Insulator to metal transition using micro strings resonators at room temperature and with laser power in few µWs is important for low power electronics, and optical switching applications.

Keywords: thermal conductivity, vanadium dioxide, MEMS, frequency tuning

Procedia PDF Downloads 125
4325 Effects of Long-Term Exposure of Cadmium to the Ovary of Lithobius forficatus (Myriapoda, Chilopoda)

Authors: Izabela Poprawa, Alina Chachulska-Zymelka, Lukasz Chajec, Grazyna Wilczek, Piotr Wilczek, Sebastian Student, Magdalena Rost-Roszkowska

Abstract:

Heavy metals polluting the environment, especially soil, have a harmful effect on organisms, because they can damage the organ structure, disturb their function and cause developmental disorders. They can affect not only the somatic tissues but also the germinal tissues. In the natural environment, plants and animals are exposed to short- and long-term exposure to these stressors, which have a major influence on the functioning of these organisms. Numerous animals have been treated as the bioindicators of the environment. Therefore, studies on any alterations caused by, e.g., heavy metals are in the center of interests of not only environmental but also medical and biological science. Myriapods are invertebrates which are bioindicators of the environment. One of the species which lives in the upper layers of soil, particularly under stones and rocks is Lithobius forficatus (Chilopoda), commonly known as the brown centipede or stone centipede. It is a European species of the family Lithobiidae. This centipede living in the soil is exposed to, e.g., heavy metals such as cadmium, lead, arsenic. The main goal of our project was to analyze the impact of long-term exposure to cadmium on the structure of ovary with the emphasis on the course of oogenesis. As the material for analysis of cadmium exposure to ovaries, we chose the centipede species, L. forficatus. Animals were divided into two experimental groups: C – the control group, the animals cultured in laboratory conditions in a horticultural soil; Cd2 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2 for 45 days – long-term exposure. Animals were fed with Acheta and Chironomus larvae maintained in tap water. The analyzes were carried out using transmission electron microscopy (TEM), flow cytometry and laser scanning (confocal) microscopy. Here we present the results of long-term exposure to cadmium concentration in soil on the organ responsible for female germ cell formation. Analysis with the use of the transmission electron microscope showed changes in the ultrastructure of both somatic and germ cells in the ovary. Moreover, quantitative analysis revealed the decrease in the percentage of cells viability, the increase in the percentage of cells with depolarized mitochondria and increasing the number of early apoptotic cells. All these changes were statistically significant compared to the control. Additionally, an increase in the ADP/ATP index was recorded. However, changes were not statistically significant to the control. Acknowledgment: The study has been financed by the National Science Centre, Poland, grant no 2017/25/B/NZ4/00420.

Keywords: cadmium, centipede, ovary, ultrastructure

Procedia PDF Downloads 122
4324 Green Synthesis of Silver Nanoparticles, Their Toxicity and Biomedical Applications

Authors: Kiran Shehzadi, Yasmeen Akhtar, Mujahid Ameen, Tabinda Ijaz, Shoukat Siddique

Abstract:

Nanoparticles, due to their different sizes and morphologies, are employed in various fields such as the medical field, cosmetics, pharmaceutical, textile industry as well as in paints, adhesives, and electronics. Metal nanoparticles exhibit excellent antimicrobial activity, dye degradation and can be used as anti-cancerous drug loading agents. In this study, sZilver nanoparticles (Ag-NPs) were synthesized employing doxycycline (antibiotic) as a reducing and capping agent (biological/green synthesis). Produced Ag-NPS were characterized using UV/VIS spectrophotometry, XRD, SEM, and FTIR. Surface plasmon resonance (SPR) of silver nanoparticles was observed at 411nm with 90nm size with homogenized spherical shape. These particles revealed good inhibition zones for Fungi such as Candida albicans and Candida tropicalis. In this study, toxic properties of Ag-NPs were monitored by allowing them to penetrate in the cell, causing an abrupt increase in oxidative stress, which resulted ultimately in cell death. Histopathological analysis of mice organs was performed by administering definite concentrations of silver nanoparticles orally to mice for 14 days. Toxic properties were determined, and it was revealed that the toxicity of silver nanoparticles mainly depends on the size. Silver nanoparticles of this work presented mild toxicity for different organs (liver, kidney, spleen, heart, and stomach) of mice.

Keywords: metal nanoparticles, green/biological methods, toxicity, Candida albicans, Candida tropicalis

Procedia PDF Downloads 135
4323 Study of the Behavior of Copper Immersed in Sea Water of the Bay of Large Agadir by Electrochemical Methods

Authors: Aicha Chaouay, Lahsen Bazzi, Mustapha Hilali

Abstract:

Seawater has chemical and biological characteristics making it particularly aggressive in relation to the corrosion of many materials including copper and steels low or moderate allies. Note that these materials are widely used in the manufacture of port infrastructure in the marine environment. These structures are exposed to two types of corrosion including: general corrosion and localized corrosion caused by the presence of sulfite-reducing micro-organisms. This work contributes to the study of the problematic related to bacterial contamination of the marine environment of large Agadir and evaluating the impact of this pollution on the corrosion resistance of copper. For the realization of this work, we conducted monthly periodic draws between (October 2012 February 2013) of seawater from the Anza area of the Bay of Agadir. Thus, after each sampling, a study of the electro chemical corrosion behavior of copper was carried out. Electro chemical corrosion parameters such as the corrosion potential, the corrosion current density, the charge transfer resistance and the double layer capacity were evaluated. The electro chemical techniques used in this work are: the route potentiodynamic polarization curves and electro chemical impedance.

Keywords: Bay of Agadir, microbial contamination, seawater (Morocco), corrosion, copper

Procedia PDF Downloads 516
4322 Honey Contamination in the Republic of Kazakhstan

Authors: B. Sadepovich Maikanov, Z. Shabanbayevich Adilbekov, R. Husainovna Mustafina, L. Tyulegenovna Auteleyeva

Abstract:

This study involves detailed information about contaminants of honey in the Republic of Kazakhstan. The requirements of the technical regulation ‘Requirements to safety of honey and bee products’ and GOST 19792-2001 were taken into account in this research. Contamination of honey by antibiotics wqs determined by the IEA (immune-enzyme analysis), Ridder analyzer and Tecna produced test systems. Voltammetry (TaLab device) was used to define contamination by salts of heavy metals and gamma-beta spectrometry, ‘Progress BG’ system, with preliminary ashing of the sample of honey was used to define radioactive contamination. This article pointed out that residues of chloramphenicol were detected in 24% of investigated products, in 22% of them –streptomycin, in 7.3% - sulfanilamide, in 2.4% - tylosin, and in 12% - combined contamination was noted. Geographically, the greatest degree of contamination of honey with antibiotics occurs in the Northern Kazakhstan – 54.4%, and Southern Kazakhstan - 50%, and the lowest in Central and Eastern Kazakhstan with 30% and 25%, respectively. Generally, pollution by heavy metals is within acceptable limits, but the contamination from lead is highest in the Akmola region. The level of radioactive cesium and strontium is also within acceptable concentrations. The highest radioactivity in terms of cesium was observed in the East Kazakhstan region - 49.00±10 Bq/kg, in Akmola, North Kazakhstan and Almaty - 12.00±5, 11.05±3 and 19.0±8 Bq/kg, respectively, while the norm is 100 Bq/kg. In terms of strontium, the radioactivity in the East Kazakhstan region is 25.03±15 Bq/kg, while in Akmola, North Kazakhstan and Almaty regions it is 12.00±3, 10.2±4 and 1.0±2 Bq/kg, respectively, with the norm of 80 Bq/kg. This accumulation is mainly associated with the environmental degradation, feeding and treating of bees. Moreover, in the process of collecting nectar, external substances can penetrate honey. Overall, this research determines factors and reasons of honey contamination.

Keywords: antibiotics, contamination of honey, honey, radionuclides

Procedia PDF Downloads 230
4321 Effect of Radiotherapy/Chemotherapy Protocol on the Gut Microbiome in Pediatric Cancer Patients

Authors: Nourhan G. Sahly, Ahmed Moustafa, Mohamed S. Zaghloul, Tamer Z. Salem

Abstract:

The gut microbiome plays important roles in the human body that includes but not limited to digestion, immunity, homeostasis and response to some drugs such as chemotherapy and immunotherapy. Its role has also been linked to radiotherapy and associated gastrointestinal injuries, where the microbial dysbiosis could be the driving force for dose determination or the complete suspension of the treatment protocol. Linking the gut microbiota alterations to different cancer treatment protocols is not easy especially in humans. However, enormous effort was exerted to understand this complex relationship. In the current study, we described the gut microbiota dysbiosis in pediatric sarcoma patients, in the pelvic region, with regards to radiotherapy and antibiotics. Fecal samples were collected as a source of microbial DNA for which the gene encoding for V3-V5 regions of 16S rRNA was sequenced. Two of the three patients understudy had experienced an increase in alpha diversity post exposure to 50.4 Gy. Although phylum Firmicutes overall relative abundance has generally decreased, six of its taxa increased in all patients. Our results may indicate the possibility of radiosensitivity or enrichment of the antibiotic resistance of the elevated taxa. Further studies are needed to describe the extent of radiosensitivity with regards to antibiotic resistance.

Keywords: combined radiotherapy and chemotherapy, gut microbiome, pediatric cancer, radiosensitivity

Procedia PDF Downloads 153
4320 Prevalence, Antimicrobial Susceptibility Pattern and Public Health Significance for Staphylococcus Aureus of Isolated from Raw Red Meat at Butchery and Abattoir House in Mekelle, Northern Ethiopia

Authors: Haftay Abraha Tadesse

Abstract:

Background: Staphylococcus is a genus of worldwide distributed bacteria correlated to several infectious of different sites in humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. Objective: The objective of this study was to determine the isolates, antimicrobial susceptibility patterns and Public Health Significance of Staphylococcus aureus in raw meat from butchery and abattoir houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from April to October 2019. Socio-demographic data and Public Health Significance were collected using a predesigned questionnaire. The raw meat samples were collected aseptically in the butchery and abattoir houses and transported using an ice box to Mekelle University, College of Veterinary Sciences, for isolating and identification of Staphylococcus aureus. Antimicrobial susceptibility tests were determined by the disc diffusion method. Data obtained were cleaned and entered into STATA 22.0 and a logistic regression model with odds ratio was calculated to assess the association of risk factors with bacterial contamination. A P-value < 0.05 was considered statistically significant. Results: In the present study, 88 out of 250 (35.2%) were found to be contaminated with Staphylococcus aureus. Among the raw meat specimens, the positivity rate of Staphylococcus aureus was 37.6% (n=47) and (32.8% (n=41), butchery and abattoir houses, respectively. Among the associated risks, factories not using gloves reduces risk was found to (AOR=0.222; 95% CI: 0.104-0.473), Strict Separation b/n clean & dirty (AOR= 1.37; 95% CI: 0.66-2.86) and poor habit of hand washing (AOR=1.08; 95%CI: 0.35 3.35) was found to be statistically significant and have associated with Staphylococcus aureus contamination. All isolates of thirty-seven of Staphylococcus aureus were checked and displayed (100%) sensitive to doxycycline, trimethoprim, gentamicin, sulphamethoxazole, amikacin, CN, Co trimoxazole and nitrofurantoi. Whereas the showed resistance to cefotaxime (100%), ampicillin (87.5%), Penicillin (75%), B (75%), and nalidixic acid (50%) from butchery houses. On the other hand, all isolates of Staphylococcus aureus isolate 100% (n= 10) showed sensitive chloramphenicol, gentamicin and nitrofurantoin, whereas they showed 100% resistance of Penicillin, B, AMX, ceftriaxone, ampicillin and cefotaxime from abattoirs houses. The overall multi-drug resistance pattern for Staphylococcus aureus was 90% and 100% of butchery and abattoir houses, respectively. Conclusion: 35.3% Staphylococcus aureus isolated were recovered from the raw meat samples collected from the butchery and abattoirs houses. More has to be done in the development of hand washing behavior and availability of safe water in the butchery houses to reduce the burden of bacterial contamination. The results of the present finding highlight the need to implement protective measures against the levels of food contamination and alternative drug options. The development of antimicrobial resistance is nearly always a result of repeated therapeutic and/or indiscriminate use of them. Regular antimicrobial sensitivity testing helps to select effective antibiotics and to reduce the problems of drug resistance development towards commonly used antibiotics.

Keywords: abattoir house, AMR, butchery house, S. aureus

Procedia PDF Downloads 104
4319 Combination of Work and Family Demands Correlated with the Severity of Wrist Musculoskeletal Disorders among Nurses

Authors: Hsien Hwa Kuo, Lin Wen Chun, Lin Wen Chun, Hsien Wen Kuo

Abstract:

Objective: Nurses represent an important occupational group frequently affected by wrist musculoskeletal disorders (WMSDs) due to a heavy workload, working shifts, poor posture, giving shots, making beds, lifting patients, bending their waist and insufficient rest time every day. However, lack of research reported nurses whether workload in household correlated with the severity of WMSDs. Methods: 550 nurses from a hospital in Taoyuan were interviewed using a modified standardized Nordic Musculoskeletal (NMQ) questionnaire including the demographic information, workplace condition and nine body parts of musculoskeletal disorders. Results: 17.9% and 23.9% of severity and symptoms in WMSDs among nurses with children were significant higher than among nurses without children (1​2.4% and 15.9%). Based on multiple logistic regression models adjusted for age, work duration, job title and body mass index (BMI), we found that heavy workload in hospital had higher odds ratio (OR) of the severity and symptoms of WMSD among nurses with children (OR= 8.67 and OR= 4.30, p<0.05) compared to nurses without children (OR= 1.94 and OR= 1.70). Conclusion: The severity and symptoms of WMSDs among nurses significantly correlated with workload in hospital among nurses with children. If women are at greater risk because of the combination of their work and family demands, synergistic effect of WMSDs was found among nurses. Comment: Women's domestic work, especially once they become mothers, they invest more time and energy caring for children, helping others, and doing housework. Thus domestic work, per se, may be a risk factor for wrist musculoskeletal problems, and, more importantly, it may constrain women's ability to protect themselves from the effects of their paid work. If nurses with more domestic work periodically make efforts to physical activity or modify inappropriate posture, their WMSDs symptoms will be alleviated.

Keywords: musculoskeletal disorders, nurse, NMQ, WMSDs

Procedia PDF Downloads 360
4318 Phase Composition Analysis of Ternary Alloy Materials for Gas Turbine Applications

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to high Turbine Entry Temperatures in the range of 1500 to 1600°C. The blades rotate at very high rotation rates and remove a significant amount of thermal power from the gas stream. At high temperatures, the major component failure mechanism is a creep. During its service over time under high thermal loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades and gas turbine components. The proposed advanced Ti alloy material needs a process that provides a strategic orientation of metallic ordering, uniformity in composition and high metallic strength. The chemical composition of the proposed Ti alloy material (25% Ta/(Al+Ta) ratio), unlike Ti-47Al-2Cr-2Nb, has less excess Al that could limit the service life of turbine blades. Properties and performance of Ti-47Al-2Cr-2Nb and Ti-6Al-4V materials will be compared with that of the proposed Ti alloy material to generalize the performance metrics of various gas turbine components. This paper will involve the summary of the effects of additive manufacturing and heat treatment process conditions on the changes in the phase composition, grain structure, lattice structure of the material, tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness at different temperatures. Based on these results, additive manufacturing and heat treatment process conditions will be optimized to fabricate turbine blade with Ti-43Al matrix alloyed with an optimized amount of refractory Ta metal. Improvement in service temperature of the turbine blades and corrosion resistance dependence on the coercivity of the alloy material will be reported. A correlation of phase composition and creep strain rate will also be discussed.

Keywords: high temperature materials, aerospace, specific strength, creep strain, phase composition

Procedia PDF Downloads 118
4317 Synthesis of Iron-Modified Montmorillonite as Filler for Electrospun Nanocomposite Fibers

Authors: Khryslyn Araño, Dela Cruz, Michael Leo, Dela Pena, Eden May, Leslie Joy Diaz

Abstract:

Montmorillonite (MMT) is a very abundant clay mineral and is versatile such that it can be chemically or physically altered by changing the ions between the sheets of its layered structure. This clay mineral can be prepared into functional nanoparticles that can be used as fillers in other nanomaterials such as nanofibers to achieve special properties. In this study, two types of iron-modified MMT, Iron-MMT (FeMMT) and Zero Valent Iron-MMT (ZVIMMT) were synthesized via ion exchange technique. The modified clay was incorporated in polymer nanofibers which were produced using a process called electrospinning. ICP analysis confirmed that clay modification was successful where there is an observed decrease in the concentration of Na and an increase in the concentration of Fe after ion exchange. XRD analysis also confirmed that modification took place because of the changes in the d-spacing of Na-MMT from 11.5 Å to 13.6 Å and 12.6 Å after synthesis of FeMMT and ZVIMMT, respectively. SEM images of the electrospun nanofibers revealed that the ZVIMMT-filled fibers have a smaller average diameter than the FeMMT-filled fibers because of the lower resistance of the suspensions of the former to the elongation force from the applied electric field. The resistance to the electric field was measured by getting the bulk voltage of the suspensions.

Keywords: electrospinning, nanofibers, montmorillonite, materials science

Procedia PDF Downloads 350
4316 Flowback Fluids Treatment Technology with Water Recycling and Valuable Metals Recovery

Authors: Monika Konieczyńska, Joanna Fajfer, Olga Lipińska

Abstract:

In Poland works related to the exploration and prospection of unconventional hydrocarbons (natural gas accumulated in the Silurian shale formations) started in 2007, based on the experience of the other countries that have created new possibilities for the use of existing hydrocarbons resources. The highly water-consuming process of hydraulic fracturing is required for the exploitation of shale gas which implies a need to ensure large volume of water available. As a result considerable amount of mining waste is generated, particularly liquid waste, i.e. flowback fluid with variable chemical composition. The chemical composition of the flowback fluid depends on the composition of the fracturing fluid and the chemistry of the fractured geological formations. Typically, flowback fluid is highly salinated, can be enriched in heavy metals, including rare earth elements, naturally occurring radioactive materials and organic compounds. The generated fluids considered as the extractive waste should be properly managed in the recovery or disposal facility. Problematic issue is both high hydration of waste as well as their variable chemical composition. Also the limited capacity of currently operating facilities is a growing problem. Based on the estimates, currently operating facilities will not be sufficient for the need of waste disposal when extraction of unconventional hydrocarbons starts. Further more, the content of metals in flowback fluids including rare earth elements is a considerable incentive to develop technology of metals recovery. Also recycling is a key factor in terms of selection of treatment process, which should provide that the thresholds required for reuse are met. The paper will present the study of the flowback fluids chemical composition, based on samples from hydraulic fracturing processes performed in Poland. The scheme of flowback fluid cleaning and recovering technology will be reviewed along with a discussion of the results and an assessment of environmental impact, including all generated by-products. The presented technology is innovative due to the metal recovery, as well as purified water supply for hydraulic fracturing process, which is significant contribution to reducing water consumption.

Keywords: environmental impact, flowback fluid, management of special waste streams, metals recovery, shale gas

Procedia PDF Downloads 267
4315 Impact of Joule Heating on the Electrical Conduction Behavior of Carbon Composite Laminates under Simulated Lightning Strike

Authors: Hong Yu, Dirk Heider, Suresh Advani

Abstract:

Increasing demands for high strength and lightweight materials in aircraft industry prompted the wide use of carbon composites in recent decades. Carbon composite laminates used on aircraft structures are subject to lightning strikes. Unlike its metal/alloy counterparts, carbon fiber reinforced composites demonstrate smaller electrical conductivity, yielding more severe damages due to Joule heating. The anisotropic nature of composite laminates makes the electrical and thermal conduction within carbon composite laminates even more complicated. Good understanding of the electrical conduction behavior of carbon composites is the key to effective lightning protection design. The goal of this study is to numerically and experimentally investigate the impact of ultra-high temperature induced by simulated lightning strike on the electrical conduction of carbon composites. A lightning simulator is designed to apply standard lightning current waveform to composite laminates. Multiple carbon composite laminates made from IM7 and AS4 carbon fiber are tested and the transient resistance data is recorded. A microstructure based resistor network model is developed to describe the electrical and thermal conduction behavior, with consideration of temperature dependent material properties. Material degradations such as thermal and electrical breakdown are also modeled to include the effect of high current and high temperature induced by lightning strikes. Good match between the simulation results and experimental data indicates that the developed model captures the major conduction mechanisms. A parametric study is then conducted using the validated model to investigate the effect of system parameters such as fiber volume fraction, inter-ply interface quality, and lightning current waveforms.

Keywords: carbon composite, joule heating, lightning strike, resistor network

Procedia PDF Downloads 229
4314 Reducing the Chemical Activity of Ceramic Casting Molds for Producing Decorated Glass Moulds

Authors: Nilgun Kuskonmaz

Abstract:

Ceramic molding can produce castings with fine detail, smooth surface and high degree of dimensional accuracy. All these features are the key factors for producing decorated glass moulds. In the ceramic mold casting process, the fundamental parameters affecting the mold-metal reactions are the composition and the properties of the refractory materials used in the production of ceramic mold. As a result of the reactions taking place between the liquid metal and mold surface, it is not possible to achieve a perfect surface quality, a fine surface detail and maintain a high standard dimensional tolerances. The present research examines the effects of the binder composition on the structural and physical properties of the zircon ceramic mold. In the experiment, the ceramic slurry was prepared by mixing the refractory powders (zircon(ZrSiO4), mullit(3Al2O32SiO2) and alumina (Al2O3)) with the low alkaline silica (ethyl silicate (C8H20O4Si)) and acidic type gelling material suitable binder and gelling agent. This was followed by pouring that ceramic slurry on to a silicon pattern. After being gelled, the mold was removed from the silicon pattern and dried. Then, the ceramic mold was subjected to the reaction sintering at 1600°C for 2 hours in the furnace. The stainless steel (SS) was cast into the sintered ceramic mold. At the end of this process it was observed that the surface quality of decorated glass mold.

Keywords: ceramic mold, stainless steel casting, decorated glass mold

Procedia PDF Downloads 265
4313 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: air pollution, linear programming, mining, optimization, treatment technologies

Procedia PDF Downloads 210
4312 Assessment of Surface Water Quality near Landfill Sites Using a Water Pollution Index

Authors: Alejandro Cittadino, David Allende

Abstract:

Landfilling of municipal solid waste is a common waste management practice in Argentina as in many parts of the world. There is extensive scientific literature on the potential negative effects of landfill leachates on the environment, so it’s necessary to be rigorous with the control and monitoring systems. Due to the specific municipal solid waste composition in Argentina, local landfill leachates contain large amounts of organic matter (biodegradable, but also refractory to biodegradation), as well as ammonia-nitrogen, small trace of some heavy metals, and inorganic salts. In order to investigate the surface water quality in the Reconquista river adjacent to the Norte III landfill, water samples both upstream and downstream the dumpsite are quarterly collected and analyzed for 43 parameters including organic matter, heavy metals, and inorganic salts, as required by the local standards. The objective of this study is to apply a water quality index that considers the leachate characteristics in order to determine the quality status of the watercourse through the landfill. The water pollution index method has been widely used in water quality assessments, particularly rivers, and it has played an increasingly important role in water resource management, since it provides a number simple enough for the public to understand, that states the overall water quality at a certain location and time. The chosen water quality index (ICA) is based on the values of six parameters: dissolved oxygen (in mg/l and percent saturation), temperature, biochemical oxygen demand (BOD5), ammonia-nitrogen and chloride (Cl-) concentration. The index 'ICA' was determined both upstream and downstream the Reconquista river, being the rating scale between 0 (very poor water quality) and 10 (excellent water quality). The monitoring results indicated that the water quality was unaffected by possible leachate runoff since the index scores upstream and downstream were ranked in the same category, although in general, most of the samples were classified as having poor water quality according to the index’s scale. The annual averaged ICA index scores (computed quarterly) were 4.9, 3.9, 4.4 and 5.0 upstream and 3.9, 5.0, 5.1 and 5.0 downstream the river during the study period between 2014 and 2017. Additionally, the water quality seemed to exhibit distinct seasonal variations, probably due to annual precipitation patterns in the study area. The ICA water quality index appears to be appropriate to evaluate landfill impacts since it accounts mainly for organic pollution and inorganic salts and the absence of heavy metals in the local leachate composition, however, the inclusion of other parameters could be more decisive in discerning the affected stream reaches from the landfill activities. A future work may consider adding to the index other parameters like total organic carbon (TOC) and total suspended solids (TSS) since they are present in the leachate in high concentrations.

Keywords: landfill, leachate, surface water, water quality index

Procedia PDF Downloads 158
4311 Preparation and Characterization of Mixed Cu-Ag-Pd Oxide Supported Catalysts for Complete Catalytic Oxidation of Methane

Authors: Ts. Lazarova, V. Tumbalev, S. Atanacova-Vladimirova, G. Ivanov, A. Naydenov, D. Kovacheva

Abstract:

Methane is a major Greenhouse Gas (GHG) that accounts for 14% of the world’s total amount of GHG emissions, originating mainly from agriculture, Coal mines, land fields, wastewater and oil and gas facilities. Nowadays the problem caused by the methane emissions has been a subject of an increased concern. One of the methods for neutralization of the methane emissions is it's complete catalytic oxidation. The efforts of the researchers are focused on the development of new types of catalysts and optimizing the existing catalytic systems in order to prevent the sintering of the palladium, providing at the same time a sufficient activity at temperatures below 500oC. The aim of the present work is to prepare mixed Cu-Ag-Pd oxide catalysts supported on alumina and to test them for methane complete catalytic oxidation. Cu-Ag-Pd/Al2O3 were prepared on a γ-Al2O3 (BET surface area = 220 m2/g) by the incipient wetness method using the corresponding metal nitrates (Cu:Ag = 90:10, Cu:Pd =97:3, Cu:Ag:Pd= 87:10:3) as precursors. A second set of samples were prepared with addition of urea to the metal nitrate solutions with the above mentioned ratios assuming increased dispersivity of the catalysts. The catalyst samples were dried at 100°C for 3 hours and calcined at 550°C for 30 minutes. Catalysts samples were characterized using X-ray diffraction (XRD), low temperature adsorption of nitrogen (BET) and scanning electron microscopy (SEM). The catalytic activity tests were carried out in a continuous flow type of reactor at atmospheric pressure. The effect of catalyst aging at 500 oC for 120 h on the methane combustion activity was also investigated. The results clearly indicate the synergetic effect of Ag and Pd on the catalytic activity.

Keywords: catalysts, XRD, BET, SEM, catalytic oxidation

Procedia PDF Downloads 385
4310 Optimization of Chitosan Membrane Production Parameters for Zinc Ion Adsorption

Authors: Peter O. Osifo, Hein W. J. P. Neomagus, Hein V. D. Merwe

Abstract:

Chitosan materials from different sources of raw materials were characterized in order to determine optimal preparation conditions and parameters for membrane production. The membrane parameters such as molecular weight, viscosity, and degree of deacetylation were used to evaluate the membrane performance for zinc ion adsorption. The molecular weight of the chitosan was found to influence the viscosity of the chitosan/acetic acid solution. An increase in molecular weight (60000-400000 kg.kmol-1) of the chitosan resulted in a higher viscosity (0.05-0.65 Pa.s) of the chitosan/acetic acid solution. The effect of the degree of deacetylation on the viscosity is not significant. The effect of the membrane production parameters (chitosan- and acetic acid concentration) on the viscosity is mainly determined by the chitosan concentration. For higher chitosan concentrations, a membrane with a better adsorption capacity was obtained. The membrane adsorption capacity increases from 20-130 mg Zn per gram of wet membrane for an increase in chitosan concentration from 2-7 mass %. Chitosan concentrations below 2 and above 7.5 mass % produced membranes that lack good mechanical properties. The optimum manufacturing conditions including chitosan concentration, acetic acid concentration, sodium hydroxide concentration and crosslinking for chitosan membranes within the workable range were defined by the criteria of adsorption capacity and flux. The adsorption increases (50-120 mg.g-1) as the acetic acid concentration increases (1-7 mass %). The sodium hydroxide concentration seems not to have a large effect on the adsorption characteristics of the membrane however, a maximum was reached at a concentration of 5 mass %. The adsorption capacity per gram of wet membrane strongly increases with the chitosan concentration in the acetic acid solution but remains constant per gram of dry chitosan. The optimum solution for membrane production consists of 7 mass % chitosan and 4 mass % acetic acid in de-ionised water. The sodium hydroxide concentration for phase inversion is at optimum at 5 mass %. The optimum cross-linking time was determined to be 6 hours (Percentage crosslinking of 18%). As the cross-linking time increases the adsorption of the zinc decreases (150-50 mg.g-1) in the time range of 0 to 12 hours. After a crosslinking time of 12 hours, the adsorption capacity remains constant. This trend is comparable to the effect on flux through the membrane. The flux decreases (10-3 L.m-2.hr-1) with an increase in crosslinking time range of 0 to 12 hours and reaches a constant minimum after 12 hours.

Keywords: chitosan, membrane, waste water, heavy metal ions, adsorption

Procedia PDF Downloads 392
4309 A Novel Environmentally Benign Positive Electrode Material with Improved Energy Density for Lithium Ion Batteries

Authors: Wassima El Mofid, Svetlozar Ivanov, Andreas Bund

Abstract:

The increasing requirements for high power and energy lithium ion batteries have led to the development of several classes of positive electrode materials. Among those one promising material is LiNixMnyCo1−x−yO2 due to its high reversible capacity and remarkable cycling performance. Further structural stabilization and improved electrochemical performance of this class of cathode materials can be achieved by cationic substitution to a transition metal such as Al, Mg, Cr, etc. The current study discusses a novel NMC type material obtained by simultaneous cationic substitution of the cobalt which is a toxic element, with aluminum and iron. A compound with the composition LiNi0.6Mn0.2Co0.15Al0.025Fe0.025O2 (NMCAF) was synthesized by the self-combustion method using sucrose as fuel. The material has a layered α-NaFeO2 type structure with a good hexagonal ordering. Rietveld refinement analysis of the XRD patterns revealed a very low cationic mixing compared to the non-substituted material LiNi0.6Mn0,2Co0.2O2 suggesting a structural stabilization. Galvanostatic cycling measurements indicate improved electrochemical performance after the metal substitution. An initial discharge capacity of about 190 mAh.g−1 at slow rate (C/20), and a good cycling stability even at moderately faster rates (C/5 and C) have been observed. The long term cycling displayed a capacity retention of about 90% after 10 cycles.

Keywords: cationic substitution, lithium ion batteries, positive electrode material, self-combustion synthesis method

Procedia PDF Downloads 418
4308 Understanding the Effect of Material and Deformation Conditions on the “Wear Mode Diagram”: A Numerical Study

Authors: A. Mostaani, M. P. Pereira, B. F. Rolfe

Abstract:

The increasing application of Advanced High Strength Steel (AHSS) in the automotive industry to fulfill crash requirements has introduced higher levels of wear in stamping dies and parts. Therefore, understanding wear behaviour in sheet metal forming is of great importance as it can help to reduce the high costs currently associated with tool wear. At the contact between the die and the sheet, the tips of hard tool asperities interact with the softer sheet material. Understanding the deformation that occurs during this interaction is important for our overall understanding of the wear mechanisms. For these reasons, the scratching of a perfectly plastic material by a rigid indenter has been widely examined in the literature; with finite element modelling (FEM) used in recent years to further understand the behaviour. The ‘wear mode diagram’ has been commonly used to classify the deformation regime of the soft work-piece during scratching, into three modes: ploughing, wedge formation, and cutting. This diagram, which is based on 2D slip line theory and upper bound method for perfectly plastic work-piece and rigid indenter, relates different wear modes to attack angle and interfacial strength. This diagram has been the basis for many wear studies and wear models to date. Additionally, it has been concluded that galling is most likely to occur during the wedge formation mode. However, there has been little analysis in the literature of how the material behaviour and deformation conditions associated with metal forming processes influence the wear behaviour. Therefore, the first aim of this work is first to use a commercial FEM package (Abaqus/Explicit) to build a 3D model to capture wear modes during scratching with indenters with different attack angles and different interfacial strengths. The second goal is to utilise the developed model to understand how wear modes might change in the presence of bulk deformation of the work-piece material as a result of the metal forming operation. Finally, the effect of the work-piece material properties, including strain hardening, will be examined to understand how these influence the wear modes and wear behaviour. The results show that both strain hardening and substrate deformation can change the critical attack angle at which the wedge formation regime is activated.

Keywords: finite element, pile-up, scratch test, wear mode

Procedia PDF Downloads 329
4307 The Semiosis of 'We' Narrative: Examining Collectivity in Tahrir Memoir

Authors: May Al Sahib

Abstract:

This paper draws together an analysis of two autobiographical writings; Ahdaf Soueif’s Cairo: My City, Our Revolution (2012), Radwa Ashour’s Heavier than Radwa (2013), and Revolution is My Name: An Egyptian Woman’s Diary from Eighteen Days in Tahrir (2015). Soueif, Ashour, and Prince are Egyptian authors, activists, and cultural commentators who are fully aware that being a ‘third world’ citizen constrains the writer into taking a specific pattern in writing. However, this paper will analyze the choice of literary form in writing the 2011 January revolution. All texts give factual accounts of the revolution with all its contesting powers lingering with mixed references of anxiety and merriment that accentuates their sense of communal solidarity against social corruption and political positioning. Through shifting between the pronouns ‘I’ and ‘we’, these narratives do not solely engage with the personal life of the memorialist; but rather give an account of the collective. Both writers take us to the heart of high-spirited Tahrir Square in 2011 while millions are ranting to oust Hosni Mubarak, the 30 years ruling dictator. By utilizing the instrumentality of collective memory for expressing textual collectivity in their non-fictional writings, these writers are depicting the people power of Egyptians and the historical civil-resistance against governmental unfairness and establishing a certain type of patriotism that elevates and priorities itself from minor conflicts. Their de-individualizing type of life narrative represents the Arabic nation through vital socio-political situations that perpetuate the politics of resistance and collectivity with a constant fear of betraying it and erupts historical moments aiming for an improved future. The texts incorporate an explicit set of reported political series of thought that shape an overall public argument and representational ideas.

Keywords: resistance narrative, life-writing, Tahrir memoir, Middle Eastern literature

Procedia PDF Downloads 171
4306 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach

Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin

Abstract:

Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.

Keywords: reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions

Procedia PDF Downloads 361
4305 Assessment of Potentially Harmful Elements in Floodplain Soils and Stream Sediments in Ile-Ife Area, South-Western Nigeria: Using Geographic Information System and Multi-Variances Approaches

Authors: I. T. Asowata, A. S. Akinwumiju

Abstract:

The enrichment of potentially harmful elements (PHEs) in stream sediments (SS) and floodplain soils (FS) poses great environmental hazards to water bodies and other parts of the ecosystem. The aim of this research was to assess the distribution pattern of selected PHEs (Cu, Pb, Zn, Co, Mn, As, Cd, V, Cr, Ni, Th, Sr, and La) in SS of selected rivers that drain Ile-Ife area and their adjacent FS, to ascertain the pollution status of these elements in the study area. 60 samples (40 SS and 20 FS) were purposely collected for this study; the samples were air-dried at room temperature, disaggregated, sieved with > 63 µm and digested with modified aqua reqia (1:1:1 HCl:HNO₃:H₂O) and were analysed with ultra-trace inductively coupled plasma mass spectrometry method (ICP-ES). The geochemical results showed decreasing trend of average contents of PHEs studied Mn > Zn > V > Cr > Pb > La > Sr > Cu > Ni > Co > Th > As > Cd for both SS and FS. Floodplain topsoil in ppm, Cu range from 10.0-180.0; mean, 71.1, Pb, 17.1-255.0; 93.5 and Zn, 83.0-3122.2; 826.0. Also, floodplain sub-soils, Cu range from 30.0-203.1; mean of 76.6, Pb, 16.0-214.0; 77.9 and Zn, 59.1-2351.0; 622.3. Similarly, SS results for Cu, 22.1-257.0; 70.3, Pb, 15.0-172.0; 67.3 and Zn, 65.0-1285.0; 357.8, among other PHEs, suggesting significant level of PHEs enrichment in the studied geo media. Elemental association showed positive and/or negative correlation among the PHEs and also showed different sources of metal enrichment to be largely anthropogenic with some geogenic. Geoaccumulation and metal ratio indexes indicated that FS and SS studied have received significant PHEs of between moderately to strongly polluted, which implies significant environmental implications in the study area.

Keywords: aqua regia, enrichment, GIS, Ile-Ife, potentially harmful elements

Procedia PDF Downloads 165
4304 Synthesis, Characterization and Antibacterial Activity of Metalloporphyrins: Role of Central Metal Ion

Authors: Belete B. Beyene, Ayenew M. Mihirteu, Misganaw T. Ayana, Amogne W. Yibeltal

Abstract:

Modification of synthetic porphyrins is one of the promising strategies in an attempt to get molecules with desired properties and applications. Here in, we report synthesis, photophysical characterization and antibacterial activity of 5, 10, 15, 20-tetrakis-(4- methoxy carbonyl phenyl) porphyrin M(II); where M = Co, Fe, Ni, Zn. Metallation of the ligand was confirmed by using UV–Vis spectroscopy and ESI-Ms measurement, in which the number of Q bands in absorption spectra of the ligand decreased from four to one or two as a result of metal insertion to the porphyrin core. The antibacterial activity study of the complexes toward two Gram-positive (Staphylococcus aureus (S. aureus) and Streptococcus pyogenes (s. pyogenes)) and two Gram-negative (Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae)) bacteria by disc diffusion method showed a promising inhibitory activity. The complexes exhibited highest activities at highest concentration and were better than the activity of free base ligand, the salts, and blank solution. This could be explained on the basis of Overton's concept of cell permeability and Tweed's Chelation theory. An increased lipo-solubility enhances the penetration of the complexes into the lipid membrane and interferes with the normal activities of the bacteria. Our study, therefore, showed that the growth inhibitory effect of these metalloporphyrins is generally in order of ZnTPPCOOMe > NiTPPCOOMe > CoTPPCOOMe> FeTPPCOOMe, which may be attributed to the better lipophilicity and binding of the complex with the cellular components.

Keywords: porphyrins, metalloporphyrins, spectral property, antibacterial activity, synthesis

Procedia PDF Downloads 78
4303 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance

Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif

Abstract:

The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.

Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant

Procedia PDF Downloads 300
4302 Optimization of the Enzymatic Synthesis of the Silver Core-Shell Nanoparticles

Authors: Lela Pintarić, Iva Rezić, Ana Vrsalović Presečki

Abstract:

Considering an enormous increase of the use of metal nanoparticles with the exactly defined characteristics, the main goal of this research was to found the optimal and environmental friendly method of their synthesis. The synthesis of the inorganic core-shell nanoparticles was optimized as a model. The core-shell nanoparticles are composed of the enzyme core belted with the metal ions, oxides or salts as a shell. In this research, enzyme urease was the core catalyst and the shell nanoparticle was made of silver. Silver nanoparticles are widespread utilized and some of their common uses are: as an addition to disinfectants to ensure an aseptic environment for the patients, as a surface coating for neurosurgical shunts and venous catheters, as an addition to implants, in production of socks for diabetics and athletic clothing where they improve antibacterial characteristics, etc. Characteristics of synthesized nanoparticles directly depend on of their size, so the special care during this optimization was given to the determination of the size of the synthesized nanoparticles. For the purpose of the above mentioned optimization, sixteen experiments were generated by the Design of Experiments (DoE) method and conducted under various temperatures, with different initial concentration of the silver nitrate and constant concentration of the urease of two separate manufacturers. Synthesized nanoparticles were analyzed by the Nanoparticle Tracking Analysis (NTA) method on Malvern NanoSight NS300. Results showed that the initial concentration of the silver ions does not affect the concentration of the synthesized silver nanoparticles neither their size distribution. On the other hand, temperature of the experiments has affected both of the mentioned values.

Keywords: core-shell nanoparticles, optimization, silver, urease

Procedia PDF Downloads 317
4301 Ab-initio Calculations on the Mechanism of Action of Platinum and Ruthenium Complexes in Phototherapy

Authors: Eslam Dabbish, Fortuna Ponte, Stefano Scoditti, Emilia Sicilia, Gloria Mazzone

Abstract:

The medical techniques based on the use of light for activating the drug are occupying a prominent place in the cancer treatment due to their selectivity that contributes to reduce undesirable side effects of conventional chemotherapy. Among these therapeutic treatments, photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are emerging as complementary approaches for selective destruction of neoplastic tissue through direct cellular damage. Both techniques rely on the employment of a molecule, photosensitizer (PS), able to absorb within the so-called therapeutic window. Thus, the exposure to light of otherwise inert molecules promotes the population of excited states of the drug, that in PDT are able to produce the cytotoxic species, such as 1O2 and other ROS, in PACT can be responsible of the active species release or formation. Following the success of cisplatin in conventional treatments, many other transition metal complexes were explored as anticancer agents for applications in different medical approaches, including PDT and PACT, in order to improve their chemical, biological and photophysical properties. In this field, several crucial characteristics of candidate PSs can be accurately predicted from first principle calculations, especially in the framework of density functional theory and its time-dependent formulation, contributing to the understanding of the entire photochemical pathways involved which can ultimately help in improving the efficiency of a drug. A brief overview of the outcomes on some platinum and ruthenium-based PSs proposed for the application in the two phototherapies will be provided.

Keywords: TDDFT, metal complexes, PACT, PDT

Procedia PDF Downloads 106
4300 Efficient Delivery of Biomaterials into Living Organism by Using Noble Metal Nanowire Injector

Authors: Kkochorong Park, Keun Cheon Kim, Hyoban Lee, Eun Ju Lee, Bongsoo Kim

Abstract:

Introduction of biomaterials such as DNA, RNA, proteins is important for many research areas. There are many methods to introduce biomaterials into living organisms like tissue and cells. To introduce biomaterials, several indirect methods including virus‐mediated delivery, chemical reagent (i.e., lipofectamine), electrophoresis have been used. Such methods are passive delivery using an endocytosis process of cell, reducing an efficiency of delivery. Unlike the indirect delivery method, it has been reported that a direct delivery of exogenous biomolecules into nucleus have been more efficient to expression or integration of biomolecules. Nano-sized material is beneficial for detect signal from cell or deliver stimuli/materials into the cell at cellular and molecular levels, due to its similar physical scale. Especially, because 1 dimensional (1D) nanomaterials such as nanotube, nanorod and nanowire with high‐aspect ratio have nanoscale geometry and excellent mechanical, electrical, and chemical properties, they could play an important role in molecular and cellular biology. In this study, by using single crystalline 1D noble metal nanowire, we fabricated nano-sized 1D injector which can successfully interface with living cells and directly deliver biomolecules into several types of cell line (i.e., stem cell, mammalian embryo) without inducing detrimental damages on living cell. This nano-bio technology could be a promising and robust tool for introducing exogenous biomaterials into living organism.

Keywords: DNA, gene delivery, nanoinjector, nanowire

Procedia PDF Downloads 277
4299 Naturally Occurring Chemicals in Biopesticides' Resistance Control through Molecular Topology

Authors: Riccardo Zanni, Maria Galvez-Llompart, Ramon Garcia-Domenech, Jorge Galvez

Abstract:

Biopesticides, such as naturally occurring chemicals, pheromones, fungi, bacteria and insect predators are often a winning choice in crop protection because of their environmental friendly profile. They are considered to have lower toxicity than traditional pesticides. After almost a century of pesticides use, resistances to traditional insecticides are wide spread, while those to bioinsecticides have raised less attention, and resistance management is frequently neglected. This seems to be a crucial mistake since resistances have already occurred for many marketed biopesticides. With an eye to the future, we present here a selection of new natural occurring chemicals as potential bioinsecticides. The molecules were selected using a consolidated mathematical paradigm called molecular topology. Several QSAR equations were depicted and subsequently applied for the virtual screening of hundred thousands molecules of natural origin, which resulted in the selection of new potential bioinsecticides. The most innovative aspect of this work does not only reside in the importance of the identification of new molecules overcoming biopesticides’ resistances, but on the possibility to promote shared knowledge in the field of green chemistry through this unique in silico discipline named molecular topology.

Keywords: green chemistry, QSAR, molecular topology, biopesticide

Procedia PDF Downloads 318
4298 Relieving Flood Damages In Malaysia through Tax Policies And Measures: A Comparative Analysis

Authors: Chee Fei Chang, May Yee Ng

Abstract:

As a result of its geographical location, flood is a natural disaster that happens regularly in Malaysia. Every year, heavy rainfall is brought by the cyclical monsoon to the East coast of Peninsular Malaysia. In recent years, the occurrence of unexpected heavy downpour somehow connected to climate-change phenomena is also on the increasing trend. Ironically, despite that Malaysians have suffered significant monetary losses as a result of the recurring floods in past many decades, little has been done by the government from the perspective of taxation. Perhaps due to political reason or as a populist measure, the federal and local government are more inclined to offer small cash handout then rolling out long-term tax policy or measure in relieving the financial and tax burden of the victims and affected business entities. Except for the one-off tax break granted to affected businesses in 2007, the authors have not found any income tax exemption or deduction order gazetted with regard to flood disaster. Hence, it is imperative for this study to explore the need and challenges of implementing flood inflicted disaster tax relief or credit in Malaysia. This research consists of two major parts. First, the assessment of relevant tax policies/ measures with regard to non-government organisations and other affected parties. Content and thematic analyses will be applied on current tax legislations and orders issued for this part. Second, a comparative analysis will be conducted benchmarking various disaster tax reliefs and credits implemented in developed countries. Resulting from the increasing climate change-related disasters in Malaysia, the findings of this study will shed light on the importance of introducing disaster tax relief measures to assist individual victims as well as the affected businesses.

Keywords: climate-changed related disaster, disaster tax credits, tax relief for victims, tax measures for disaster recovery

Procedia PDF Downloads 124
4297 Microbiological Study of Two Spontaneous Plants of Algerian Sahara Septentrional: Cotula cinerea and Chamomilla recutita

Authors: Mehani Mouna, Boukhari Nadjet, Ladjal Segni

Abstract:

The aim of our study is to determine the antimicrobial effect of essential oils of two plants Cotula cinerea and Chamomilla recutita on some pathogenic bacteria. It is a medicinal plant used in traditional therapy. Essential oils have many therapeutic properties. In herbal medicine, they are used for their antiseptic properties against infectious diseases of fungal origin, against dermatophytes, those of bacterial origin. Essential oils have many therapeutic properties. In herbal medicine, they are used for their antiseptic properties against infectious diseases of fungal origin, against dermatophytes, those of bacterial origin. Humans use plants for thousands of years to treat various ailments, in many developing countries; much of the population relies on traditional doctors and their collections of medicinal plants to cure them. The test adopted is based on the diffusion method on solid medium (Antibiogram), this method allows to determine the susceptibility or resistance of an organism according to the sample studied. Our study reveals that the essential oil of the plants Cotula cinerea and Chamomilla recutita have a different effect on the resistance of germs.

Keywords: antibiogram, Chamomilla recutita, Cotula cinerea, essential oil, microorganism

Procedia PDF Downloads 318