Search results for: crater detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3479

Search results for: crater detection

1259 Application of Local Mean Decomposition for Rolling Bearing Fault Diagnosis Based On Vibration Signals

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

Vibration analysis has been frequently applied in the condition monitoring and fault diagnosis of rolling element bearings. Unfortunately, the vibration signals collected from a faulty bearing are generally non stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, condition monitoring, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 397
1258 Design of Cartesian Robot for Electric Vehicle Wireless Charging Systems

Authors: Kaan Karaoglu, Raif Bayir

Abstract:

In this study, a cartesian robot is developed to improve the performance and efficiency of wireless charging of electric vehicles. The cartesian robot has three axes, each of which moves linearly. Magnetic positioning is used to align the cartesian robot transmitter charging pad. There are two different wireless charging methods, static and dynamic, for charging electric vehicles. The current state of charge information (SOC State of Charge) and location information are received wirelessly from the electric vehicle. Based on this information, the power to be transmitted is determined, and the transmitter and receiver charging pads are aligned for maximum efficiency. With this study, a fully automated cartesian robot structure will be used to charge electric vehicles with the highest possible efficiency. With the wireless communication established between the electric vehicle and the charging station, the charging status will be monitored in real-time. The cartesian robot developed in this study is a fully automatic system that can be easily used in static wireless charging systems with vehicle-machine communication.

Keywords: electric vehicle, wireless charging systems, energy efficiency, cartesian robot, location detection, trajectory planning

Procedia PDF Downloads 75
1257 Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering

Authors: Tianyang Xu

Abstract:

Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target.

Keywords: underwater target;, non-uniform characteristics;, cluster-driven method;, acoustic scattering characteristics

Procedia PDF Downloads 132
1256 Environmental Planning for Sustainable Utilization of Lake Chamo Biodiversity Resources: Geospatially Supported Approach, Ethiopia

Authors: Alemayehu Hailemicael Mezgebe, A. J. Solomon Raju

Abstract:

Context: Lake Chamo is a significant lake in the Ethiopian Rift Valley, known for its diversity of wildlife and vegetation. However, the lake is facing various threats due to human activities and global effects. The poor management of resources could lead to food insecurity, ecological degradation, and loss of biodiversity. Research Aim: The aim of this study is to analyze the environmental implications of lake level changes using GIS and remote sensing. The research also aims to examine the floristic composition of the lakeside vegetation and propose spatially oriented environmental planning for the sustainable utilization of the biodiversity resources. Methodology: The study utilizes multi-temporal satellite images and aerial photographs to analyze the changes in the lake area over the past 45 years. Geospatial analysis techniques are employed to assess land use and land cover changes and change detection matrix. The composition and role of the lakeside vegetation in the ecological and hydrological functions are also examined. Findings: The analysis reveals that the lake has shrunk by 14.42% over the years, with significant modifications to its upstream segment. The study identifies various threats to the lake-wetland ecosystem, including changes in water chemistry, overfishing, and poor waste management. The study also highlights the impact of human activities on the lake's limnology, with an increase in conductivity, salinity, and alkalinity. Floristic composition analysis of the lake-wetland ecosystem showed definite pattern of the vegetation distribution. The vegetation composition can be generally categorized into three belts namely, the herbaceous belt, the legume belt and the bush-shrub-small trees belt. The vegetation belts collectively act as different-sized sieve screen system and calm down the pace of incoming foreign matter. This stratified vegetation provides vital information to decide the management interventions for the sustainability of lake-wetland ecosystem.Theoretical Importance: The study contributes to the understanding of the environmental changes and threats faced by Lake Chamo. It provides insights into the impact of human activities on the lake-wetland ecosystem and emphasizes the need for sustainable resource management. Data Collection and Analysis Procedures: The study utilizes aerial photographs, satellite imagery, and field observations to collect data. Geospatial analysis techniques are employed to process and analyze the data, including land use/land cover changes and change detection matrices. Floristic composition analysis is conducted to assess the vegetation patterns Question Addressed: The study addresses the question of how lake level changes and human activities impact the environmental health and biodiversity of Lake Chamo. It also explores the potential opportunities and threats related to water utilization and waste management. Conclusion: The study recommends the implementation of spatially oriented environmental planning to ensure the sustainable utilization and maintenance of Lake Chamo's biodiversity resources. It emphasizes the need for proper waste management, improved irrigation facilities, and a buffer zone with specific vegetation patterns to restore and protect the lake outskirt.

Keywords: buffer zone, geo-spatial, lake chamo, lake level changes, sustainable utilization

Procedia PDF Downloads 87
1255 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.

Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG

Procedia PDF Downloads 291
1254 Characterization and Detection of Cadmium Ion Using Modification Calixarene with Multiwalled Carbon Nanotubes

Authors: Amira Shakila Razali, Faridah Lisa Supian, Muhammad Mat Salleh, Suriani Abu Bakar

Abstract:

Water contamination by toxic compound is one of the serious environmental problems today. These toxic compounds mostly originated from industrial effluents, agriculture, natural sources and human waste. These study are focused on modification of multiwalled carbon nanotube (MWCNTs) with nanoparticle of calixarene and explore the possibility of using this nanocomposites for the remediation of cadmium in water. The nanocomposites were prepared by dissolving calixarene in chloroform solution as solvent, followed by additional multiwalled carbon nanotube (MWCNTs) then sonication process for 3 hour and fabricated the nanocomposites on substrate by spin coating method. Finally, the nanocomposites were tested on cadmium ion (10 mg/ml). The morphology of nanocomposites was investigated by FESEM showing the formation of calixarene on the outer walls of carbon nanotube and cadmium ion also clearly seen from the micrograph. This formation was supported by using energy dispersive x-ray (EDX). The presence of cadmium ions in the films, leads to some changes in the surface potential and Fourier Transform Infrared spectroscopy (FTIR).This nanocomposites have potential for development of sensor for pollutant monitoring and nanoelectronics devices applications

Keywords: calixarene, multiwalled carbon nanotubes, cadmium, surface potential

Procedia PDF Downloads 491
1253 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: biometric characters, facial recognition, neural network, OpenCV

Procedia PDF Downloads 256
1252 Detection of Autistic Children's Voice Based on Artificial Neural Network

Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono

Abstract:

In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.

Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform

Procedia PDF Downloads 461
1251 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: disentanglement, face detection, generative adversarial networks, video surveillance

Procedia PDF Downloads 129
1250 Study of Fire Propagation and Soot Flow in a Pantry Car of Railway Locomotive

Authors: Juhi Kaushik, Abhishek Agarwal, Manoj Sarda, Vatsal Sanjay, Arup Kumar Das

Abstract:

Fire accidents in trains bring huge disaster to human life and property. Evacuation becomes a major challenge in such incidents owing to confined spaces, large passenger density and trains moving at high speeds. The pantry car in Indian Railways trains carry inflammable materials like cooking fuel and LPG and electrical fittings. The pantry car is therefore highly susceptible to fire accidents. Numerical simulations have been done in a pantry car of Indian locomotive train using computational fluid dynamics based software. Different scenarios of a fire outbreak have been explored by varying Heat Release Rate per Unit Area (HRRPUA) of the fire source, introduction of exhaust in the cooking area, and taking a case of an air conditioned pantry car. Temporal statures of flame and soot have been obtained for each scenario and differences have been studied and reported. Inputs from this study can be used to assess casualties in fire accidents in locomotive trains and development of smoke control/detection systems in Indian trains.

Keywords: fire propagation, flame contour, pantry fire, soot flow

Procedia PDF Downloads 339
1249 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis

Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho

Abstract:

This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.

Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis

Procedia PDF Downloads 182
1248 2D Nanomaterials-Based Geopolymer as-Self-Sensing Buildings in Construction Industry

Authors: Maryam Kiani

Abstract:

The self-sensing capability opens up new possibilities for structural health monitoring, offering real-time information on the condition and performance of constructions. The synthesis and characterization of these functional 2D material geopolymers will be explored in this study. Various fabrication techniques, including mixing, dispersion, and coating methods, will be employed to ensure uniform distribution and integration of the 2D materials within the geopolymers. The resulting composite materials will be evaluated for their mechanical strength, electrical conductivity, and sensing capabilities through rigorous testing and analysis. The potential applications of these self-sensing geopolymers are vast. They can be used in infrastructure projects, such as bridges, tunnels, and buildings, to provide continuous monitoring and early detection of structural damage or degradation. This proactive approach to maintenance and safety can significantly improve the lifespan and efficiency of constructions, ultimately reducing maintenance costs and enhancing overall sustainability. In conclusion, the development of functional 2D material geopolymers as self-sensing materials presents an exciting advancement in the construction industry. By integrating these innovative materials into structures, we can create a new generation of intelligent, self-monitoring constructions that can adapt and respond to their environment.

Keywords: 2D materials, geopolymers, electrical properties, self-sensing

Procedia PDF Downloads 132
1247 The Involvement of Viruses and Fungi in the Pathogenesis of Dental Infections

Authors: Wael Khalil, Elias Rahal, Ghassan Matar

Abstract:

Tooth related infections or commonly named dental infections have been described as the most common causes of tooth loss in adults. These pathologies were mostly periodontitis, pericoronitis, and periapical infection. The involvement of various bacteria in the pathogenesis of these pathologies has been thoroughly mentioned and approved in the literature. However, the variability in the severity and prognosis of these lesions among patients suggests the association of other pathogens, like viruses and fungi, in the pathogenesis of these lesions. Several studies in the literature investigated the association of multiple viruses and fungi with the above-mentioned lesions, yet, a vast controversy was reached concerning this subject.Aim: Our study aims to fill the gap in the literature concerning the contribution of adenovirus, HPV-16, EBV, fungi, and candida in the pathogenesis of periodontitis, pericoronitis, and periapical infection. For this purpose, we utilized the quantitative PCR for pathogen detection in saliva, gingival, and lesions samples of involved subjects. Results: Some of these pathogens appeared to have an association with the investigated dental pathologies, while others showed no contribution to the pathogenesis of these lesions. Further investigation is required in order to identify the subtype of the involved pathogens in these tooth related oral pathology.

Keywords: periodontitis, pericoronitis, dental abscess, PCR, microbiology

Procedia PDF Downloads 99
1246 Evaluation of QSRR Models by Sum of Ranking Differences Approach: A Case Study of Prediction of Chromatographic Behavior of Pesticides

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

The present study deals with the selection of the most suitable quantitative structure-retention relationship (QSRR) models which should be used in prediction of the retention behavior of basic, neutral, acidic and phenolic pesticides which belong to different classes: fungicides, herbicides, metabolites, insecticides and plant growth regulators. Sum of ranking differences (SRD) approach can give a different point of view on selection of the most consistent QSRR model. SRD approach can be applied not only for ranking of the QSRR models, but also for detection of similarity or dissimilarity among them. Applying the SRD analysis, the most similar models can be found easily. In this study, selection of the best model was carried out on the basis of the reference ranking (“golden standard”) which was defined as the row average values of logarithm of retention time (logtr) defined by high performance liquid chromatography (HPLC). Also, SRD analysis based on experimental logtr values as reference ranking revealed similar grouping of the established QSRR models already obtained by hierarchical cluster analysis (HCA).

Keywords: chemometrics, chromatography, pesticides, sum of ranking differences

Procedia PDF Downloads 375
1245 The Use of Lane-Centering to Assure the Visible Light Communication Connectivity for a Platoon of Autonomous Vehicles

Authors: Mohammad Y. Abualhoul, Edgar Talavera Munoz, Fawzi Nashashibi

Abstract:

The new emerging Visible Light Communication (VLC) technology has been subjected to intensive investigation, evaluation, and lately, deployed in the context of convoy-based applications for Intelligent Transportations Systems (ITS). The technology limitations were defined and supported by different solutions proposals to enhance the crucial alignment and mobility limitations. In this paper, we propose the incorporation of VLC technology and Lane-Centering (LC) technique to assure the VLC-connectivity by keeping the autonomous vehicle aligned to the lane center using vision-based lane detection in a convoy-based formation. Such combination can ensure the optical communication connectivity with a lateral error less than 30 cm. As soon as the road lanes are detectable, the evaluated system showed stable behavior independently from the inter-vehicle distances and without the need for any exchanged information of the remote vehicles. The evaluation of the proposed system is verified using VLC prototype and an empirical result of LC running application over 60 km in Madrid M40 highway.

Keywords: visible light communication, lane-centerin, platooning, intelligent transportation systems, road safety applications

Procedia PDF Downloads 171
1244 An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform

Authors: Mohammed S. Al-Rawi, J. Bastos, J. Rodriguez

Abstract:

Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method.

Keywords: Chebyshev polynomial, fourier transform, fast algorithms, image recognition, pseudo Zernike moments, Zernike moments

Procedia PDF Downloads 265
1243 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 263
1242 Analysis of Active Compounds in Thai Herbs by near Infrared Spectroscopy

Authors: Chaluntorn Vichasilp, Sutee Wangtueai

Abstract:

This study aims to develop a new method to detect active compounds in Thai herbs (1-deoxynojirimycin (DNJ) in mulberry leave, anthocyanin in Mao and curcumin in turmeric) using near infrared spectroscopy (NIRs). NIRs is non-destructive technique that rapid, non-chemical involved and low-cost determination. By NIRs and chemometrics technique, it was found that the DNJ prediction equation conducted with partial least square regression with cross-validation had low accuracy R2 (0.42) and SEP (31.87 mg/100g). On the other hand, the anthocyanin prediction equation showed moderate good results (R2 and SEP of 0.78 and 0.51 mg/g) with Multiplication scattering correction at wavelength of 2000-2200 nm. The high absorption could be observed at wavelength of 2047 nm and this model could be used as screening level. For curcumin prediction, the good result was obtained when applied original spectra with smoothing technique. The wavelength of 1400-2500 nm was created regression model with R2 (0.68) and SEP (0.17 mg/g). This model had high NIRs absorption at a wavelength of 1476, 1665, 1986 and 2395 nm, respectively. NIRs showed prospective technique for detection of some active compounds in Thai herbs.

Keywords: anthocyanin, curcumin, 1-deoxynojirimycin (DNJ), near infrared spectroscopy (NIRs)

Procedia PDF Downloads 382
1241 Methotrexate Associated Skin Cancer: A Signal Review of Pharmacovigilance Center

Authors: Abdulaziz Alakeel, Abdulrahman Alomair, Mohammed Fouda

Abstract:

Introduction: Methotrexate (MTX) is an antimetabolite used to treat multiple conditions, including neoplastic diseases, severe psoriasis, and rheumatoid arthritis. Skin cancer is the out-of-control growth of abnormal cells in the epidermis, the outermost skin layer, caused by unrepaired DNA damage that triggers mutations. These mutations lead the skin cells to multiply rapidly and form malignant tumors. The aim of this review is to evaluate the risk of skin cancer associated with the use of methotrexate and to suggest regulatory recommendations if required. Methodology: Signal Detection team at Saudi Food and Drug Authority (SFDA) performed a safety review using National Pharmacovigilance Center (NPC) database as well as the World Health Organization (WHO) VigiBase, alongside with literature screening to retrieve related information for assessing the causality between skin cancer and methotrexate. The search conducted in July 2020. Results: Four published articles support the association seen while searching in literature, a recent randomized control trial published in 2020 revealed a statistically significant increase in skin cancer among MTX users. Another study mentioned methotrexate increases the risk of non-melanoma skin cancer when used in combination with immunosuppressant and biologic agents. In addition, the incidence of melanoma for methotrexate users was 3-fold more than the general population in a cohort study of rheumatoid arthritis patients. The last article estimated the risk of cutaneous malignant melanoma (CMM) in a cohort study shows a statistically significant risk increase for CMM was observed in MTX exposed patients. The WHO database (VigiBase) searched for individual case safety reports (ICSRs) reported for “Skin Cancer” and 'Methotrexate' use, which yielded 121 ICSRs. The initial review revealed that 106 cases are insufficiently documented for proper medical assessment. However, the remaining fifteen cases have extensively evaluated by applying the WHO criteria of causality assessment. As a result, 30 percent of the cases showed that MTX could possibly cause skin cancer; five cases provide unlikely association and five un-assessable cases due to lack of information. The Saudi NPC database searched to retrieve any reported cases for the combined terms methotrexate/skin cancer; however, no local cases reported up to date. The data mining of the observed and the expected reporting rate for drug/adverse drug reaction pair is estimated using information component (IC), a tool developed by the WHO Uppsala Monitoring Centre to measure the reporting ratio. Positive IC reflects higher statistical association, while negative values translated as a less statistical association, considering the null value equal to zero. Results showed that a combination of 'Methotrexate' and 'Skin cancer' observed more than expected when compared to other medications in the WHO database (IC value is 1.2). Conclusion: The weighted cumulative pieces of evidence identified from global cases, data mining, and published literature are sufficient to support a causal association between the risk of skin cancer and methotrexate. Therefore, health care professionals should be aware of this possible risk and may consider monitoring any signs or symptoms of skin cancer in patients treated with methotrexate.

Keywords: methotrexate, skin cancer, signal detection, pharmacovigilance

Procedia PDF Downloads 114
1240 Miniaturizing the Volumetric Titration of Free Nitric Acid in U(vi) Solutions: On the Lookout for a More Sustainable Process Radioanalytical Chemistry through Titration-On-A-Chip

Authors: Jose Neri, Fabrice Canto, Alastair Magnaldo, Laurent Guillerme, Vincent Dugas

Abstract:

A miniaturized and automated approach for the volumetric titration of free nitric acid in U(VI) solutions is presented. Free acidity measurement refers to the acidity quantification in solutions containing hydrolysable heavy metal ions such as U(VI), U(IV) or Pu(IV) without taking into account the acidity contribution from the hydrolysis of such metal ions. It is, in fact, an operation having an essential role for the control of the nuclear fuel recycling process. The main objective behind the technical optimization of the actual ‘beaker’ method was to reduce the amount of radioactive substance to be handled by the laboratory personnel, to ease the instrumentation adjustability within a glove-box environment and to allow a high-throughput analysis for conducting more cost-effective operations. The measurement technique is based on the concept of the Taylor-Aris dispersion in order to create inside of a 200 μm x 5cm circular cylindrical micro-channel a linear concentration gradient in less than a second. The proposed analytical methodology relies on the actinide complexation using pH 5.6 sodium oxalate solution and subsequent alkalimetric titration of nitric acid with sodium hydroxide. The titration process is followed with a CCD camera for fluorescence detection; the neutralization boundary can be visualized in a detection range of 500nm- 600nm thanks to the addition of a pH sensitive fluorophore. The operating principle of the developed device allows the active generation of linear concentration gradients using a single cylindrical micro channel. This feature simplifies the fabrication and ease of use of the micro device, as it does not need a complex micro channel network or passive mixers to generate the chemical gradient. Moreover, since the linear gradient is determined by the liquid reagents input pressure, its generation can be fully achieved in faster intervals than one second, being a more timely-efficient gradient generation process compared to other source-sink passive diffusion devices. The resulting linear gradient generator device was therefore adapted to perform for the first time, a volumetric titration on a chip where the amount of reagents used is fixed to the total volume of the micro channel, avoiding an important waste generation like in other flow-based titration techniques. The associated analytical method is automated and its linearity has been proven for the free acidity determination of U(VI) samples containing up to 0.5M of actinide ion and nitric acid in a concentration range of 0.5M to 3M. In addition to automation, the developed analytical methodology and technique greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing a thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight-fold. The developed device represents, therefore, a great step towards an easy-to-handle nuclear-related application, which in the short term could be used to improve laboratory safety as much as to reduce the environmental impact of the radioanalytical chain.

Keywords: free acidity, lab-on-a-chip, linear concentration gradient, Taylor-Aris dispersion, volumetric titration

Procedia PDF Downloads 387
1239 Sensitive Determination of Copper(II) by Square Wave Anodic Stripping Voltammetry with Tetracarbonylmolybdenum(0) Multiwalled Carbon Nanotube Paste Electrode

Authors: Illyas Md Isa, Mohamad Idris Saidin, Mustaffa Ahmad, Norhayati Hashim

Abstract:

A highly selective and sensitive carbon paste electrode modified with multiwall carbon nanotubes and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) complex was used for determination of trace amounts of Cu(II) using square wave anodic stripping voltammetry (SWASV). The influences of experimental variables on the proposed electrode such as pH, supporting electrolyte, preconcentration potential and time, and square wave parameters were investigated. Under optimal conditions, the proposed electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu(II) with a limit of detection 8.0 × 10–11 M. The relative standard deviation (n = 5) for a solution containing 1.0 × 10– 6 M of Cu(II) was 0.036. The presence of various cations (in 10 and 100-folds concentration) did not interfere. Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favourable. The proposed electrode was applied for the determination of Cu(II) in several water samples. Results agreed very well with those obtained by inductively coupled plasma-optical emission spectrometry. The modified electrode was then proposed as an alternative for determination of Cu(II).

Keywords: chemically modified electrode, Cu(II), square wave anodic stripping voltammetry, tetracarbonylmolybdenum(0)

Procedia PDF Downloads 270
1238 Incidence of Anaemia in Female Breast Cancer Patients

Authors: Fatima Abu Baker Hamad

Abstract:

Anaemia is a public health problem that affects population in both rich and poor countries. Although the primary cause is iron deficiency, it is seldom present in isolation. More frequently it coexists with a number of other causes, such as malaria, parasitic infection, nutritional deficiencies and hemoglobin apathies. That was the people in Sudan suffered from it .Anaemia has a high prevalence in patients with cancer. The aim of this study was to find the incidence of anaemia in new cases of Sudanese female breast patients attending the National Cancer Institute (NCI), Gezira University, Sudan. The study was performed on 250 female breast cancer patients, the age range was (20-70) years and the mean age was 45.99±0.82. The hemoglobin level was measured by SYSMEX-KX2lM.As result 144(58.8) of patients presented with anaemia, between moderate to severe. Forty four (17.6%) of the patients were found to be under weight, 31 of them were anaemic. While 105(42%) of the patients were overweight and obese, 52 of them were anaemic. The incidence of anaemia in newly diagnosed Sudanese female breast cancer patients presented at NCI is association presentation with advance disease stage. Also it is related to age, state of nutrition and social economic factors. Early cancer detection which leads to effective treatment and reduced complication of diseases included anaemia is recommended.

Keywords: anaemia, breast cancer, stages of disease, malaria

Procedia PDF Downloads 388
1237 Investigating the Vehicle-Bicyclists Conflicts using LIDAR Sensor Technology at Signalized Intersections

Authors: Alireza Ansariyar, Mansoureh Jeihani

Abstract:

Light Detection and Ranging (LiDAR) sensors are capable of recording traffic data including the number of passing vehicles and bicyclists, the speed of vehicles and bicyclists, and the number of conflicts among both road users. In order to collect real-time traffic data and investigate the safety of different road users, a LiDAR sensor was installed at Cold Spring Ln – Hillen Rd intersection in Baltimore City. The frequency and severity of collected real-time conflicts were analyzed and the results highlighted that 122 conflicts were recorded over a 10-month time interval from May 2022 to February 2023. By using an innovative image-processing algorithm, a new safety Measure of Effectiveness (MOE) was proposed to recognize the critical zones for bicyclists entering each zone. Considering the trajectory of conflicts, the results of the analysis demonstrated that conflicts in the northern approach (zone N) are more frequent and severe. Additionally, sunny weather is more likely to cause severe vehicle-bike conflicts.

Keywords: LiDAR sensor, post encroachment time threshold (PET), vehicle-bike conflicts, a measure of effectiveness (MOE), weather condition

Procedia PDF Downloads 236
1236 Supporting 'vulnerable' Students to Complete Their Studies During the Economic Crisis in Greece: The Umbrella Program of International Hellenic University

Authors: Rigas Kotsakis, Nikolaos Tsigilis, Vasilis Grammatikopoulos, Evridiki Zachopoulou

Abstract:

During the last decade, Greece has faced an unprecedented financial crisis, affecting various aspects and functionalities of Higher Education. Besides the restricted funding of academic institutions, the students and their families encountered economical difficulties that undoubtedly influenced the effective completion of their studies. In this context, a fairly large number of students in Alexander campus of International Hellenic University (IHU) delay, interrupt, or even abandon their studies, especially when they come from low-income families, belong to sensitive social or special needs groups, they have different cultural origins, etc. For this reason, a European project, named “Umbrella”, was initiated aiming at providing the necessary psychological support and counseling, especially to disadvantaged students, towards the completion of their studies. To this end, a network of various academic members (academic staff and students) from IHU, namely iMentor, were implicated in different roles. Specifically, experienced academic staff trained students to serve as intermediate links for the integration and educational support of students that fall into the aforementioned sensitive social groups and face problems for the completion of their studies. The main idea of the project is held upon its person-centered character, which facilitates direct student-to-student communication without the intervention of the teaching staff. The backbone of the iMentors network are senior students that face no problem in their academic life and volunteered for this project. It should be noted that there is a provision from the Umbrella structure for substantial and ethical rewards for their engagement. In this context, a well-defined, stringent methodology was implemented for the evaluation of the extent of the problem in IHU and the detection of the profile of the “candidate” disadvantaged students. The first phase included two steps, (a) data collection and (b) data cleansing/ preprocessing. The first step involved the data collection process from the Secretary Services of all Schools in IHU, from 1980 to 2019, which resulted in 96.418 records. The data set included the School name, the semester of studies, a student enrolling criteria, the nationality, the graduation year or the current, up-to-date academic state (still studying, delayed, dropped off, etc.). The second step of the employed methodology involved the data cleansing/preprocessing because of the existence of “noisy” data, missing and erroneous values, etc. Furthermore, several assumptions and grouping actions were imposed to achieve data homogeneity and an easy-to-interpret subsequent statistical analysis. Specifically, the duration of 40 years recording was limited to the last 15 years (2004-2019). In 2004 the Greek Technological Institutions were evolved into Higher Education Universities, leading into a stable and unified frame of graduate studies. In addition, the data concerning active students were excluded from the analysis since the initial processing effort was focused on the detection of factors/variables that differentiated graduate and deleted students. The final working dataset included 21.432 records with only two categories of students, those that have a degree and those who abandoned their studies. Findings of the first phase are presented across faculties and further discussed.

Keywords: higher education, students support, economic crisis, mentoring

Procedia PDF Downloads 115
1235 Adjustable Aperture with Liquid Crystal for Real-Time Range Sensor

Authors: Yumee Kim, Seung-Guk Hyeon, Kukjin Chun

Abstract:

An adjustable aperture using a liquid crystal is proposed for real-time range detection and obtaining images simultaneously. The adjustable aperture operates as two types of aperture stops which can create two different Depth of Field images. By analyzing these two images, the distance can be extracted from camera to object. Initially, the aperture stop has large size with zero voltage. When the input voltage is applied, the aperture stop transfer to smaller size by orientational transition of liquid crystal molecules in the device. The diameter of aperture stop is 1.94mm and 1.06mm. The proposed device has low driving voltage of 7.0V and fast response time of 6.22m. Compact size aperture of 6×6×1.1 mm3 is assembled in conventional camera which contain 1/3” HD image sensor and focal length of 3.3mm that can be used in autonomous. The measured range was up to 5m. The adjustable aperture has high stability due to no mechanically moving parts. This range sensor can be applied to the various field of 3D depth map application which is the Advanced Driving Assistance System (ADAS), drones and manufacturing machine.

Keywords: adjustable aperture, dual aperture, liquid crystal, ranging and imaging, ADAS, range sensor

Procedia PDF Downloads 381
1234 Quality Assurance in Cardiac Disorder Detection Images

Authors: Anam Naveed, Asma Andleeb, Mehreen Sirshar

Abstract:

In the article, Image processing techniques have been applied on cardiac images for enhancing the image quality. Two types of methodologies considers for survey, invasive techniques and non-invasive techniques. Different image processes for improvement of cardiac image quality and reduce the amount of radiation exposure for invasive techniques are explored. Different image processing algorithms for enhancing the noninvasive cardiac image qualities are described. Beside these two methodologies, third methodology has applied on live streaming of heart rate on ECG window for extracting necessary information, removing noise and enhancing quality. Sensitivity analyses have been carried out to investigate the impacts of cardiac images for diagnosis of cardiac arteries disease and how the enhancement on images will help the cardiologist to diagnoses disease. The paper evaluates strengths and weaknesses of different techniques applied for improved the image quality and draw a conclusion. Some specific limitations must be considered for whole survey, like the patient heart beat must be 70-75 beats/minute while doing the angiography, similarly patient weight and exposure radiation amount has some limitation.

Keywords: cardiac images, CT angiography, critical analysis, exposure radiation, invasive techniques, invasive techniques, non-invasive techniques

Procedia PDF Downloads 352
1233 Molecular Detection of Crimean-Congo Hemorrhagic Fever in Ticks of Golestan Province, Iran

Authors: Nariman Shahhosseini, Sadegh Chinikar

Abstract:

Introduction: Crimean-Congo hemorrhagic fever virus (CCHFV) causes severe disease with fatality rates of 30%. The virus is transmitted to humans through the bite of an infected tick, direct contact with the products of infected livestock and nosocomially. The disease occurs sporadically throughout many of African, Asian, and European countries. Different species of ticks serve either as vector or reservoir for CCHFV. Materials and Methods: A molecular survey was conducted on hard ticks (Ixodidae) in Golestan province, north of Iran during 2014-2015. Samples were sent to National Reference Laboratory of Arboviruses (Pasteur Institute of Iran) and viral RNA was detected by RT-PCR. Results: Result revealed the presence of CCHFV in 5.3% of the selected ticks. The infected ticks belonged to Hy. dromedarii, Hy. anatolicum, Hy. marginatum, and Rh. sanguineus. Conclusions: These data demonstrates that Hyalomma ticks are the main vectors of CCHFV in Golestan province. Thus, preventive strategies such as using acaricides and repellents in order to avoid contact with Hyalomma ticks are proposed. Also, personal protective equipment (PPE) must be utilized at abattoirs.

Keywords: tick, CCHFV, surveillance, vector diversity

Procedia PDF Downloads 372
1232 Health Assessment and Disorders of External Respiration Function among Physicians

Authors: A. G. Margaryan

Abstract:

Aims and Objectives: Assessment of health status and detection disorders of external respiration functions (ERF) during preventative medical examination among physicians of Armenia. Subjects and Methods: Overall, fifty-nine physicians (17 men and 42 women) were examined and spirometry was carried out. The average age of the physicians was 50 years old. The studies were conducted on the Micromedical MicroLab 3500 Spirometer. Results: 25.4% among 59 examined physicians are overweight; 22.0% of them suffer from obesity. Two physicians are currently smokers. About half of the examined physicians (50.8%) at the time of examination were diagnosed with some diseases and had different health-related problems (excluding the problems related to vision and hearing). FVC was 2.94±0.1, FEV1 – 2.64±0.1, PEF – 329.7±19.9, and FEV1%/FVC – 89.7±1.3. Pathological changes of ERF are identified in 23 (39.0%) cases. 28.8% of physicians had first degree of restrictive disorders, 3.4% – first degree of combined obstructive/ restrictive disorders, 6.8% – second degree of combined obstructive/ restrictive disorders. Only three physicians with disorders of the ERF were diagnosed with chronic bronchitis and bronchial asthma. There were no statistically significant changes in ERF depending on the severity of obesity (P> 0.05). Conclusion: The study showed the prevalence of ERF among physicians, observing mainly mild and moderate changes in ERF parameters.

Keywords: Armenia, external respiration function, health status, physicians

Procedia PDF Downloads 202
1231 Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline

Authors: Yu-Lin Shen, Ming-Kuen Chang

Abstract:

In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.

Keywords: EMAT, NDT, artificial defect, ultrasonic testing

Procedia PDF Downloads 475
1230 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.

Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer

Procedia PDF Downloads 262