Search results for: HIV transmission risks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3696

Search results for: HIV transmission risks

1476 Intelligent Agent-Based Model for the 5G mmWave O2I Technology Adoption

Authors: Robert Joseph M. Licup

Abstract:

The deployment of the fifth-generation (5G) mobile system through mmWave frequencies is the new solution in the requirement to provide higher bandwidth readily available for all users. The usage pattern of the mobile users has moved towards either the work from home or online classes set-up because of the pandemic. Previous mobile technologies can no longer meet the high speed, and bandwidth requirement needed, given the drastic shift of transactions to the home. The millimeter-wave (mmWave) underutilized frequency is utilized by the fifth-generation (5G) cellular networks that support multi-gigabit-per-second (Gbps) transmission. However, due to its short wavelengths, high path loss, directivity, blockage sensitivity, and narrow beamwidth are some of the technical challenges that need to be addressed. Different tools, technologies, and scenarios are explored to support network design, accurate channel modeling, implementation, and deployment effectively. However, there is a big challenge on how the consumer will adopt this solution and maximize the benefits offered by the 5G Technology. This research proposes to study the intricacies of technology diffusion, individual attitude, behaviors, and how technology adoption will be attained. The agent based simulation model shaped by the actual applications, technology solution, and related literature was used to arrive at a computational model. The research examines the different attributes, factors, and intricacies that can affect each identified agent towards technology adoption.

Keywords: agent-based model, AnyLogic, 5G O21, 5G mmWave solutions, technology adoption

Procedia PDF Downloads 108
1475 Framing a Turkish Campus Sustainability Indicator Set

Authors: Cansu Tari, Ute Poerschke

Abstract:

Sustainable campus design and planning in Higher Education requires an entire action plan and coordination of physical, educational, and social systems. Many institutions in the world are defining their sustainable development path and some are following existing green building and sustainable campus rating/ranking systems, guidelines. In the context of higher education, Turkish universities have limited academic, social and financial support related to sustainable living, building, and campus studies. While some research has been conducted in the last 60 years by farsighted academics, most of these works are based on individuals’ or small organizations’ own interests and efforts, and they are not known enough by the population of universities and possible prospective investors. Regarding the recent fast and uncontrolled growth in the Turkish Higher Education environment, setting a campus sustainability indicator set is a necessity for sustainable development of universities. The main objective of this paper is to specify the applicable sustainability indicators in the national context of Turkey, and propose a model guideline for sustainable Turkish university campuses. The analysis of Turkish legislation on environmental issues, special conditions of Turkish Higher Education system, and Turkey’s environmental risks and challenges set the backbone of the study and distinguish the set of indicators from generalized guidelines. Finally, the paper outlines some concrete suggestions for Turkish Universities to integrate sustainability efforts in their regional context. It will be useful for campus sustainability managers and planners, interested in developing action plans in their national and regional scope.

Keywords: campus sustainability, sustainability indicators, Turkish universities, national campus sustainability action plan

Procedia PDF Downloads 258
1474 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-silencing with Free Airflow

Authors: Sanjeet Kumar Singh, Shanatanu Bhattacharaya

Abstract:

Design of high- efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on Sierpiński fractal triangle, which is aesthetically pleasing, demonstrates normal incident sound absorption coefficient more than 0.96 around 700 Hz and transmission loss around 23 dB while maintaining e air circulation through triangular cutout. Next, we present a concept of fabrication of large acoustic panel for large-scale applications, which lead to suppressing the urban noise pollution.

Keywords: acoustic metamaterials, noise, functional materials, ventilated

Procedia PDF Downloads 82
1473 Air Dispersion Model for Prediction Fugitive Landfill Gaseous Emission Impact in Ambient Atmosphere

Authors: Moustafa Osman Mohammed

Abstract:

This paper will explore formation of HCl aerosol at atmospheric boundary layers and encourages the uptake of environmental modeling systems (EMSs) as a practice evaluation of gaseous emissions (“framework measures”) from small and medium-sized enterprises (SMEs). The conceptual model predicts greenhouse gas emissions to ecological points beyond landfill site operations. It focuses on incorporation traditional knowledge into baseline information for both measurement data and the mathematical results, regarding parameters influence model variable inputs. The paper has simplified parameters of aerosol processes based on the more complex aerosol process computations. The simple model can be implemented to both Gaussian and Eulerian rural dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds is taken into account photochemical formulation with exposure effects according to HCl concentrations as starting point of risk assessment. The discussion set out distinctly aspect of sustainability in reflection inputs, outputs, and modes of impact on the environment. Thereby, models incorporate abiotic and biotic species to broaden the scope of integration for both quantification impact and assessment risks. The later environmental obligations suggest either a recommendation or a decision of what is a legislative should be achieved for mitigation measures of landfill gas (LFG) ultimately.

Keywords: air pollution, landfill emission, environmental management, monitoring/methods and impact assessment

Procedia PDF Downloads 324
1472 Selective Synthesis of Pyrrolic Nitrogen-Doped Carbon Nanotubes Its Physicochemical Properties and Application as Pd Nanoparticles Support

Authors: L. M. Ombaka, R. S. Oosthuizen, P. G. Ndungu, V. O. Nyamori

Abstract:

Understanding the role of nitrogen species on the catalytic properties of nitrogen-doped carbon nanotubes (N-CNTs) as catalysts supports is critical as nitrogen species influence the support’s properties. To evaluate the influence of pyrrolic nitrogen on the physicochemical properties and catalytic activity of N-CNTs supported Pd (Pd/N-CNTs); N-CNTs containing varying pyrrolic contents were synthesized. The catalysts were characterised by the use of transmission electron microscope (TEM), scanning electron microscope, X-ray photoelectron spectroscopy (XPS), X-ray diffraction, Fourier transform infrared spectroscopy, and temperature programmed reduction. TEM analysis showed that the Pd nanoparticles were mainly located along the defect sites on N-CNTs. XPS analysis revealed that the abundance of Pd0 decreased while that of Pd2+ increased as the quantity of pyrrolic nitrogen increased. The increase of Pd2+ species was accredited to the formation of stable Pd-N coordination complexes which prevented further reduction of Pd2+ to Pd0 during synthesis. The formed Pd-N complexes increased the stability and dispersion of Pd2+ nanoparticles. The selective hydrogenation of nitrobenzophenone to aminobenzophenone over Pd/N-CNTs was compared to that of Pd on carbon nanotubes (Pd/CNTs). Pd/N-CNTs showed a higher catalytic activity and selectivity compared with Pd/CNTs. Pyrrolic nitrogen functional groups significantly promoted the selectivity towards aminobenzophenone formation.

Keywords: pyrrolic N-CNTs, hydrogenation reactions, chemical vapour deposition technique

Procedia PDF Downloads 358
1471 Design and Fabrication of ZSO Nanocomposite Thin Film Based NO2 Gas Sensor

Authors: Bal Chandra Yadav, Rakesh K. Sonker, Anjali Sharma, Punit Tyagi, Vinay Gupta, Monika Tomar

Abstract:

In the present study, ZnO doped SnO2 thin films of various compositions were deposited on the surface of a corning substrate by dropping the two sols containing the precursors for composite (ZSO) with subsequent heat treatment. The sensor materials used for selective detection of nitrogen dioxide (NO2) were designed from the correlation between the sensor composition and gas response. The available NO2 sensors are operative at very high temperature (150-800 °C) with low sensing response (2-100) even in higher concentrations. Efforts are continuing towards the development of NO2 gas sensor aiming with an enhanced response along with a reduction in operating temperature by incorporating some catalysts or dopants. Thus in this work, a novel sensor structure based on ZSO nanocomposite has been fabricated using chemical route for the detection of NO2 gas. The structural, surface morphological and optical properties of prepared films have been studied by using X-ray diffraction (XRD), Atomic force microscopy (AFM), Transmission electron microscope (TEM) and UV-visible spectroscopy respectively. The effect of thickness variation from 230 nm to 644 nm of ZSO composite thin film has been studied and the ZSO thin film of thickness ~ 460 nm was found to exhibit the maximum gas sensing response ~ 2.1×103 towards 20 ppm NO2 gas at an operating temperature of 90 °C. The average response and recovery times of the sensor were observed to be 3.51 and 6.91 min respectively. Selectivity of the sensor was checked with the cross-exposure of vapour CO, acetone, IPA, CH4, NH3 and CO2 gases. It was found that besides the higher sensing response towards NO2 gas, the prepared ZSO thin film was also highly selective towards NO2 gas.

Keywords: ZSO nanocomposite thin film, ZnO tetrapod structure, NO2 gas sensor, sol-gel method

Procedia PDF Downloads 339
1470 Optimization of Highly Oriented Pyrolytic Graphite Crystals for Neutron Optics

Authors: Hao Qu, Xiang Liu, Michael Crosby, Brian Kozak, Andreas K. Freund

Abstract:

The outstanding performance of highly oriented pyrolytic graphite (HOPG) as an optical element for neutron beam conditioning is unequaled by any other crystalline material in the applications of monochromator, analyzer, and filter. This superiority stems from the favorable nuclear properties of carbon (small absorption and incoherent scattering cross-sections, big coherent scattering length) and the specific crystalline structure (small thermal diffuse scattering cross-section, layered crystal structure). The real crystal defect structure revealed by imaging techniques is correlated with the parameters used in the mosaic model (mosaic spread, mosaic block size, uniformity). The diffraction properties (rocking curve width as determined by both the intrinsic mosaic spread and the diffraction process, peak and integrated reflectivity, filter transmission) as a function of neutron wavelength or energy can be predicted with high accuracy and reliability by diffraction theory using empirical primary extinction coefficients extracted from a great amount of existing experimental data. The results of these calculations are given as graphs and tables permitting to optimize HOPG characteristics (mosaic spread, thickness, curvature) for any given experimental situation.

Keywords: neutron optics, pyrolytic graphite, mosaic spread, neutron scattering, monochromator, analyzer

Procedia PDF Downloads 142
1469 A Study of Spatial Resilience Strategies for Schools Based on Sustainable Development

Authors: Xiaohan Gao, Kai Liu

Abstract:

As essential components of urban areas, primary and secondary schools are extensively distributed throughout various regions of the city. During times of urban disturbances, these schools become direct carriers of complex disruptions. Therefore, fostering resilient schools becomes a pivotal driving force to promote high-quality urban development and a cornerstone of sustainable school growth. This paper adopts the theory of spatial resilience and focuses on primary and secondary schools in Chinese cities as the research subject. The study first explores the potential disturbance risks faced by schools and delves into the origin and concept of spatial resilience in the educational context. Subsequently, the paper conducts a meta-analysis to characterize the spatial resilience of primary and secondary schools and devises a spatial resilience planning mechanism. Drawing insights from exemplary cases both domestically and internationally, the research formulates spatial and planning resilience strategies for primary and secondary schools to cope with perturbations. These strategies encompass creating an overall layout that integrates harmoniously with nature, promoting organic growth in the planning structure, fostering ecological balance in the landscape system, and enabling dynamic adaptation in architectural spaces. By cultivating the capacity for "resistance-adaptation-transformation," these approaches support sustainable development within the school space. The ultimate goal of this project is to establish a cohesive and harmonious layout that advances the sustainable development of primary and secondary schools while contributing to the overall resilience of urban areas.

Keywords: complex disruption, primary and secondary schools, spatial resilience, sustainable development

Procedia PDF Downloads 77
1468 In the Eyes of Basilyo at Crispin: A Phenomenological Lived Experience of the Filipino Children of Parents with Mental Illness

Authors: Cely D. Magpantay, Geolynne Marie Adel, Cire-rine Mae Concepcion, Dessa Jean Orcajada, Jorgette Andrea Santos, Orian Laurace Canaman

Abstract:

Mental illness initiative is very relevant in promoting the Mental Health Bill act of 2017. In the Philippines alone, the public is more open and receptive to people at risks with a mental condition. Although it is uncommon that parents can become more psychologically unfit compared to their children, research shows that parents who are suffering from mental illness have a more significant negative effect than another family member. The impact of parent’s mental health can put their children more susceptible to acquire the same disorder. The aim of the study is to explore the lived experiences of children whose parents suffered from mental illness. It discusses how their parent's mental condition in, anyway, affects their psychological development. Using Phenomenological Qualitative Research, an in-depth, interview was conducted to five (5) consenting adults who lived with their parents diagnosed with a mental disorder. Results are clustered into four themes. The first theme is the negative emotion towards parents, the second theme is the psychosocial dynamics in caring for the patient, third is accepting the disease, and fourth is a general perspective on the family. Each themes is validated by experts and the participants. This theme generates subcomponent like isolation, shallow relationship and debt of gratitude. Along with these themes comes the fear of having a family emerged. There is a growing need to strengthen the family ties even more because of parent’s mental illness. Therefore, parental mental illness has an effect on the children’s psychological and social development.

Keywords: lived experience in Philippines, mental health, parental mental illness, psychosocial dynamics

Procedia PDF Downloads 315
1467 Evaluation of Actual Nutrition Patients of Osteoporosis

Authors: Aigul Abduldayeva, Gulnar Tuleshova

Abstract:

Osteoporosis (OP) is a major socio-economic problem and is a major cause of disability, reduced quality of life and premature death of elderly people. In Astana, the study involved 93 respondents, of whom 17 were men (18.3%), and 76 were women (81.7%). Age distribution of the respondents is as follows: 40-59 (66.7%), 60-75 (29.0%), 75-90 (4.3%). In the city of Astana general breach of bone mass (CCM) was determined in 83.8% (nationwide figure - RRP - 79.0%) of the patients, and normal levels of ultrasound densitometry were detected in 16.1% (RRP 21.0%) of the patients. OP was diagnosed in 20.4% of people over 40 (RRP for citizens is 19.0%), 25.4% in the group older than 50 (23.4% PIU), 22,6% in the group older than 60 (RRP 32.6%), 25.0% in the group older than 70 (47.6% of RRP). OPN was detected in 63.4% (RRP 59.6%) of the surveyed population. These data indicate that, there is no sharp difference between Astana and other cities in the country regarding the incidence of OP, that is, the situation with the OP is not aggravated by any regional characteristics. In the distribution of respondents by clusters it was found that 80.0% of the respondents with CCM were in the "best urban cluster", 93.8% were in "average urban cluster", and 77.4% were in a "poor urban cluster". There is a high rate construction of new buildings in Astana, presumably, that the new settlers inhabit the outskirts of the city, and very difficult to trace the socio-economic differences there. Based on these data the following conclusions can be made: 1. According to the ultrasound densitometry of the calcaneus the prevalence rate of NCM among the residents of Astana is 83.3%, OP - 20.4%, which generally coincides with data elsewhere in the country. 2. The urban population of Astana is under a high degree of risk for low energetic fracture, 46.2% of the population had medium and high risks of fracture, while the nationwide index is 26.7%. 3. In the development of CCM residents of Akmola region play a significant role gender, age, ethnic factors. According to the ultrasound densitometry women are more prone to Astana OP - 22.4% of respondents than men - 11.8% of respondents.

Keywords: nutrition, osteoporosis, elderly, urban population

Procedia PDF Downloads 473
1466 Performance Analysis of 5G for Low Latency Transmission Based on Universal Filtered Multi-Carrier Technique and Interleave Division Multiple Access

Authors: A. Asgharzadeh, M. Maroufi

Abstract:

5G mobile communication system has drawn more and more attention. The 5G system needs to provide three different types of services, including enhanced Mobile BroadBand (eMBB), massive machine-type communication (mMTC), and ultra-reliable and low-latency communication (URLLC). Universal Filtered Multi-Carrier (UFMC), Filter Bank Multicarrier (FBMC), and Filtered Orthogonal Frequency Division Multiplexing (f-OFDM) are suggested as a well-known candidate waveform for the coming 5G system. Themachine-to-machine (M2M) communications are one of the essential applications in 5G, and it involves exchanging of concise messages with a very short latency. However, in UFMC systems, the subcarriers are grouped into subbands but f-OFDM only one subband covers the entire band. Furthermore, in FBMC, a subband includes only one subcarrier, and the number of subbands is the same as the number of subcarriers. This paper mainly discusses the performance of UFMC with different parameters for the UFMC system. Also, paper shows that UFMC is the best choice outperforming OFDM in any case and FBMC in case of very short packets while performing similarly for long sequences with channel estimation techniques for Interleave Division Multiple Access (IDMA) systems.

Keywords: universal filtered multi-carrier technique, UFMC, interleave division multiple access, IDMA, fifth-generation, subband

Procedia PDF Downloads 134
1465 The Arabian Camel (Camelus dromedarius) as a Major Reservoir of Q Fever in Saudi Arabia

Authors: Mansour F. Hussein, Mohammed A. Alshaikh, Riyadh S. Al-Jumaah, A. GarelNabi, I. Al-Khalifa, Osama B. Mohammed

Abstract:

Serum samples from 489 male and female camels were tested for antibodies against C. burnetii using indirect enzyme-linked immunosorbent assay (ELISA). Antibodies to C. burnetii were recorded in sera of 252 (51.64%) camels. Significant differences in prevalence were found between male and female camels, juvenile and adult camels, different ecotypes and different sampling locations. 307 camels were simultaneously tested for C. burnetii antibodies by ELISA and indirect immunofluorescence (IFA). Close agreement was found between the results of the two tests. A high prevalence of C. burnetii antibodies was also recorded in milk samples tested by ELISA. Clinical samples from serologically positive camels were subjected to PCR analysis using primers which amplify the repetitive transposon-like and transposase gene regions of C. burnetii. Positive DNA amplification was obtained from both regions, with highest shedding of C. burnetii in faecal samples (27.59%) followed, in descending order, by urine (23.81%), blood (15.85%) and milk (6.5%). The present results indicate that camels are a major reservoir of C. burnetii in Saudi Arabia. The high prevalence of infection in camels, the poor sanitary standards under which the animals are kept and the consumption of raw camel milk indicate that camels could also be a major source of transmission of Q fever to humans in Saudi Arabia.

Keywords: Arabian camel, Camelus dromedarius, Coxiella brunetii, ELISA, immunofluoresence, PCR

Procedia PDF Downloads 653
1464 Environmental Consequences of Metal Concentrations in Stream Sediments of Atoyac River Basin, Central Mexico: Natural and Industrial Influences

Authors: V. C. Shruti, P. F. Rodríguez-Espinosa, D. C. Escobedo-Urías, Estefanía Martinez Tavera, M. P. Jonathan

Abstract:

Atoyac River, a major south-central river flowing through the states of Puebla and Tlaxcala in Mexico is significantly impacted by the natural volcanic inputs in addition with wastewater discharges from urban, agriculture and industrial zones. In the present study, core samples were collected from R. Atoyac and analyzed for sediment granularity, major (Al, Fe, Ca, Mg, K, P and S) and trace elemental concentrations (Ba, Cr, Cd, Mn, Pb, Sr, V, Zn, Zr). The textural studies reveal that the sediments are mostly sand sized particles exceeding 99% and with very few to no presence of mud fractions. It is observed that most of the metals like (avg: all values in μg g-1) Ca (35,528), Mg (10,789), K (7453), S (1394), Ba (203), Cr (30), Cd (4), Pb (11), Sr (435), Zn (76) and Zr (88) are enriched throughout the sediments mainly sourced from volcanic inputs, source rock composition of Atoyac River basin and industrial influences from the Puebla city region. Contamination indices, such as anthropogenic factor (AF), enrichment factor (EF) and geoaccumulation index (Igeo), were used to investigate the level of contamination and toxicity as well as quantitatively assess the influences of human activities on metal concentrations. The AF values (>1) for Ba, Ca, Mg, Na, K, P and S suggested volcanic inputs from the study region, where as Cd and Zn are attributed to the impacts of industrial inputs in this zone. The EF and Igeo values revealed an extreme enrichment of S and Cd. The ecological risks were evaluated using potential ecological risk index (RI) and the results indicate that the metals Cd and V pose a major hazard for the biological community.

Keywords: Atoyac River, contamination indices, metal concentrations, Mexico, textural studies

Procedia PDF Downloads 292
1463 Building a Transformative Continuing Professional Development Experience for Educators through a Principle-Based, Technological-Driven Knowledge Building Approach: A Case Study of a Professional Learning Team in Secondary Education

Authors: Melvin Chan, Chew Lee Teo

Abstract:

There has been a growing emphasis in elevating the teachers’ proficiency and competencies through continuing professional development (CPD) opportunities. In this era of a Volatile, Uncertain, Complex, Ambiguous (VUCA) world, teachers are expected to be collaborative designers, critical thinkers and creative builders. However, many of the CPD structures are still revolving in the model of transmission, which stands in contradiction to the cultivation of future-ready teachers for the innovative world of emerging technologies. This article puts forward the framing of CPD through a Principle-Based, Technological-Driven Knowledge Building Approach grounded in the essence of andragogy and progressive learning theories where growth is best exemplified through an authentic immersion in a social/community experience-based setting. Putting this Knowledge Building Professional Development Model (KBPDM) in operation via a Professional Learning Team (PLT) situated in a Secondary School in Singapore, research findings reveal that the intervention has led to a fundamental change in the learning paradigm of the teachers, henceforth equipping and empowering them successfully in their pedagogical design and practices for a 21st century classroom experience. This article concludes with the possibility in leveraging the Learning Analytics to deepen the CPD experiences for educators.

Keywords: continual professional development, knowledge building, learning paradigm, principle-based

Procedia PDF Downloads 130
1462 Classification for Obstructive Sleep Apnea Syndrome Based on Random Forest

Authors: Cheng-Yu Tsai, Wen-Te Liu, Shin-Mei Hsu, Yin-Tzu Lin, Chi Wu

Abstract:

Background: Obstructive Sleep apnea syndrome (OSAS) is a common respiratory disorder during sleep. In addition, Body parameters were identified high predictive importance for OSAS severity. However, the effects of body parameters on OSAS severity remain unclear. Objective: In this study, the objective is to establish a prediction model for OSAS by using body parameters and investigate the effects of body parameters in OSAS. Methodologies: Severity was quantified as the polysomnography and the mean hourly number of greater than 3% dips in oxygen saturation during examination in a hospital in New Taipei City (Taiwan). Four levels of OSAS severity were classified by the apnea and hypopnea index (AHI) with American Academy of Sleep Medicine (AASM) guideline. Body parameters, including neck circumference, waist size, and body mass index (BMI) were obtained from questionnaire. Next, dividing the collecting subjects into two groups: training and testing groups. The training group was used to establish the random forest (RF) to predicting, and test group was used to evaluated the accuracy of classification. Results: There were 3330 subjects recruited in this study, whom had been done polysomnography for evaluating severity for OSAS. A RF of 1000 trees achieved correctly classified 79.94 % of test cases. When further evaluated on the test cohort, RF showed the waist and BMI as the high import factors in OSAS. Conclusion It is possible to provide patient with prescreening by body parameters which can pre-evaluate the health risks.

Keywords: apnea and hypopnea index, Body parameters, obstructive sleep apnea syndrome, Random Forest

Procedia PDF Downloads 153
1461 Probabilistic Approach to the Spatial Identification of the Environmental Sources behind Mortality Rates in Europe

Authors: Alina Svechkina, Boris A. Portnov

Abstract:

In line with a rapid increase in pollution sources and enforcement of stricter air pollution regulation, which lowers pollution levels, it becomes more difficult to identify actual risk sources behind the observed morbidity patterns, and new approaches are required to identify potential risks and take preventive actions. In the present study, we discuss a probabilistic approach to the spatial identification of a priori unidentified environmental health hazards. The underlying assumption behind the tested approach is that the observed adverse health patterns (morbidity, mortality) can become a source of information on the geographic location of environmental risk factors that stand behind them. Using this approach, we analyzed sources of environmental exposure using data on mortality rates available for the year 2015 for NUTS 3 (Nomenclature of Territorial Units for Statistics) subdivisions of the European Union. We identified several areas in the southwestern part of Europe as primary risk sources for the observed mortality patterns. Multivariate regressions, controlled by geographical location, climate conditions, GDP (gross domestic product) per capita, dependency ratios, population density, and the level of road freight revealed that mortality rates decline as a function of distance from the identified hazard location. We recommend the proposed approach an exploratory analysis tool for initial investigation of regional patterns of population morbidity patterns and factors behind it.

Keywords: mortality, environmental hazards, air pollution, distance decay gradient, multi regression analysis, Europe, NUTS3

Procedia PDF Downloads 167
1460 Extraction of Amorphous SiO₂ From Equisetnm Arvense Plant for Synthesis of SiO₂/Zeolitic Imidazolate Framework-8 Nanocomposite and Its Photocatalytic Activity

Authors: Babak Azari, Afshin Pourahmad, Babak Sadeghi, Masuod Mokhtari

Abstract:

In this work, Equisetnm arvense plant extract was used for preparing amorphous SiO₂. For preparing of SiO₂/zeolitic imidazolate framework-8 (ZIF-8) nanocomposite by solvothermal method, the synthesized SiO₂ was added to the synthesis mixture ZIF-8. The nanocomposite was characterized using a range of techniques. The photocatalytic activity of SiO₂/ZIF-8 was investigated systematically by degrading crystal violet as a cationic dye under Ultraviolet light irradiation. Among synthesized samples (SiO₂, ZIF-8 and SiO₂/ZIF-8), the SiO₂/ZIF-8 exhibited the highest photocatalytic activity and improved stability compared to pure SiO₂ and ZIF-8. As evidenced by Scanning Electron Microscopy and Transmission electron microscopy images, ZIF-8 particles without aggregation are located over SiO₂. The SiO₂ not only provides structured support for ZIF-8 but also prevents the aggregation of ZIF-8 Metal-organic framework in comparison to the isolated ZIF-8. The superior activity of this photocatalyst was attributed to the synergistic effects from SiO₂ owing to (I) an electron acceptor (from ZIF-8) and an electron donor (to O₂ molecules), (II) preventing recombination of electron-hole in ZIF-8, and (III) maximum interfacial contact ZIF-8 with the SiO₂ surface without aggregation or prevent the accumulation of ZIF-8. The results demonstrate that holes (h+) and •O₂- are primary reactive species involved in the photocatalytic oxidation process. Moreover, the SiO₂/ZIF-8 photocatalyst did not show any obvious loss of photocatalytic activity during five-cycle tests, which indicates that the heterostructured photocatalyst was highly stable and could be used repeatedly.

Keywords: nano, zeolit, potocatalist, nanocomposite

Procedia PDF Downloads 82
1459 Enhancing Cellulose Acetate Films: Impact of Glycerol and Ionic Liquid Plasticizers

Authors: Rezzouq Asiya, Bouftou Abderrahim, Belfadil Doha, Taoufyk Azzeddine, El Bouchti Mehdi, Zyade Souad, Cherkaoui Omar, Majid Sanaa

Abstract:

Plastic packaging is widely used, but its pollution is a major environmental problem. Solutions require new sustainable technologies, environmental management, and the use of bio-based polymers as sustainable packaging. Cellulose acetate (CA) is a biobased polymer used in a variety of applications such as the manufacture of plastic films, textiles, and filters. However, it has limitations in terms of thermal stability and rigidity, which necessitates the addition of plasticizers to optimize its use in packaging. Plasticizers are molecules that increase the flexibility of polymers, but their influence on the chemical and physical properties of films (CA) has not been studied in detail. Some studies have focused on mechanical and thermal properties. However, an in-depth analysis is needed to understand the interactions between the additives and the polymer matrix. In this study, the aim is to examine the effect of two types of plasticizers, glycerol (a conventional plasticizer) and an ionic liquid, on the transparency, mechanical, thermal and barrier properties of cellulose acetate (CA) films prepared by the solution-casting method . Various analytical techniques were used to characterize these films, including infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), water vapor permeability (WVP), oxygen permeability, scanning electron microscopy (SEM), opacity, transmission analysis and mechanical tests.

Keywords: cellulose acetate, plasticizers, biopolymers, ionic liquid, glycerol.

Procedia PDF Downloads 40
1458 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-Silencing with Free Airflow

Authors: Sanjeet Kumar Singh, Shantanu Bhatacharya

Abstract:

Design of high-efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to the urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on the Sierpiński fractal triangle, which is aesthetically pleasing and demonstrates a normal incident sound absorption coefficient of more than 0.96 around 700 Hz and transmission loss of around 23 dB while maintaining e air circulation through the triangular cutout. Next, we present a concept of fabrication of large acoustic panels for large-scale applications, which leads to suppressing urban noise pollution.

Keywords: acoustic metamaterials, ventilation, urban noise pollution, noise control

Procedia PDF Downloads 108
1457 Detection of Arcobacter and Helicobacter pylori Contamination in Organic Vegetables by Cultural and Polymerase Chain Reaction (PCR) Methods

Authors: Miguel García-Ferrús, Ana González, María A. Ferrús

Abstract:

The most demanded organic foods worldwide are those that are consumed fresh, such as fruits and vegetables. However, there is a knowledge gap about some aspects of organic food microbiological quality and safety. Organic fruits and vegetables are more exposed to pathogenic microorganisms due to surface contact with natural fertilizers such as animal manure, wastes and vermicompost used during farming. It has been suggested that some emergent pathogens, such as Helicobacter pylori or Arcobacter spp., could reach humans through the consumption of raw or minimally processed vegetables. Therefore, the objective of this work was to study the contamination of organic fresh green leafy vegetables by Arcobacter spp. and Helicobacter pylori. For this purpose, a total of 24 vegetable samples, 13 lettuce and 11 spinach were acquired from 10 different ecological supermarkets and greengroceries and analyzed by culture and PCR. Arcobacter spp. was detected in 5 samples (20%) by PCR, 4 spinach and one lettuce. One spinach sample was found to be also positive by culture. For H. pylori, the H. pylori VacA gene-specific band was detected in 12 vegetable samples (50%), 10 lettuces and 2 spinach. Isolation in the selective medium did not yield any positive result, possibly because of low contamination levels together with the presence of the organism in its viable but non-culturable form. Results showed significant levels of H. pylori and Arcobacter contamination in organic vegetables that are generally consumed raw, which seems to confirm that these foods can act as transmission vehicles to humans.

Keywords: Arcobacter sp., Helicobacter pylori, Organic Vegetables, Polymerase Chain Reaction (PCR)

Procedia PDF Downloads 164
1456 Structural and Optical Properties of RF-Sputtered ZnS and Zn(S,O) Thin Films

Authors: Ould Mohamed Cheikh, Mounir Chaik, Hind El Aakib, Mohamed Aggour, Abdelkader Outzourhit

Abstract:

Zinc sulfide [ZnS] and oxygenated zinc sulfide Zn(O,S) thin films were deposited on glass substrates, by reactive cathodic radio-frequency (RF) sputtering. The substrates power and percentage of oxygen were varied in the range of 100W to 250W and from 5% to 20% respectively. The structural, morphological and optical properties of these thin films were investigated. The optical properties (mainly the refractive index, absorption coefficient and optical band gap) were examined by optical transmission measurements in the ultraviolet-visible-near Infrared wavelength range. XRD analysis indicated that all sputtered ZnS films were a single phase with a preferential orientation along the (111) plane of zinc blend (ZB). The crystallite size was in the range of 19.5 nm to 48.5 nm, the crystallite size varied with RF power reaching a maximum at 200 W. The Zn(O,S) films, on the other hand, were amorphous. UV-Visible, measurements showed that the ZnS film had more than 80% transmittance in the visible wavelength region while that of Zn(O,S is 85%. Moreover, it was observed that the band gap energy of the ZnS films increases slightly from 3.4 to 3.52 eV as the RF power was increased. The optical band gap of Zn(O,S), on the other hand, decreased from 4.2 to 3.89 eV as the oxygen partial pressure is increased in the sputtering atmosphere at a fixed RF-power. Scanning electron microscopy observations revealed smooth surfaces for both type of films. The X-ray reflectometry measurements on the ZnS films showed that the density of the films (3.9 g/cm3) is close that of bulk ZnS.

Keywords: thin films Zn(O, S) properties, Zn(O, S) by Rf-sputtering, ZnS for solar cells, thin films for renewable energy

Procedia PDF Downloads 282
1455 Cybersecurity Challenges and Solutions in ICT Management at the Federal Polytechnic, Ado-Ekiti: A Quantitative Study

Authors: Innocent Uzougbo Onwuegbuzie, Siene Elizabeth Eke

Abstract:

This study investigates cybersecurity challenges and solutions in managing Information and Communication Technology (ICT) at the Federal Polytechnic, Ado-Ekiti, South-West Nigeria. The rapid evolution of ICT has revolutionized organizational operations and impacted various sectors, including education, healthcare, and finance. While ICT advancements facilitate seamless communication, complex data analytics, and strategic decision-making, they also introduce significant cybersecurity risks such as data breaches, ransomware, and other malicious attacks. These threats jeopardize the confidentiality, integrity, and availability of information systems, necessitating robust cybersecurity measures. The primary aim of this research is to identify prevalent cybersecurity challenges in ICT management, evaluate their impact on the institution's operations, and assess the effectiveness of current cybersecurity solutions. Adopting a quantitative research approach, data was collected through surveys and structured questionnaires from students, staff, and IT professionals at the Federal Polytechnic, Ado-Ekiti. The findings underscore the critical need for continuous investment in cybersecurity technologies, employee and student training, and regulatory compliance to mitigate evolving cyber threats. This research contributes to bridging the knowledge gap in cybersecurity management and provides valuable insights into effective strategies and technologies for safeguarding ICT systems in educational institutions. The study's objectives are to enhance the security posture of the Federal Polytechnic, Ado-Ekiti, in an increasingly digital world by identifying and addressing the cybersecurity challenges faced by its ICT management.

Keywords: cybersecurity challenges, cyber threat mitigation, federal polytechnic Ado-Ekiti, ICT management

Procedia PDF Downloads 40
1454 An Assessment of Financial Viability and Sustainability of Hydroponics Using Reclaimed Water Using LCA and LCC

Authors: Muhammad Abdullah, Muhammad Atiq Ur Rehman Tariq, Faraz Ul Haq

Abstract:

In developed countries, sustainability measures are widely accepted and acknowledged as crucial for addressing environmental concerns. Hydroponics, a soilless cultivation technique, has emerged as a potentially sustainable solution as it can reduce water consumption, land use, and environmental impacts. However, hydroponics may not be economically viable, especially when using reclaimed water, which may entail additional costs and risks. This study aims to address the critical question of whether hydroponics using reclaimed water can achieve a balance between sustainability and financial viability. Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) will be integrated to assess the potential of hydroponics whether it is environmentally sustainable and economically viable. Life cycle assessment, or LCA, is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service. While Life Cycle Cost (LCC) is an approach that assesses the total cost of an asset over its life cycle, including initial capital costs and maintenance costs. The expected benefits of this study include supporting evidence-based decision-making for policymakers, farmers, and stakeholders involved in agriculture. By quantifying environmental impacts and economic costs, this research will facilitate informed choices regarding the adoption of hydroponics with reclaimed water. It is believed that the outcomes of this research work will help to achieve a sustainable approach to agricultural production, aligning with sustainability goals while considering economic factors by adopting hydroponic technique.

Keywords: hydroponic, life cycle assessment, life cycle cost, sustainability

Procedia PDF Downloads 71
1453 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides

Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami

Abstract:

Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.

Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane

Procedia PDF Downloads 436
1452 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.

Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)

Procedia PDF Downloads 93
1451 Fire Protection Performance of Different Industrial Intumescent Coatings for Steel Beams

Authors: Serkan Kocapinar, Gülay Altay

Abstract:

This study investigates the efficiency of two different industrial intumescent coatings which have different types of certifications, in the fire protection performance in steel beams in the case of ISO 834 fire for 2 hours. A better understanding of industrial intumescent coatings, which assure structural integrity and prevent a collapse of steel structures, is needed to minimize the fire risks in steel structures. A comparison and understanding of different fire protective intumescent coatings, which are Product A and Product B, are used as a thermal barrier between the steel components and the fire. Product A is tested according to EN 13381-8 and BS 476-20,22 and is certificated by ISO Standards. Product B is tested according to EN 13381-8 and ASTM UL-94 and is certificated by the Turkish Standards Institute (TSE). Generally, fire tests to evaluate the fire performance of steel components are done numerically with commercial software instead of experiments due to the high cost of an ISO 834 fire test in a furnace. Hence, there is a gap in the literature about the comparisons of different certificated intumescent coatings for fire protection in the case of ISO 834 fire in a furnace experiment for 2 hours. The experiment was carried out by using two 1-meter UPN 200 steel sections. Each one was coated by different industrial intumescent coatings. A furnace was used by the Turkish Standards Institute (TSE) for the experiment. The temperature of the protected steels and the inside of the furnace was measured with the help of 24 thermocouples which were applied before the intumescent coatings during the two hours for the performance of intumescent coatings by getting a temperature-time curve of steel components. FIN EC software was used to determine the critical temperatures of protected steels, and Abaqus was used for thermal analysis to get theoretical results to compare with the experimental results.

Keywords: fire safety, structural steel, ABAQUS, thermal analysis, FIN EC, intumescent coatings

Procedia PDF Downloads 103
1450 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets

Authors: K. R. Sultana, K. Pope, Y. S. Muzychka

Abstract:

In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.

Keywords: droplets, CFD, thermos-physical properties, solidification

Procedia PDF Downloads 243
1449 Localization of Buried People Using Received Signal Strength Indication Measurement of Wireless Sensor

Authors: Feng Tao, Han Ye, Shaoyi Liao

Abstract:

City constructions collapse after earthquake and people will be buried under ruins. Search and rescue should be conducted as soon as possible to save them. Therefore, according to the complicated environment, irregular aftershocks and rescue allow of no delay, a kind of target localization method based on RSSI (Received Signal Strength Indication) is proposed in this article. The target localization technology based on RSSI with the features of low cost and low complexity has been widely applied to nodes localization in WSN (Wireless Sensor Networks). Based on the theory of RSSI transmission and the environment impact to RSSI, this article conducts the experiments in five scenes, and multiple filtering algorithms are applied to original RSSI value in order to establish the signal propagation model with minimum test error respectively. Target location can be calculated from the distance, which can be estimated from signal propagation model, through improved centroid algorithm. Result shows that the localization technology based on RSSI is suitable for large-scale nodes localization. Among filtering algorithms, mixed filtering algorithm (average of average, median and Gaussian filtering) performs better than any other single filtering algorithm, and by using the signal propagation model, the minimum error of distance between known nodes and target node in the five scene is about 3.06m.

Keywords: signal propagation model, centroid algorithm, localization, mixed filtering, RSSI

Procedia PDF Downloads 300
1448 Cybersecurity Challenges in Africa

Authors: Chimmoe Fomo Michelle Larissa

Abstract:

The challenges of cybersecurity in Africa are increasingly significant as the continent undergoes rapid digital transformation. With the rise of internet connectivity, mobile phone usage, and digital financial services, Africa faces unique cybersecurity threats. The significance of this study lies in understanding these threats and the multifaceted challenges that hinder effective cybersecurity measures across the continent. The methodologies employed in this study include a comprehensive analysis of existing cybersecurity frameworks in various African countries, surveys of key stakeholders in the digital ecosystem, and case studies of cybersecurity incidents. These methodologies aim to provide a detailed understanding of the current cybersecurity landscape, identify gaps in existing policies, and evaluate the effectiveness of implemented security measures. Major findings of the study indicate that Africa faces numerous cybersecurity challenges, including inadequate regulatory frameworks, insufficient cybersecurity awareness, and a shortage of skilled professionals. Additionally, the prevalence of cybercrime, such as financial fraud, data breaches, and ransomware attacks, exacerbates the situation. The study also highlights the role of international cooperation and regional collaboration in addressing these challenges and improving overall cybersecurity resilience. In conclusion, addressing cybersecurity challenges in Africa requires a multifaceted approach that involves strengthening regulatory frameworks, enhancing public awareness, and investing in cybersecurity education and training. The study underscores the importance of regional and international collaboration in building a robust cybersecurity infrastructure capable of mitigating the risks associated with the continent's digital growth.

Keywords: Africa, cybersecurity, challenges, digital infrastructure, cybercrime

Procedia PDF Downloads 41
1447 Nondestructive Evaluation of Hidden Delamination in Glass Fiber Composite Using Terahertz Spectroscopy

Authors: Chung-Hyeon Ryu, Do-Hyoung Kim, Hak-Sung Kim

Abstract:

As the use of the composites was increased, the detecting method of hidden damages which have an effect on performance of the composite was important. Terahertz (THz) spectroscopy was assessed as one of the new powerful nondestructive evaluation (NDE) techniques for fiber reinforced composite structures because it has many advantages which can overcome the limitations of conventional NDE techniques such as x-rays or ultrasound. The THz wave offers noninvasive, noncontact and nonionizing methods evaluating composite damages, also it gives a broad range of information about the material properties. In additions, it enables to detect the multiple-delaminations of various nonmetallic materials. In this study, the pulse type THz spectroscopy imaging system was devised and used for detecting and evaluating the hidden delamination in the glass fiber reinforced plastic (GFRP) composite laminates. The interaction between THz and the GFRP composite was analyzed respect to the type of delamination, including their thickness, size and numbers of overlaps among multiple-delaminations in through-thickness direction. Both of transmission and reflection configurations were used for evaluation of hidden delaminations and THz wave propagations through the delaminations were also discussed. From these results, various hidden delaminations inside of the GFRP composite were successfully detected using time-domain THz spectroscopy imaging system and also compared to the results of C-scan inspection. It is expected that THz NDE technique will be widely used to evaluate the reliability of composite structures.

Keywords: terahertz, delamination, glass fiber reinforced plastic composites, terahertz spectroscopy

Procedia PDF Downloads 592