Search results for: speed hump detection
4022 Impact of School-Based Gymnastic Program on Skill-Related Fitness in Early Adolescent Students
Authors: Dinko Vuleta, Dejan Madić, Goran Sporiš, Nebojša Trajković
Abstract:
The aim of this study was to determine the effects of gymnastics program in school on skill-related fitness in early adolescent students. The study involved 58 adolescent students (12.82±0.54 years; Height 156.81±8.16 cm; 53.46±12.31 kg) from primary school divided into two groups, following the randomization. The gymnastic group was involved in a 12 week of gymnastics classes, while the control group only participated in usual PE classes which consisted of multi-sport activities. The variables were selected within the several fitness batteries, measuring coordination (polygon backwards), upper and lower body strength standing long jump and medicine ball throw), speed (20 m sprint) and agility (4x10 test). Pre-test to post-test values showed significant improvements in all tested variables (p<0.05), except for the 4x10m test, where there were no significant improvements in neither of the groups (p>0.05). Significant interactions of time by group were observed for coordination, sprint speed, standing long jump and medicine ball throw (p<0.05). The results showed significant increase in skill-related fitness of the participants in the gymnastic group compared to the control group. Therefore, participation in gymnastics must be recommended as a positive foundational activity for school-aged children, from early childhood to adulthood. Additionally, the results can provide useful information in optimizing the training loads of pupils involved in gymnastic training throughout PE classes.Keywords: effects, PE classes, physical fitness, training
Procedia PDF Downloads 2584021 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer
Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari
Abstract:
Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.Keywords: cosmetic products, methylparaben, molecularly imprinted polymer, wastewater
Procedia PDF Downloads 3194020 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator
Authors: Victoria L. Chester, Usha Kuruganti
Abstract:
The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.Keywords: EMG, forestry, human factors, wrist biomechanics
Procedia PDF Downloads 1464019 Two Years Retrospective Study of Body Fluid Cultures Obtained from Patients in the Intensive Care Unit of General Hospital of Ioannina
Authors: N. Varsamis, M. Gerasimou, P. Christodoulou, S. Mantzoukis, G. Kolliopoulou, N. Zotos
Abstract:
Purpose: Body fluids (pleural, peritoneal, synovial, pericardial, cerebrospinal) are an important element in the detection of microorganisms. For this reason, it is important to examine them in the Intensive Care Unit (ICU) patients. Material and Method: Body fluids are transported through sterile containers and enriched as soon as possible with Tryptic Soy Broth (TSB). After one day of incubation, the broth is poured into selective media: Blood, Mac Conkey No. 2, Chocolate, Mueller Hinton, Chapman and Saboureaud agar. The above selective media are incubated directly for 2 days. After this period, if any number of microbial colonies are detected, gram staining is performed. After that, the isolated organisms are identified by biochemical techniques in the automated Microscan system (Siemens) and followed by a sensitivity test on the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by Kirby Bauer-based plate test. Results: In 2017 the Laboratory of Microbiology received 60 samples of body fluids from the ICU. More specifically the Microbiology Department received 6 peritoneal fluid specimens, 18 pleural fluid specimens and 36 cerebrospinal fluid specimens. 36 positive cultures were tested. S. epidermidis was identified in 18 specimens, S. haemolyticus in 6, and E. faecium in 12. Conclusions: The results show low detection of microorganisms in body fluid cultures.Keywords: body fluids, culture, intensive care unit, microorganisms
Procedia PDF Downloads 2024018 The Effect of Hypertrophy Strength Training Using Traditional Set vs. Cluster Set on Maximum Strength and Sprinting Speed
Authors: Bjornar Kjellstadli, Shaher A. I. Shalfawi
Abstract:
The aim of this study was to investigate the effect of strength training Cluster set-method compared to traditional set-method 30 m sprinting time and maximum strength in squats and bench-press. Thirteen Physical Education students, 7 males and 6 females between the age of 19-28 years old were recruited. The students were random divided in three groups. Traditional set group (TSG) consist of 2 males and 2 females aged (±SD) (22.3 ± 1.5 years), body mass (79.2 ± 15.4 kg) and height (177.5 ± 11.3 cm). Cluster set group (CSG) consist of 3 males and 2 females aged (22.4 ± 3.29 years), body mass (81.0 ± 24.0 kg) and height (179.2 ± 11.8 cm) and a control group (CG) consist of 2 males and 2 females aged (21.5 ± 2.4 years), body mass (82.1 ± 17.4 kg) and height (175.5 ± 6.7 cm). The intervention consisted of performing squat and bench press at 70% of 1RM (twice a week) for 8 weeks using 10 repetition and 4 sets. Two types of strength-training methods were used , cluster set (CS) where the participants (CSG) performed 2 reps 5 times with a 10 s recovery in between reps and 50 s recovery between sets, and traditional set (TS) where the participants (TSG) performed 10 reps each set with 90 s recovery in between sets. The pre-tests and post-tests conducted were 1 RM in both squats and bench press, and 10 and 30 m sprint time. The 1RM test were performed with Eleiko XF barbell (20 kg), Eleiko weight plates, rack and bench from Hammerstrength. The speed test was measured with the Brower speed trap II testing system (Brower Timing Systems, Utah, USA). The participants received an individualized training program based on the pre-test of the 1RM. In addition, a mid-term test of 1RM was carried out to adjust training intensity. Each training session were supervised by the researchers. Beast sensors (Milano, Italy) were also used to monitor and quantify the training load for the participants. All groups had a statistical significant improvement in bench press 1RM (TSG 1RM from 56.3 ± 28.9 to 66 ± 28.5 kg; CSG 1RM from 69.8 ± 33.5 to 77.2 ± 34.1 kg and CG 1RM from 67.8 ± 26.6 to 72.2 ± 29.1 kg), whereas only the TSG (1RM from 84.3 ± 26.8 to 114.3 ± 26.5 kg) and CSG (1RM from 100.4 ± 33.9 to 129 ± 35.1 kg) had a statistical significant improvement in Squats 1RM (P < 0.05). However, a between groups examination reveals that there were no marked differences in 1RM squat performance between TSG and CSG (P > 0.05) and both groups had a marked improvements compared to the CG (P < 0.05). On the other hand, no differences between groups were observed in Bench press 1RM. The within groups results indicate that none of the groups had any marked improvement in the distances from 0-10 m and 10-30 m except the CSG which had a notable improvement in the distance from 10-30 m (-0.07 s; P < 0.05). Furthermore, no differences in sprinting abilities were observed between groups. The results from this investigation indicate that traditional set strength training at 70% of 1RM gave close results compared to Cluster set strength training at the same intensity. However, the results indicate that the cluster set had an effect on flying time (10-30 m) indicating that the velocity at which those repetitions were performed could be the explanation factor of this this improvement.Keywords: physical performance, 1RM, pushing velocity, velocity based training
Procedia PDF Downloads 1644017 Acceleration-Based Motion Model for Visual Simultaneous Localization and Mapping
Authors: Daohong Yang, Xiang Zhang, Lei Li, Wanting Zhou
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) is a technology that obtains information in the environment for self-positioning and mapping. It is widely used in computer vision, robotics and other fields. Many visual SLAM systems, such as OBSLAM3, employ a constant-speed motion model that provides the initial pose of the current frame to improve the speed and accuracy of feature matching. However, in actual situations, the constant velocity motion model is often difficult to be satisfied, which may lead to a large deviation between the obtained initial pose and the real value, and may lead to errors in nonlinear optimization results. Therefore, this paper proposed a motion model based on acceleration, which can be applied on most SLAM systems. In order to better describe the acceleration of the camera pose, we decoupled the pose transformation matrix, and calculated the rotation matrix and the translation vector respectively, where the rotation matrix is represented by rotation vector. We assume that, in a short period of time, the changes of rotating angular velocity and translation vector remain the same. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of constant velocity model was analyzed theoretically. Finally, we applied our proposed approach to the ORBSLAM3 system and evaluated two sets of sequences on the TUM dataset. The results showed that our proposed method had a more accurate initial pose estimation and the accuracy of ORBSLAM3 system is improved by 6.61% and 6.46% respectively on the two test sequences.Keywords: error estimation, constant acceleration motion model, pose estimation, visual SLAM
Procedia PDF Downloads 944016 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index
Authors: Todd Zhou, Mikhail Yurochkin
Abstract:
Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index
Procedia PDF Downloads 1244015 A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling
Authors: Tytus Tulwin, Ksenia Siadkowska, Rafał Sochaczewski
Abstract:
A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: CFD, combustion, ignition, simulation, timing
Procedia PDF Downloads 2964014 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection
Authors: S. Shankar Bharathi
Abstract:
Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision
Procedia PDF Downloads 4284013 Exploiting the Potential of Fabric Phase Sorptive Extraction for Forensic Food Safety: Analysis of Food Samples in Cases of Drug Facilitated Crimes
Authors: Bharti Jain, Rajeev Jain, Abuzar Kabir, Torki Zughaibi, Shweta Sharma
Abstract:
Drug-facilitated crimes (DFCs) entail the use of a single drug or a mixture of drugs to render a victim unable. Traditionally, biological samples have been gathered from victims and conducted analysis to establish evidence of drug administration. Nevertheless, the rapid metabolism of various drugs and delays in analysis can impede the identification of such substances. For this, the present article describes a rapid, sustainable, highly efficient and miniaturized protocol for the identification and quantification of three sedative-hypnotic drugs, namely diazepam, chlordiazepoxide and ketamine in alcoholic beverages and complex food samples (cream of biscuit, flavored milk, juice, cake, tea, sweets and chocolate). The methodology involves utilizing fabric phase sorptive extraction (FPSE) to extract diazepam (DZ), chlordiazepoxide (CDP), and ketamine (KET). Subsequently, the extracted samples are subjected to analysis using gas chromatography-mass spectrometry (GC-MS). Several parameters, including the type of membrane, pH, agitation time and speed, ionic strength, sample volume, elution volume and time, and type of elution solvent, were screened and thoroughly optimized. Sol-gel Carbowax 20M (CW-20M) has demonstrated the most effective extraction efficiency for the target analytes among all evaluated membranes. Under optimal conditions, the method displayed linearity within the range of 0.3–10 µg mL–¹ (or µg g–¹), exhibiting a coefficient of determination (R2) ranging from 0.996–0.999. The limits of detection (LODs) and limits of quantification (LOQs) for liquid samples range between 0.020-0.069 µg mL-¹ and 0.066-0.22 µg mL-¹, respectively. Correspondingly, the LODs for solid samples ranged from 0.056-0.090 µg g-¹, while the LOQs ranged from 0.18-0.29 µg g-¹. Notably, the method showcased better precision, with repeatability and reproducibility both below 5% and 10%, respectively. Furthermore, the FPSE-GC-MS method proved effective in determining diazepam (DZ) in forensic food samples connected to drug-facilitated crimes (DFCs). Additionally, the proposed method underwent evaluation for its whiteness using the RGB12 algorithm.Keywords: drug facilitated crime, fabric phase sorptive extraction, food forensics, white analytical chemistry
Procedia PDF Downloads 704012 Implementation of a Baseline RISC for the Realization of a Dynamically Reconfigurable Processor
Authors: Hajer Najjar, Riad Bourguiba, Jaouhar Mouine
Abstract:
Reduced instruction set computer (RISC) processors are widely used because of their multiple advantages. In fact, they are based on a simple instruction set so that they increase the speed of the processor and reduce its energy consumption. In this paper, we will present a basic RISC architecture processor that will be developed later to converge to a new architecture with runtime reconfiguration.Keywords: processor, RISC, DLX, pipeline, runtime reconfiguration
Procedia PDF Downloads 4054011 Fabrication and Analysis of Simplified Dragonfly Wing Structures Created Using Balsa Wood and Red Prepreg Fibre Glass for Use in Biomimetic Micro Air Vehicles
Authors: Praveena Nair Sivasankaran, Thomas Arthur Ward, Rubentheren Viyapuri
Abstract:
Paper describes a methodology to fabricate a simplified dragonfly wing structure using balsa wood and red prepreg fibre glass. These simplified wing structures were created for use in Biomimetic Micro Air Vehicles (BMAV). Dragonfly wings are highly corrugated and possess complex vein structures. In order to mimic the wings function and retain its properties, a simplified version of the wing was designed. The simplified dragonfly wing structure was created using a method called spatial network analysis which utilizes Canny edge detection method. The vein structure of the wings were carved out in balsa wood and red prepreg fibre glass. Balsa wood and red prepreg fibre glass was chosen due to its ultra- lightweight property and hence, highly suitable to be used in our application. The fabricated structure was then immersed in a nanocomposite solution containing chitosan as a film matrix, reinforced with chitin nanowhiskers and tannic acid as a crosslinking agent. These materials closely mimic the membrane of a dragonfly wing. Finally, the wings were subjected to a bending test and comparisons were made with previous research for verification. The results had a margin of difference of about 3% and thus the structure was validated.Keywords: dragonfly wings, simplified, Canny edge detection, balsa wood, red prepreg, chitin, chitosan, tannic acid
Procedia PDF Downloads 3314010 The Effect of Eight-Week Medium Intensity Interval Training and Curcumin Intake on ICMA-1 and VCAM-1 Levels in Menopausal Fat Rats
Authors: Abdolrasoul Daneshjoo, Fatemeh Akbari Ghara
Abstract:
Background and Purpose: Obesity is an increasing factor in cardiovascular disease and serum levels of cellular adhesion molecule. It plays an important role in predicting risk for coronary artery disease. The purpose of this research was to study the effect of eight weeks moderate intensity interval training and curcumin intake on ICAM-1 & VCAM-1 levels of menopausal fat rats. Materials and methods: in this study, 28 Wistar Menopausal fat rats aged 6-8 weeks with an average weight of 250-300 (gr) were randomly divided into four groups: control, curcumin supplement, moderate intensity interval training and moderate intensity interval training + curcumin supplement. (7 rats each group). The training program was planned as 8 weeks and 3 sessions per week. Each session consisted of 10 one-min sets with 50 percent intensity and the 2-minutes interval between sets in the first week. Subjects started with 14 meters per minute, and 2 (m/min) was added to increase their speed weekly until the speed of 28 (m/min) in the 8th week. Blood samples were taken 48 hours after the last training session, and ICAM-1 A and VCAM-1 levels were measured. SPSS software, one-way analysis of variance (ANOVA) and Pearson correlation coefficient were used to assess the results. Results: The results showed that eight weeks of training and taking curcumin had significant effects on ICAM-1 levels of the rats (p ≤ 0.05). However, it had no significant effect on VCAM-1 levels in menopausal obese rates (p ≥ 0.05). There was no significant correlation between the levels of ICAM-1 and VCAM-1 in eight weeks training and taking curcumin. Conclusion: Implementation of moderate intensity interval training and the use of curcumin decreased ICAM-1 significantly.Keywords: curcumin, interval training , ICMA, VCAM
Procedia PDF Downloads 1924009 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 2254008 Enhancing Embedded System Efficiency with Digital Signal Processing Cores
Authors: Anil H. Dhanawade, Akshay S., Harshal M. Lakesar
Abstract:
This paper presents a comprehensive analysis of the performance advantages offered by DSP (Digital Signal Processing) cores compared to traditional MCU (Microcontroller Unit) cores in the execution of various functions critical to real-time applications. The focus is on the integration of DSP functionalities, specifically in the context of motor control applications such as Field-Oriented Control (FOC), trigonometric calculations, back-EMF estimation, digital filtering, and high-resolution PWM generation. Through comparative analysis, it is demonstrated that DSP cores significantly enhance processing efficiency, achieving faster execution times for complex mathematical operations essential for precise torque and speed control. The study highlights the capabilities of DSP cores, including single-cycle Multiply-Accumulate (MAC) operations and optimized hardware for trigonometric functions, which collectively reduce latency and improve real-time performance. In contrast, MCU cores, while capable of performing similar tasks, typically exhibit longer execution times due to reliance on software-based solutions and lack of dedicated hardware acceleration. The findings underscore the critical role of DSP cores in applications requiring high-speed processing and low-latency response, making them indispensable in the automotive, industrial, and robotics sectors. This work serves as a reference for future developments in embedded systems, emphasizing the importance of architecture choice in achieving optimal performance in demanding computational tasks.Keywords: CPU core, DSP, assembly code, motor control
Procedia PDF Downloads 164007 GA3C for Anomalous Radiation Source Detection
Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang
Abstract:
In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.Keywords: deep reinforcement learning, GA3C, source searching, source detection
Procedia PDF Downloads 1144006 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer
Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved
Abstract:
Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.Keywords: computer-aided system, detection, image segmentation, morphology
Procedia PDF Downloads 1504005 Determination of Geogrid Reinforced Ballast Behavior Using Finite Element Modeling
Authors: Buğra Sinmez
Abstract:
In some countries, such as China, Turkey, andseveralEuropeanUnionnations, the therailwaypavementstructuralsystem has recently undergonerapid growth as a vital element of the transportation infrastructure, particularlyfortheuse of high-speed trains. It is vitaltoconsiderthe High-SpeedInfrastructureDemandwhendevelopingandconstructingtherailwaypavementstructure. HSRL can create more substantial ldifficultiestotheballastorbaselayer of regularlyusedballastedrailwaypavementsthanstandardrailwaytrains. The deterioration of the theballastorbaselayermayleadtosubstructuredegradation, which might lead to safety concerns and catastrophicincidents. As a result, the efficiency of railways will be impactedbylargecargoesorhigh-speed trains. A railwaypavement construction can be strengthened using geosyntheticmaterials in theballastorfoundationlayer as a countermeasure. However, there is still a need in the literature to quantifytheinfluence of geosynthetic materials, particularlygeogrid, on the mechanical responses of railwaypavementstructuresto HSRL loads which is essential knowledge in supporting the selection of appropriate material and geogridinstallationposition. As a result, the purpose of this research is to see how a geogridreinforcementlayermayaffectthekeyfeatures of a ballastedrailwaypavementstructure, with a particular focus on the materialtypeandgeogridplacementpositionthatmayassistreducethe rate of degradation of the therailwaypavementstructuresystem. Thisstudyusesnumericalmodeling in a genuinerailwaycontexttovalidatethebenefit of geogrid reinforcement. The usage of geogrids in the railway system has been thoroughly researched in the technical literature. Three distinct types of geogrid installed at two distinct positions (i.e.,withintheballastlayer, betweentheballastandthesub-ballast layer) within a railwaypavementconstructionwereevaluatedunder a variety of verticalwheelloadsusing a three-dimensional (3D) finite element model. As a result, fouralternativegeogridreinforcementsystemsweremodeledtoreflectdifferentconditions in the ballastedrailwaysystems (G0: no reinforcement; G1: reinforcedwithgeogridhavingthelowestdensityandYoung'smodulus; G2: reinforcedwithgeogridhavingtheintermediateYoung'smodulusanddensity; G3: reinforcedwithgeogridhavingthegreatestdensityandYoung'smodulus). Themechanicalreactions of the railway, such as verticalsurfacedeflection, maximumprimarystressandstrain, andmaximumshearstress, werestudiedandcomparedbetweenthefourgeogridreinforcementscenariosandfourverticalwheelloadlevels (i.e., 75, 100, 150, and 200 kN). Differences in the mechanical reactions of railwaypavementconstructionsowingtotheuse of differentgeogridmaterialsdemonstratethebenefits of suchgeosynthetics in ballast. In comparison to a non-reinforcedrailwaypavementconstruction, thereinforcedconstructionsfeaturedecreasedverticalsurfacedeflection, maximum shear stress at the sleeper-ballast contact, and maximum main stress at the bottom of the ballast layer. As a result, addinggeogridtotheballastlayerandbetweentheballastandsub-ballast layer in a ballastedrailwaypavementconstruction has beenfoundtolowercriticalshearand main stresses as well as verticalsurfacedeflection.Keywords: geosynthetics, geogrid, railway, transportation
Procedia PDF Downloads 1814004 Determination of Optimum Conditions for the Leaching of Oxidized Copper Ores with Ammonium Nitrate
Authors: Javier Paul Montalvo Andia, Adriana Larrea Valdivia, Adolfo Pillihuaman Zambrano
Abstract:
The most common lixiviant in the leaching process of copper minerals is H₂SO₄, however, the current situation requires more environmentally friendly reagents and in certain situations that have a lower consumption due to the presence of undesirable gangue as muscovite or kaolinite that can make the process unfeasible. The present work studied the leaching of an oxidized copper mineral in an aqueous solution of ammonium nitrate, in order to obtain the optimum leaching conditions of the copper contained in the malachite mineral from Peru. The copper ore studied comes from a deposit in southern Peru and was characterized by X-ray diffractometer, inductively coupled-plasma emission spectrometer (ICP-OES) and atomic absorption spectrophotometry (AAS). The experiments were developed in batch reactor of 600 mL where the parameters as; temperature, pH, ammonium nitrate concentration, particle size and stirring speed were controlled according to experimental planning. The sample solution was analyzed for copper by atomic absorption spectrophotometry (AAS). A simulation in the HSC Chemistry 6.0 program showed that the predominance of the copper compounds of a Cu-H₂O aqueous system is altered by the presence in the system of ammonium complexes, the compound being thermodynamically more stable Cu(NH3)₄²⁺, which predominates in pH ranges from 8.5 to 10 at a temperature of 25 °C. The optimum conditions for copper leaching of the malachite mineral were a stirring speed of 600 rpm, an ammonium nitrate concentration of 4M, a particle diameter of 53 um and temperature of 62 °C. These results showed that the leaching of copper increases with increasing concentration of the ammonium solution, increasing the stirring rate, increasing the temperature and decreasing the particle diameter. Finally, the recovery of copper in optimum conditions was above 80%.Keywords: ammonium nitrate, malachite, copper oxide, leaching
Procedia PDF Downloads 1894003 Effect of Shot Peening on the Mechanical Properties for Welded Joints of Aluminium Alloy 6061-T6
Authors: Muna Khethier Abbass, Khairia Salman Hussan, Huda Mohummed AbdudAlaziz
Abstract:
This work aims to study the effect of shot peening on the mechanical properties of welded joints which performed by two different welding processes: Tungsten inert gas (TIG) welding and friction stir welding (FSW) processes of aluminum alloy 6061 T6. Arc welding process (TIG) was carried out on the sheet with dimensions of (100x50x6 mm) to obtain many welded joints with using electrode type ER4043 (AlSi5) as a filler metal and argon as shielding gas. While the friction stir welding process was carried out using CNC milling machine with a tool of rotational speed (1000 rpm) and welding speed of (20 mm/min) to obtain the same butt welded joints. The welded pieces were tested by X-ray radiography to detect the internal defects and faulty welded pieces were excluded. Tensile test specimens were prepared from welded joints and base alloy in the dimensions according to ASTM17500 and then subjected to shot peening process using steel ball of diameter 0.9 mm and for 15 min. All specimens were subjected to Vickers hardness test and micro structure examination to study the effect of welding process (TIG and FSW) on the micro structure of the weld zones. Results showed that a general decay of mechanical properties of TIG and FSW welded joints comparing with base alloy while the FSW welded joint gives better mechanical properties than that of TIG welded joint. This is due to the micro structure changes during the welding process. It has been found that the surface hardening by shot peening improved the mechanical properties of both welded joints, this is due to the compressive residual stress generation in the weld zones which was measured using X-Ray diffraction (XRD) inspection.Keywords: friction stir welding, TIG welding, mechanical properties, shot peening
Procedia PDF Downloads 3394002 Fabrication of a New Electrochemical Sensor Based on New Nanostructured Molecularly Imprinted Polypyrrole for Selective and Sensitive Determination of Morphine
Authors: Samaneh Nabavi, Hadi Shirzad, Arash Ghoorchian, Maryam Shanesaz, Reza Naderi
Abstract:
Morphine (MO), the most effective painkiller, is considered the reference by which analgesics are assessed. It is very necessary for the biomedical applications to detect and maintain the MO concentrations in the blood and urine with in safe ranges. To date, there are many expensive techniques for detecting MO. Recently, many electrochemical sensors for direct determination of MO were constructed. The molecularly imprinted polymer (MIP) is a polymeric material, which has a built-in functionality for the recognition of a particular chemical substance with its complementary cavity.This paper reports a sensor for MO using a combination of a molecularly imprinted polymer (MIP) and differential-pulse voltammetry (DPV). Electropolymerization of MO doped polypyrrole yielded poor quality, but a well-doped, nanostructure and increased impregnation has been obtained in the pH=12. Above a pH of 11, MO is in the anionic forms. The effect of various experimental parameters including pH, scan rate and accumulation time on the voltammetric response of MO was investigated. At the optimum conditions, the concentration of MO was determined using DPV in a linear range of 7.07 × 10−6 to 2.1 × 10−4 mol L−1 with a correlation coefficient of 0.999, and a detection limit of 13.3 × 10-8 mol L−1, respectively. The effect of common interferences on the current response of MO namely ascorbic acid (AA) and uric acid (UA) is studied. The modified electrode can be used for the determination of MO spiked into urine samples, and excellent recovery results were obtained. The nanostructured polypyrrole films were characterized by field emission scanning electron microscopy (FESEM) and furrier transforms infrared (FTIR).Keywords: morphine detection, sensor, polypyrrole, nanostructure, molecularly imprinted polymer
Procedia PDF Downloads 4234001 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes
Authors: Madushani Rodrigo, Banuka Athuraliya
Abstract:
In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16
Procedia PDF Downloads 1204000 Percentage Contribution of Lower Limb Moments to Vertical Ground Reaction Force in Normal Walking
Authors: Salam M. Elhafez, Ahmed A. Ashour, Naglaa M. Elhafez, Ghada M. Elhafez, Azza M. Abdelmohsen
Abstract:
Patients suffering from gait disturbances are referred by having muscle group dysfunctions. There is a need for more studies investigating the contribution of muscle moments of the lower limb to the vertical ground reaction force using 3D gait analysis system. The purpose of this study was to investigate how the hip, knee and ankle moments in the sagittal plane contribute to the vertical ground reaction force in healthy subjects during normal speed of walking. Forty healthy male individuals volunteered to participate in this study. They were filmed using six high speed (120 Hz) Pro-Reflex Infrared cameras (Qualisys) while walking on an AMTI force platform. The data collected were the percentage contribution of the moments of the hip, knee and ankle joints in the sagittal plane at the instant of occurrence of the first peak, second peak, and the trough of the vertical ground reaction force. The results revealed that at the first peak of the ground reaction force (loading response), the highest contribution was generated from the knee extension moment, followed by the hip extension moment. Knee flexion and ankle plantar flexion moments produced high contribution to the trough of the ground reaction force (midstance) with approximately equal values. The second peak of the ground reaction force was mainly produced by the ankle plantar flexion moment. Conclusion: Hip and knee flexion and extension moments and ankle plantar flexion moment play important roles in the supporting phase of normal walking.Keywords: gait analysis, ground reaction force, moment contribution, normal walking
Procedia PDF Downloads 3783999 Barriers to Tuberculosis Detection in Portuguese Prisons
Authors: M. F. Abreu, A. I. Aguiar, R. Gaio, R. Duarte
Abstract:
Background: Prison establishments constitute high-risk environments for the transmission and spread of tuberculosis (TB), given their epidemiological context and the difficulty of implementing preventive and control measures. Guidelines for control and prevention of tuberculosis in prisons have been described as incomplete and heterogeneous internationally, due to several identified obstacles, for example scarcity of human resources and funding of prisoner health services. In Portugal, a protocol was created in 2014 with the aim to define and standardize procedures of detection and prevention of tuberculosis within prisons. Objective: The main objective of this study was to identify and describe barriers to tuberculosis detection in prisons of Porto and Lisbon districts in Portugal. Methods: A cross-sectional study was conducted from 2ⁿᵈ January 2018 till 30ᵗʰ June 2018. Semi-structured questionnaires were applied to health care professionals working in the prisons of the districts of Porto (n=6) and Lisbon (n=8). As inclusion criteria we considered having work experience in the area of tuberculosis (either in diagnosis, treatment, or follow up). The questionnaires were self-administered, in paper format. Descriptive analyses of the questionnaire variables were made using frequencies and median. Afterwards, a hierarchical agglomerative clusters analysis was performed. After obtaining the clusters, the chi-square test was applied to study the association between the variables collected and the clusters. The level of significance considered was 0.05. Results: From the total of 186 health professionals, 139 met the criteria of inclusion and 82 health professionals were interviewed (62,2% of participation). Most were female, nurses, with a median age of 34 years, with term employment contract. From the cluster analysis, two groups were identified with different characteristics and behaviors for the procedures of this protocol. Statistically significant results were found in: elements of cluster 1 (78% of the total participants) work in prisons for a longer time (p=0.003), 45,3% work > 4 years while 50% of the elements of cluster 2 work for less than a year, and more frequently answered they know and apply the procedures of the protocol (p=0.000). Both clusters answered frequently the need of having theoretical-practical training for TB (p=0.000), especially in the areas of diagnosis, treatment and prevention and that there is scarcity of funding to prisoner health services (p=0.000). Regarding procedures for TB screening (periodic and contact screening) and procedures for transferring a prisoner with this disease, cluster 1 also answered more frequently to perform them (p=0.000). They also referred that the material/equipment for TB screening is accessible and available (p=0.000). From this clusters we identified as barriers scarcity of human resources, the need to theoretical-practical training for tuberculosis, inexperience in working in health services prisons and limited knowledge of protocol procedures. Conclusions: The barriers found in this study are the same described internationally. This protocol is mostly being applied in portuguese prisons. The study also showed the need to invest in human and material resources. This investigation bridged gaps in knowledge that could help prison health services optimize the care provided for early detection and adherence of prisoners to treatment of tuberculosis.Keywords: barriers, health care professionals, prisons, protocol, tuberculosis
Procedia PDF Downloads 1463998 A Geometric Based Hybrid Approach for Facial Feature Localization
Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik
Abstract:
Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.Keywords: biometrics, face recognition, facial landmarks, image processing
Procedia PDF Downloads 4123997 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination
Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini
Abstract:
This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.Keywords: impersonation, image registration, incrimination, object detection, threshold evaluation
Procedia PDF Downloads 2303996 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets
Authors: Kothuri Sriraman, Mattupalli Komal Teja
Abstract:
In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm
Procedia PDF Downloads 3493995 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation
Authors: Mohammad Abu-Shaira, Weishi Shi
Abstract:
Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression
Procedia PDF Downloads 113994 Detection of Leptospira interrogans in Kidney and Urine of water Buffalo and its Relationship with Histopathological and Serological Findings
Authors: M. R. Haji Hajikolaei, A. A. Nikvand, A. R. Ghadrdan, M. Ghorbanpoor, B. Mohammadian
Abstract:
This study was carried out on water buffalo for detection of Leptospira interrogans in kidney and urine and its relationship with serological findings. Blood, urine and kidney samples were taken immediately after slaughter from 353 water buffalos at Ahvaz abattoir in Khouzestan province, Iran. Sera were initially screened at serum dilution of 1:100 against seven live antigens of Leptospira interrogans: pomona, hardjo, ballum, icterohemorrhagiae, tarasovi, australis and grippotyphosa using the microscopic agglutination test (MAT) and sera with positive results were titrated against reacting antigens in serial twofold dilution from 1:100 to 1:800. The samples of kidney were embedded in paraffin wax and 5µm thick sections were stained routinely with Haematoxylin and Eosin (H&E). Polymerase chain reaction (PCR) examination was done on urine and kidney by using LipL32 gene primers. Antibodies against one or more serovars at dilution >:100 were detected in sera. The most frequent reactor was hardjo (56.2%), followed by pomona (52.3%), australis (9.8%), tarassovi (5.9%), grippotyphosa (4.5%) and icterohaemorrhagiae (3.9%). The L. interrogans were detected in 43 (12.2%) of examined buffaloes, so that 26 (8.2%) of kidney tissues, 14 (4.8%) of urine samples separately and 3 (0.84%) of both kidney and urine samples were positive in PCR. From 153 (43.3%) buffaloes with positive MAT, 24 cases were positive by PCR of kidney and/or urine samples, synchronously. Renal lesions such as interstitial nephritis, acute tubular necrosis (ATN), pyelonephritis, glomerolonephritis, renal fibrosis and hydronephrosis were found in 128 (36.3%) cases. Statistical analysis indicated that there was no significant association between results of MAT, PCR and interstitial nephritis.Keywords: leptospiral infection, PCR, MAT, histopathology, river buffalo
Procedia PDF Downloads 3323993 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems
Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar
Abstract:
Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.Keywords: air handling unit, air pollution, aspiration efficiency, energy efficiency, particulate matter, ventilation
Procedia PDF Downloads 118