Search results for: smart hybrid powerpack (SHP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2948

Search results for: smart hybrid powerpack (SHP)

758 Correlation of Unsuited and Suited 5ᵗʰ Female Hybrid III Anthropometric Test Device Model under Multi-Axial Simulated Orion Abort and Landing Conditions

Authors: Christian J. Kennett, Mark A. Baldwin

Abstract:

As several companies are working towards returning American astronauts back to space on US-made spacecraft, NASA developed a human flight certification-by-test and analysis approach due to the cost-prohibitive nature of extensive testing. This process relies heavily on the quality of analytical models to accurately predict crew injury potential specific to each spacecraft and under dynamic environments not tested. As the prime contractor on the Orion spacecraft, Lockheed Martin was tasked with quantifying the correlation of analytical anthropometric test devices (ATDs), also known as crash test dummies, against test measurements under representative impact conditions. Multiple dynamic impact sled tests were conducted to characterize Hybrid III 5th ATD lumbar, head, and neck responses with and without a modified shuttle-era advanced crew escape suit (ACES) under simulated Orion landing and abort conditions. Each ATD was restrained via a 5-point harness in a mockup Orion seat fixed to a dynamic impact sled at the Wright Patterson Air Force Base (WPAFB) Biodynamics Laboratory in the horizontal impact accelerator (HIA). ATDs were subject to multiple impact magnitudes, half-sine pulse rise times, and XZ - ‘eyeballs out/down’ or Z-axis ‘eyeballs down’ orientations for landing or an X-axis ‘eyeballs in’ orientation for abort. Several helmet constraint devices were evaluated during suited testing. Unique finite element models (FEMs) were developed of the unsuited and suited sled test configurations using an analytical 5th ATD model developed by LSTC (Livermore, CA) and deformable representations of the seat, suit, helmet constraint countermeasures, and body restraints. Explicit FE analyses were conducted using the non-linear solver LS-DYNA. Head linear and rotational acceleration, head rotational velocity, upper neck force and moment, and lumbar force time histories were compared between test and analysis using the enhanced error assessment of response time histories (EEARTH) composite score index. The EEARTH rating paired with the correlation and analysis (CORA) corridor rating provided a composite ISO score that was used to asses model correlation accuracy. NASA occupant protection subject matter experts established an ISO score of 0.5 or greater as the minimum expectation for correlating analytical and experimental ATD responses. Unsuited 5th ATD head X, Z, and resultant linear accelerations, head Y rotational accelerations and velocities, neck X and Z forces, and lumbar Z forces all showed consistent ISO scores above 0.5 in the XZ impact orientation, regardless of peak g-level or rise time. Upper neck Y moments were near or above the 0.5 score for most of the XZ cases. Similar trends were found in the XZ and Z-axis suited tests despite the addition of several different countermeasures for restraining the helmet. For the X-axis ‘eyeballs in’ loading direction, only resultant head linear acceleration and lumbar Z-axis force produced ISO scores above 0.5 whether unsuited or suited. The analytical LSTC 5th ATD model showed good correlation across multiple head, neck, and lumbar responses in both the unsuited and suited configurations when loaded in the XZ ‘eyeballs out/down’ direction. Upper neck moments were consistently the most difficult to predict, regardless of impact direction or test configuration.

Keywords: impact biomechanics, manned spaceflight, model correlation, multi-axial loading

Procedia PDF Downloads 105
757 Totally Robotic Gastric Bypass Using Modified Lonroth Technique

Authors: Arun Prasad

Abstract:

Background: Robotic Bariatric Surgery is a good option for the super obese where laparoscopy demands challenging technical skills. Gastric bypass can be difficult due to inability of the robot to work in two quadrants at the same time. Lonroth technique of gastric bypass involves a totally supracolic surgery where all anastomosis are done in one quadrant only. Methods: We have done 78 robotic gastric bypass surgeries using the modified Lonroth technique. The robot is docked above the head of the patient in the midline. Camera port is placed supra umbilically. Two ports are placed on the left side of the patient and one port on the right side of the patient. An assistant port is placed between the camera port and right sided robotic port for use of stapler. Gastric pouch is made first followed by the gastrojejunostomy that is a four layered sutured anastomosis. Jejuno jejunostomy is then performed followed by a leak test and then the jejunum is divided. A 150 cm biliopancreatic limb and a 75 cm alimentary limb are finally obtained. Mesenteric and Petersen’s defects are then closed. Results: All patients had a successful robotic procedure. Mean time taken in the first 5 cases was 130 minutes. This reduced to a mean of 95 minutes in the last five cases. There were no intraoperative or post operative complications. Conclusions: While a hybrid technique of partly laparoscopic and partly robotic gastric bypass has been done at many centres, we feel using the modified Lonroth technique, a totally robotic gastric bypass surgery fully utilizes the potential of robotic bariatric surgery.

Keywords: robot, bariatric, totally robotic, gastric bypass

Procedia PDF Downloads 246
756 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change

Authors: Volker Wannack

Abstract:

Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.

Keywords: hydrogen, blockchain, sustainability, innovation, structural change

Procedia PDF Downloads 153
755 Formation of Microcapsules in Microchannel through Droplet Merging

Authors: Md. Danish Eqbal, Venkat Gundabala

Abstract:

Microparticles and microcapsules are basically used as a carrier for cells, tissues, drugs, and chemicals. Due to its biocompatibility, non-toxicity and biodegradability, alginate based microparticles have numerous applications in drug delivery, tissue engineering, organ repair and transplantation, etc. The production of uniform monodispersed microparticles was a challenge for the past few decades. However, emergence of microfluidics has provided controlled methods for the generation of the uniform monodispersed microparticles. In this work, we present a successful method for the generation of both microparticles and microcapsules (single and double core) using merging approach of two droplets, completely inside the microfluidic device. We have fabricated hybrid glass- PDMS (polydimethylsiloxane) based microfluidic device which has coflow geometry as well as the T junction channel. Coflow is used to generate the single as well as double oil-alginate emulsion in oil and T junction helps to form the calcium chloride droplets in oil. The basic idea is to match the frequency of the alginate droplets and calcium chloride droplets perfectly for controlled generation. Using the merging of droplets technique, we have successfully generated the microparticles and the microcapsules having single core as well as double and multiple cores. The cores in the microcapsules are very stable, well separated from each other and very intact as seen through cross-sectional confocal images. The size and the number of the cores along with the thickness of the shell can be easily controlled by controlling the flowrate of the liquids.

Keywords: double-core, droplets, microcapsules, microparticles

Procedia PDF Downloads 242
754 A Study on Children's Literature for Multiracial Asian American Children

Authors: Kaori Mori Want

Abstract:

American society is a racially diverse society and there are children books that tell the importance of respecting racial differences. Through reading books, children understand the world around them little by little along with their direct interaction with the world in reality. They find role models in books, strive to be like role models, and grow confidence in who they are. Books thus nurture the mind of children. On the other hand, because of their small presence, children books for multiracial Asian American children are scarce. Multiracial Asian American population is increasing but they are still minority in number. The lack of children’s books for these children may deprive the opportunities of them to embrace their multiraciality positively because they cannot find someone like them in any books. Children books for multiracial Asian American are still not that many, but a few have been being published recently. This paper introduces children books for multiracial Asian American children, and examines how they address issues pertaining to these children, and how they could nurture their self-esteem. Many states of the US used to ban interracial marriages and interracial families and their children once were discriminated against in American society. There was even a theory called the hybrid degeneracy theory which claimed that mixed race children were inferior mentally and physically. In this negative social environment, some multiracial Asian American people report that they had trouble embracing their multiracial identity positively. Yet, children books for these children are full of positive messages. This paper will argue the importance of children books for the mental growth of multiracial Asian American children, and how these books can contribute to the development of multiculturalism in the US in general.

Keywords: critical mixed race studies in the US, hapa children literature, interracial marriage, multiraciality

Procedia PDF Downloads 346
753 The Role of Natural Gas in Reducing Carbon Emissions

Authors: Abdulrahman Nami Almutairi

Abstract:

In the face of escalating climate change concerns, the concept of smart cities emerges as a promising approach to mitigate carbon emissions and move towards carbon neutrality. This paper provides a comprehensive review of the role of Natural Gas in achieving carbon neutrality. Natural gas has often been seen as a transitional fuel in the context of reducing carbon emissions. Its main role stems from being cleaner than coal and oil when burned for electricity generation and industrial processes. The urgent need to address this global issue has prompted a global shift towards cleaner energy sources and sustainable practices. In this endeavor, natural gas has emerged as a pivotal player, hailed for its potential to mitigate carbon emissions, and facilitate the transition to a low-carbon economy. With its lower carbon intensity compared to conventional fossil fuels, natural gas presents itself as a promising alternative for meeting energy demands while reducing environmental impact. As the world stands at a critical juncture in the fight against climate change, exploring the potential of natural gas as a transitional fuel offers insights into pathways towards a more sustainable and resilient future. By critically evaluating its opportunities and challenges, we can harness the potential of natural gas as a transitional fuel while advancing towards a cleaner, more resilient energy system. Through collaborative efforts and informed decision-making, we can pave the way for a future where energy is not only abundant but also environmentally sustainable and socially equitable.

Keywords: natural gas, clean fuel, carbon emissions, global warming, environmental protection

Procedia PDF Downloads 26
752 Energy Efficient Clustering with Reliable and Load-Balanced Multipath Routing for Wireless Sensor Networks

Authors: Alamgir Naushad, Ghulam Abbas, Shehzad Ali Shah, Ziaul Haq Abbas

Abstract:

Unlike conventional networks, it is particularly challenging to manage resources efficiently in Wireless Sensor Networks (WSNs) due to their inherent characteristics, such as dynamic network topology and limited bandwidth and battery power. To ensure energy efficiency, this paper presents a routing protocol for WSNs, namely, Enhanced Hybrid Multipath Routing (EHMR), which employs hierarchical clustering and proposes a next hop selection mechanism between nodes according to a maximum residual energy metric together with a minimum hop count. Load-balancing of data traffic over multiple paths is achieved for a better packet delivery ratio and low latency rate. Reliability is ensured in terms of higher data rate and lower end-to-end delay. EHMR also enhances the fast-failure recovery mechanism to recover a failed path. Simulation results demonstrate that EHMR achieves a higher packet delivery ratio, reduced energy consumption per-packet delivery, lower end-to-end latency, and reduced effect of data rate on packet delivery ratio when compared with eminent WSN routing protocols.

Keywords: energy efficiency, load-balancing, hierarchical clustering, multipath routing, wireless sensor networks

Procedia PDF Downloads 72
751 Hybrid Hunger Games Search Optimization Based on the Neural Networks Approach Applied to UAVs

Authors: Nadia Samantha Zuñiga-Peña, Norberto Hernández-Romero, Omar Aguilar-Mejia, Salatiel García-Nava

Abstract:

Using unmanned aerial vehicles (UAVs) for load transport has gained significant importance in various sectors due to their ability to improve efficiency, reduce costs, and access hard-to-reach areas. Although UAVs offer numerous advantages for load transport, several complications and challenges must be addressed to exploit their potential fully. Complexity relays on UAVs are underactuated, non-linear systems with a high degree of coupling between their variables and are subject to forces with uncertainty. One of the biggest challenges is modeling and controlling the system formed by UAVs carrying a load. In order to solve the controller problem, in this work, a hybridization of Neural Network and Hunger Games Search (HGS) metaheuristic algorithm is developed and implemented to find the parameters of the Super Twisting Sliding Mode Controller for the 8 degrees of freedom model of UAV with payload. The optimized controller successfully tracks the UAV through the three-dimensional desired path, demonstrating the effectiveness of the proposed solution. A comparison of performance shows the superiority of the neural network HGS (NNHGS) over the HGS algorithm, minimizing the tracking error by 57.5 %.

Keywords: neural networks, hunger games search, super twisting sliding mode controller, UAVs.

Procedia PDF Downloads 14
750 Design and Modeling of a Green Building Energy Efficient System

Authors: Berhane Gebreslassie

Abstract:

Conventional commericial buildings are among the highest unwisely consumes enormous amount of energy and as consequence produce significant amount Carbon Dioxide (CO2). Traditional/conventional buildings have been built for years without consideration being given to their impact on the global warming issues as well as their CO2 contributions. Since 1973, simulation of Green Building (GB) for Energy Efficiency started and many countries in particular the US showed a positive response to minimize the usage of energy in respect to reducing the CO2 emission. As a consequence many software companies developed their own unique building energy efficiency simulation software, interfacing interoperability with Building Information Modeling (BIM). The last decade has witnessed very rapid growing number of researches on GB energy efficiency system. However, the study also indicates that the results of current GB simulation are not yet satisfactory to meet the objectives of GB. In addition most of these previous studies are unlikely excluded the studies of ultimate building energy efficiencies simulation. The aim of this project is to meet the objectives of GB by design, modeling and simulation of building ultimate energy efficiencies system. This research project presents multi-level, L-shape office building in which every particular part of the building materials has been tested for energy efficiency. An overall of 78.62% energy is saved, approaching to NetZero energy saving. Furthermore, the building is implements with distributed energy resources like renewable energies and integrating with Smart Building Automation System (SBAS) for controlling and monitoring energy usage.

Keywords: ultimate energy saving, optimum energy saving, green building, sustainable materials and renewable energy

Procedia PDF Downloads 265
749 Review of Vertical Axis Wind Turbine

Authors: Amare Worku, Harikrishnan Muralidharan

Abstract:

The research for more environmentally friendly sources of energy is a result of growing environmental awareness. In this aspect, wind energy is a very good option and there are two different wind turbines, horizontal axis wind turbine (HAWT) and vertical axis turbine (VAWT). For locations outside of integrated grid networks, vertical axis wind turbines (VAWT) present a feasible solution. However, those turbines have several drawbacks related to various setups, VAWT has a very low efficiency when compared with HAWT, but they work under different conditions and installation areas. This paper reviewed numerous measurements taken to improve the efficiency of VAWT configurations, either directly or indirectly related to the performance efficiency of the turbine. Additionally, the comparison and advantages of HAWT and VAWT turbines and also the findings of the design methodologies used for the VAWT design have been reviewed together with efficiency enhancement revision. Most of the newly modified designs are based on the turbine blade structure modification but need other studies on behalf other than electromechanical modification. Some of the techniques, like continuous variation of pitch angle control and swept area control, are not the most effective since VAWT is Omni-directional, and so wind direction is not a problem like HAWT. Hybrid system technology has become one of the most important and efficient methods to enhance the efficiency of VAWT. Besides hybridization, the contra-rotating method is also good if the installation area is big enough in an urban area.

Keywords: wind turbine, horizontal axis wind turbine, vertical axis wind turbine, hybridization

Procedia PDF Downloads 84
748 Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review

Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen

Abstract:

Ubiquitous learning and the use of ubiquitous learning environments herald a new era in higher education. Ubiquitous environments fuse together authentic learning situations and digital learning spaces where students can seamlessly immerse themselves into the learning process. Definitions of ubiquitous learning are wide and vary in the previous literature and learning environments are not systemically described. The aim of this scoping review was to identify the criteria and the use of ubiquitous learning environments in higher education contexts. The objective was to provide a clear scope and a wide view for this research area. The original studies were collected from nine electronic databases. Seven publications in total were defined as eligible and included in the final review. An inductive content analysis was used for the data analysis. The reviewed publications described the use of ubiquitous learning environments (ULE) in higher education. Components, contents and outcomes varied between studies, but there were also many similarities. In these studies, the concept of ubiquitousness was defined as context-awareness, embeddedness, content-personalization, location-based, interactivity and flexibility and these were supported by using smart devices, wireless networks and sensing technologies. Contents varied between studies and were customized to specific uses. Measured outcomes in these studies were focused on multiple aspects as learning effectiveness, cost-effectiveness, satisfaction, and usefulness. This study provides a clear scope for ULE used in higher education. It also raises the need for transparent development and publication processes, and for practical implications of ubiquitous learning environments.

Keywords: higher education, learning environment, scoping review, ubiquitous learning, u-learning

Procedia PDF Downloads 249
747 A Variable Neighborhood Search with Tabu Conditions for the Roaming Salesman Problem

Authors: Masoud Shahmanzari

Abstract:

The aim of this paper is to present a Variable Neighborhood Search (VNS) with Tabu Search (TS) conditions for the Roaming Salesman Problem (RSP). The RSP is a special case of the well-known traveling salesman problem (TSP) where a set of cities with time-dependent rewards and a set of campaign days are given. Each city can be visited on any day and a subset of cities can be visited multiple times. The goal is to determine an optimal campaign schedule consist of daily open/closed tours that visit some cities and maximizes the total net benefit while respecting daily maximum tour duration constraints and the necessity to return campaign base frequently. This problem arises in several real-life applications and particularly in election logistics where depots are not fixed. We formulate the problem as a mixed integer linear programming (MILP), in which we capture as many real-world aspects of the RSP as possible. We also present a hybrid metaheuristic algorithm based on a VNS with TS conditions. The initial feasible solution is constructed via a new matheuristc approach based on the decomposition of the original problem. Next, this solution is improved in terms of the collected rewards using the proposed local search procedure. We consider a set of 81 cities in Turkey and a campaign of 30 days as our largest instance. Computational results on real-world instances show that the developed algorithm could find near-optimal solutions effectively.

Keywords: optimization, routing, election logistics, heuristics

Procedia PDF Downloads 80
746 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors

Authors: Lingling Shui, Shuting Xie

Abstract:

As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.

Keywords: droplet, microfluidics, assembly, soft materials, microsensor

Procedia PDF Downloads 71
745 Improved Embroidery Based Textile Electrodes for Sustainability of Impedance Measurement Characteristics

Authors: Bulcha Belay Etana

Abstract:

Research shows that several challenges are to be resolved for textile sensors and wearable smart textiles systems to make it accurate and reproducible minimizing variability issues when tested. To achieve this, we developed stimulating embroidery electrode with three different filling textiles such as 3Dknit, microfiber, and nonwoven fabric, and tested with FTT for high recoverability on compression. Hence The impedance characteristics of wetted electrodes were caried out after 1hr of wetting under normal environmental conditions. The wetted 3D knit (W-3D knit), Wetted nonwoven (W-nonwoven), and wetted microfiber (W-microfiber) developed using Satin stitch performed better than a dry standard stitch or dry Satin stitch electrodes. Its performance was almost the same as that of the gel electrode (Ag/AgCl) as shown by the impedance result in figure 2 .The impedance characteristics of Dry and wetted 3D knit based Embroidered electrodes are better than that of the microfiber, and nonwoven filling textile. This is due to the fact that 3D knit fabric has high recoverability on compression to retain electrolyte gel than microfiber, and nonwoven. However,The non-woven fabric held the electrolyte for longer time without releasing it to the skin when needed, thus making its impedance characteristics poor as observed from the results. Whereas the dry Satin stitch performs better than the standard stitch based developed electrode. The inter electrode distance of all types of the electrode was 25mm, with the area of the electrode being 20mm by 20mm. Detail evaluation and further analysis is in progress for EMG monitoring application

Keywords: impedance, moisture retention, 3D knit fabric, microfiber, nonwoven

Procedia PDF Downloads 123
744 Impact of Lifestyle and User Expectations on the Demand of Compact Living Spaces in the Home Interiors in Indian Cities

Authors: Velly Kapadia, Reenu Singh

Abstract:

This report identifies the long-term driving forces behind urbanization and the impact of compact living on both society and the home and proposes a concept to create smarter and more sustainable homes. Compact living has been trending across India as a sustainable housing solution, and the reality is that India is currently facing a housing shortage in urban areas of around 10 million units. With the rising demand for housing, urban land prices have been rising and the cost of homes. The paper explores how and why the interior design of the homes can be improved to relieve the housing demand in an environmentally, socially and economically sustainable manner. A questionnaire survey was conducted to determine living patterns, area requirements, ecological footprints, energy consumption, purchasing patterns, and various pro-environmental behaviors of people who downsize to compact homes. Quantitative research explores sustainable material choices, durability, functionality, cost, and reusability of furniture. Besides addressing the need for smart and sustainable designed compact homes, a conceptual model is proposed, including options of ideal schematic layouts for homes in urban areas. In the conclusions, suggestions to improve space planning and suitable interior entities have been made to support the fact that compact homes are an eminently practical and sensible solution for the urban citizen.

Keywords: compact living, housing shortage, lifestyle, sustainable interior design

Procedia PDF Downloads 189
743 Design and Manufacture of an Autonomous Agricultural Robot for Pesticide Application

Authors: Caner Koc, Dilara Gerdan Koc, Emrah Saka, H. Ibrahim Karagol

Abstract:

The use of pesticides in agricultural activities is the most harmful to the environment and farmers' health, and it also has the greatest input prices, along with fertilizers. In this study, an electric, electrostatically charged, autonomous agricultural robot was developed, modeled, and prototyped and manufactured. It allows for sensitive pesticide applications with variable levels, has controllable spray nozzles, and uses camera distance sensors to detect and spray into tree canopies. The created prototype was produced with flexibility in mind. Two stages of prototype manufacture were completed. The initial stage involved designing and producing the flexible primary body of the autonomous vehicle. Detachable hanger assemblies are employed so that the main body robot can perform a variety of agricultural tasks. The design of the spraying devices and their fitting to the autonomous vehicle was completed as the second stage of the prototype. The built prototype spraying robot's itinerary was planned using the free, open-source program Mission Planner. PX4, telemetry, and RTK GPS are used to maneuver the autonomous car along the designated path. To avoid potential obstructions, the robot uses ultrasonic and lidar sensors. The developed autonomous vehicle's energy needs are intended to be met entirely by electric batteries. In the event that the batteries run out of power, the sockets are set up to be recharged both by using the generator and the main power source through the specifically constructed panel.

Keywords: autonomous agricultural robot, pesticide, smart farming, spraying, variable rate application

Procedia PDF Downloads 71
742 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon

Authors: Nadine Yehya, Chantal Maatouk

Abstract:

Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.

Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach

Procedia PDF Downloads 210
741 Presenting a Model Of Empowering New Knowledge-based Companies In Iran Insurance Industry

Authors: Pedram Saadati, Zahra Nazari

Abstract:

In the last decade, the role and importance of knowledge-based technological businesses in the insurance industry has greatly increased, and due to the weakness of previous studies in Iran, the current research deals with the design of the InsurTech empowerment model. In order to obtain the conceptual model of the research, a hybrid framework has been used. The statistical population of the research in the qualitative part were experts, and in the quantitative part, the InsurTech activists. The tools of data collection in the qualitative part were in-depth and semi-structured interviews and structured self-interaction matrix, and in the quantitative part, a researcher-made questionnaire. In the qualitative part, 55 indicators, 20 components and 8 concepts (dimensions) were obtained by the content analysis method, then the relationships of the concepts with each other and the levels of the components were investigated. In the quantitative part, the information was analyzed using the descriptive analytical method in the way of path analysis and confirmatory factor analysis. The proposed model consists of eight dimensions of supporter capability, supervisor of insurance innovation ecosystem, managerial, financial, technological, marketing, opportunity identification, innovative InsurTech capabilities. The results of statistical tests in identifying the relationships of the concepts with each other have been examined in detail and suggestions have been presented in the conclusion section.

Keywords: insurTech, knowledge-base, empowerment model, factor analysis, insurance

Procedia PDF Downloads 31
740 Static Analysis of Security Issues of the Python Packages Ecosystem

Authors: Adam Gorine, Faten Spondon

Abstract:

Python is considered the most popular programming language and offers its own ecosystem for archiving and maintaining open-source software packages. This system is called the python package index (PyPI), the repository of this programming language. Unfortunately, one-third of these software packages have vulnerabilities that allow attackers to execute code automatically when a vulnerable or malicious package is installed. This paper contributes to large-scale empirical studies investigating security issues in the python ecosystem by evaluating package vulnerabilities. These provide a series of implications that can help the security of software ecosystems by improving the process of discovering, fixing, and managing package vulnerabilities. The vulnerable dataset is generated using the NVD, the national vulnerability database, and the Snyk vulnerability dataset. In addition, we evaluated 807 vulnerability reports in the NVD and 3900 publicly known security vulnerabilities in Python Package Manager (pip) from the Snyk database from 2002 to 2022. As a result, many Python vulnerabilities appear in high severity, followed by medium severity. The most problematic areas have been improper input validation and denial of service attacks. A hybrid scanning tool that combines the three scanners bandit, snyk and dlint, which provide a clear report of the code vulnerability, is also described.

Keywords: Python vulnerabilities, bandit, Snyk, Dlint, Python package index, ecosystem, static analysis, malicious attacks

Procedia PDF Downloads 117
739 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor

Authors: Chiraz Ben Jabeur, Hassene Seddik

Abstract:

In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.

Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance

Procedia PDF Downloads 123
738 Distributed Automation System Based Remote Monitoring of Power Quality Disturbance on LV Network

Authors: Emmanuel D. Buedi, K. O. Boateng, Griffith S. Klogo

Abstract:

Electrical distribution networks are prone to power quality disturbances originating from the complexity of the distribution network, mode of distribution (overhead or underground) and types of loads used by customers. Data on the types of disturbances present and frequency of occurrence is needed for economic evaluation and hence finding solution to the problem. Utility companies have resorted to using secondary power quality devices such as smart meters to help gather the required data. Even though this approach is easier to adopt, data gathered from these devices may not serve the required purpose, since the installation of these devices in the electrical network usually does not conform to available PQM placement methods. This paper presents a design of a PQM that is capable of integrating into an existing DAS infrastructure to take advantage of available placement methodologies. The monitoring component of the design is implemented and installed to monitor an existing LV network. Data from the monitor is analyzed and presented. A portion of the LV network of the Electricity Company of Ghana is modeled in MATLAB-Simulink and analyzed under various earth fault conditions. The results presented show the ability of the PQM to detect and analyze PQ disturbance such as voltage sag and overvoltage. By adopting a placement methodology and installing these nodes, utilities are assured of accurate and reliable information with respect to the quality of power delivered to consumers.

Keywords: power quality, remote monitoring, distributed automation system, economic evaluation, LV network

Procedia PDF Downloads 339
737 Design and Fabrication of a Smart Quadruped Robot

Authors: Shivani Verma, Amit Agrawal, Pankaj Kumar Meena, Ashish B. Deoghare

Abstract:

Over the decade robotics has been a major area of interest among the researchers and scientists in reducing human efforts. The need for robots to replace human work in different dangerous fields such as underground mining, nuclear power station and war against terrorist attack has gained huge attention. Most of the robot design is based on human structure popularly known as humanoid robots. However, the problems encountered in humanoid robots includes low speed of movement, misbalancing in structure, poor load carrying capacity, etc. The simplification and adaptation of the fundamental design principles seen in animals have led to the creation of bio-inspired robots. But the major challenges observed in naturally inspired robot include complexity in structure, several degrees of freedom and energy storage problem. The present work focuses on design and fabrication of a bionic quadruped walking robot which is based on different joint of quadruped mammals like a dog, cheetah, etc. The design focuses on the structure of the robot body which consists of four legs having three degrees of freedom per leg and the electronics system involved in it. The robot is built using readily available plastics and metals. The proposed robot is simple in construction and is able to move through uneven terrain, detect and locate obstacles and take images while carrying additional loads which may include hardware and sensors. The robot will find possible application in the artificial intelligence sector.

Keywords: artificial intelligence, bionic, quadruped robot, degree of freedom

Procedia PDF Downloads 204
736 Discovering New Organic Materials through Computational Methods

Authors: Lucas Viani, Benedetta Mennucci, Soo Young Park, Johannes Gierschner

Abstract:

Organic semiconductors have attracted the attention of the scientific community in the past decades due to their unique physicochemical properties, allowing new designs and alternative device fabrication methods. Until today, organic electronic devices are largely based on conjugated polymers mainly due to their easy processability. In the recent years, due to moderate ET and CT efficiencies and the ill-defined nature of polymeric systems the focus has been shifting to small conjugated molecules with well-defined chemical structure, easier control of intermolecular packing, and enhanced CT and ET properties. It has led to the synthesis of new small molecules, followed by the growth of their crystalline structure and ultimately by the device preparation. This workflow is commonly followed without a clear knowledge of the ET and CT properties related mainly to the macroscopic systems, which may lead to financial and time losses, since not all materials will deliver the properties and efficiencies demanded by the current standards. In this work, we present a theoretical workflow designed to predict the key properties of ET of these new materials prior synthesis, thus speeding up the discovery of new promising materials. It is based on quantum mechanical, hybrid, and classical methodologies, starting from a single molecule structure, finishing with the prediction of its packing structure, and prediction of properties of interest such as static and averaged excitonic couplings, and exciton diffusion length.

Keywords: organic semiconductor, organic crystals, energy transport, excitonic couplings

Procedia PDF Downloads 246
735 Mobile Traffic Management in Congested Cells using Fuzzy Logic

Authors: A. A. Balkhi, G. M. Mir, Javid A. Sheikh

Abstract:

To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs.

Keywords: candidate cell, channel sharing, fuzzy logic, handover, small cells

Procedia PDF Downloads 109
734 Vehicular Speed Detection Camera System Using Video Stream

Authors: C. A. Anser Pasha

Abstract:

In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.

Keywords: radar, image processing, detection, tracking, segmentation

Procedia PDF Downloads 456
733 Radionuclide Contents and Exhalation Studies in Soil Samples from Sub-Mountainous Region of Jammu and Kashmir

Authors: Manpreet Kaur

Abstract:

The effect of external and internal exposure in outdoor and indoor environment can be significantly gauged by natural radionuclides. Therefore, it is a consequential to approximate the level of radionuclide contents in soil samples of any area and the risks associated with it. Rate of radon emerging from soil is also one of the prominent parameters for the assessment of radon levels in environmental. In present study, natural radionuclide contents viz. ²³²Th, ²³⁸U and ⁴⁰K and radon/thoron exhalation rates were evaluated operating thallium doped sodium iodide gamma radiation detector and advanced Smart Rn Duo technique in the soil samples from 30 villages of Jammu district, Jammu and Kashmir, India. Radon flux rate was also measured by using surface chamber technique. Results obtained with two different methods were compared to investigate the cause of emanation factor in the soil profile. The radon mass exhalation rate in the soil samples has been found varying from 15 ± 0.4 to 38 ± 0.8 mBq kg⁻¹ h⁻¹ while thoron surface exhalation rate has been found varying from 90 ± 22 to 4880 ± 280 Bq m⁻² h⁻¹. The mean value of radium equivalent activity (99 ± 27 Bq kg⁻¹) was appeared to be well within the admissible limit of 370 Bq kg⁻¹ suggested by Organization for Economic Cooperation and Development (2009) report. The values of various parameters related to radiological hazards were also calculated and all parameters have been found to be well below the safe limits given by various organizations. The outcomes pointed out that region was protected from danger as per health risks effects associated with these radionuclide contents is concerned.

Keywords: absorbed dose rate, exhalation rate, human health, radionuclide

Procedia PDF Downloads 128
732 On Flexible Preferences for Standard Taxis, Electric Taxis, and Peer-to-Peer Ridesharing

Authors: Ricardo Daziano

Abstract:

In the analysis and planning of the mobility ecosystem, preferences for ride-hailing over incumbent street-hailing services need better understanding. In this paper, a seminonparametric discrete choice model that allows for flexible preference heterogeneity is fitted with data from a discrete choice experiment among adult commuters in Montreal, Canada (N=760). Participants chose among Uber, Teo (a local electric ride-hailing service that was in operation when data was collected in 2018), and a standard taxi when presented with information about cost, time (on-trip, waiting, walking), powertrain of the car (gasoline/hybrid) for Uber and taxi, and whether the available electric Teo was a Tesla (which was one of the actual features of the Teo fleet). The fitted flexible model offers several behavioral insights. Waiting time for ride-hailing services is associated with a statistically significant but low marginal disutility. For other time components, including on-ride, and street-hailing waiting and walking the estimates of the value of time show an interesting pattern: whereas in a conditional logit on-ride time reductions are valued higher, in the flexible LML specification means of the value of time follow the expected pattern of waiting and walking creating a higher disutility. At the same time, the LML estimates show the presence of important, multimodal unobserved preference heterogeneity.

Keywords: discrete choice, electric taxis, ridehailing, semiparametrics

Procedia PDF Downloads 148
731 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.

Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment

Procedia PDF Downloads 223
730 A Kinetic Study of Radical Polymerization of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures

Authors: A. Bouriche, D. Merah, L.Alachaher-Bedjaoui, U. Maschke

Abstract:

Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of monofunctional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiateor, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light.

Keywords: acrylic monomers, films PDLC, liquid crystal, polymerisation

Procedia PDF Downloads 321
729 Identifying of Hybrid Lines for Lpx-B1 Gene in Durum Wheat

Authors: Özlem Ateş Sönmezoğlu, Begüm Terzi, Ahmet Yıldırım, Ramazan Özbey

Abstract:

The basic criteria which determine durum wheat quality is its suitability for pasta processing that is pasta making quality. Bright yellow color is a desired property in pasta products. Durum wheat pasta making quality is affected by grain pigment content and oxidative enzymes which affect adversely bright yellow color. Of the oxidative enzymes, lipoxygenase LOX is the most effective one on oxidative bleaching of yellow pigments in durum wheat products. Thus, wheat cultivars that are high in yellow pigments but low in LOX enzyme activity should be preferred for the production of pasta with high color quality. The aim of this study was to reduce lipoxygenase activities of the backcross durum wheat lines that were previously improved for their protein quality. For this purpose, two advanced lines with different parents (TMB2 and TMB3) were used recurrent parents. Also, Gediz-75 wheat with low LOX enzyme activity was used as the gene source. In all of the generations, backcrossed plants carrying the targeted gene region (Lpx-B1.1) were selected using SSR markers by marker assisted selection method. As a result, the study will be completed in three years instead of six years required in a classical backcross breeding study, leading to the development of high-quality candidate varieties. This research has been financially supported by TÜBİTAK (Project No: 112T910).

Keywords: durum wheat, lipoxygenase, LOX, Lpx-B1.1, MAS, Triticum durum

Procedia PDF Downloads 297