Search results for: long-term experiments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3265

Search results for: long-term experiments

1075 Synthesis of Highly Efficient Bio-Octane Number Booster Using Nano Au-NiAlZr-Layered Double Hydroxides Catalyst

Authors: Bachir Redouane, Dib Nihel, Bedrane Sumeya, Blanco Ginesa, Calvino José Juan

Abstract:

Furfural, a key biomass-derived platform compound, holds significant potential for biofuel production and the synthesis of high-value intermediates. This study investigates the hydrogenation-condensation reaction of furfural issued from lignocellulosique biomass with isopropyl alcohol to produce isopropylfurfuryl ether (iPFE), a next-generation synfuel with a high-octane number. iPFE’s water stability and resistance to methanol absorption make it a sustainable alternative to conventional gasoline additives, offering comparable performance. The catalyst used in this reaction is based on NiAl layered double hydroxides (LDH), with zirconium incorporated to enhance the distribution and structure of active sites. Gold (Au) was deposited on the NiAlZr-LDH support to improve selectivity and yield. The addition of Zr improved the thermal and mechanical stability of the catalyst, while the Au modification further increased selectivity toward iPFE. Extensive catalytic experiments were conducted to optimize reaction conditions, including temperature, hydrogen pressure, and Au loading, to maximize iPFE yield. The results demonstrate a high conversion rate of furfural, exceeding 90% under optimal conditions, with enhanced selectivity toward iPFE. Moreover, iPFE was shown to have a higher-octane number compared to traditional furfuryl ethers, making it a highly promising candidate for advanced fuel applications.

Keywords: Au-NiAlZr-LDH, biofuels, furfural, green chemistry, hydrogenation, isopropylfurfuryl ether, octane number.

Procedia PDF Downloads 16
1074 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle

Authors: Hu Ding, Kai Liu, Guoan Tang

Abstract:

The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.

Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest

Procedia PDF Downloads 219
1073 Aseismic Stiffening of Architectural Buildings as Preventive Restoration Using Unconventional Materials

Authors: Jefto Terzovic, Ana Kontic, Isidora Ilic

Abstract:

In the proposed design concept, laminated glass and laminated plexiglass, as ”unconventional materials”, are considered as a filling in a steel frame on which they overlap by the intermediate rubber layer, thereby forming a composite assembly. In this way vertical elements of stiffening are formed, capable for reception of seismic force and integrated into the structural system of the building. The applicability of such a system was verified by experiments in laboratory conditions where the experimental models based on laminated glass and laminated plexiglass had been exposed to the cyclic loads that simulate the seismic force. In this way the load capacity of composite assemblies was tested for the effects of dynamic load that was parallel to assembly plane. Thus, the stress intensity to which composite systems might be exposed was determined as well as the range of the structure stiffening referring to the expressed deformation along with the advantages of a particular type of filling compared to the other one. Using specialized software whose operation is based on the finite element method, a computer model of the structure was created and processed in the case study; the same computer model was used for analyzing the problem in the first phase of the design process. The stiffening system based on composite assemblies tested in laboratories is implemented in the computer model. The results of the modal analysis and seismic calculation from the computer model with stiffeners applied showed an efficacy of such a solution, thus rounding the design procedures for aseismic stiffening by using unconventional materials.

Keywords: laminated glass, laminated plexiglass, aseismic stiffening, experiment, laboratory testing, computer model, finite element method

Procedia PDF Downloads 80
1072 Combustion Improvements by C4/C5 Bio-Alcohol Isomer Blended Fuels Combined with Supercharging and EGR in a Diesel Engine

Authors: Yasufumi Yoshimoto, Enkhjargal Tserenochir, Eiji Kinoshita, Takeshi Otaka

Abstract:

Next generation bio-alcohols produced from non-food based sources like cellulosic biomass are promising renewable energy sources. The present study investigates engine performance, combustion characteristics, and emissions of a small single cylinder direct injection diesel engine fueled by four kinds of next generation bio-alcohol isomer and diesel fuel blends with a constant blending ratio of 3:7 (mass). The tested bio-alcohol isomers here are n-butanol and iso-butanol (C4 alcohol), and n-pentanol and iso-pentanol (C5 alcohol). To obtain simultaneous reductions in NOx and smoke emissions, the experiments employed supercharging combined with EGR (Exhaust Gas Recirculation). The boost pressures were fixed at two conditions, 100 kPa (naturally aspirated operation) and 120 kPa (supercharged operation) provided with a roots blower type supercharger. The EGR rates were varied from 0 to 25% using a cooled EGR technique. The results showed that both with and without supercharging, all the bio-alcohol blended diesel fuels improved the trade-off relation between NOx and smoke emissions at all EGR rates while maintaining good engine performance, when compared with diesel fuel operation. It was also found that regardless of boost pressure and EGR rate, the ignition delays of the tested bio-alcohol isomer blends are in the order of iso-butanol > n-butanol > iso-pentanol > n-pentanol. Overall, it was concluded that, except for the changes in the ignition delays the influence of bio-alcohol isomer blends on the engine performance, combustion characteristics, and emissions are relatively small.

Keywords: alternative fuel, butanol, diesel engine, EGR (Exhaust Gas Recirculation), next generation bio-alcohol isomer blended fuel, pentanol, supercharging

Procedia PDF Downloads 170
1071 Global Healthcare Village Based on Mobile Cloud Computing

Authors: Laleh Boroumand, Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar

Abstract:

Cloud computing being the use of hardware and software that are delivered as a service over a network has its application in the area of health care. Due to the emergency cases reported in most of the medical centers, prompt for an efficient scheme to make health data available with less response time. To this end, we propose a mobile global healthcare village (MGHV) model that combines the components of three deployment model which include country, continent and global health cloud to help in solving the problem mentioned above. In the creation of continent model, two (2) data centers are created of which one is local and the other is global. The local replay the request of residence within the continent, whereas the global replay the requirements of others. With the methods adopted, there is an assurance of the availability of relevant medical data to patients, specialists, and emergency staffs regardless of locations and time. From our intensive experiment using the simulation approach, it was observed that, broker policy scheme with respect to optimized response time, yields a very good performance in terms of reduction in response time. Though, our results are comparable to others when there is an increase in the number of virtual machines (80-640 virtual machines). The proportionality in increase of response time is within 9%. The results gotten from our simulation experiments shows that utilizing MGHV leads to the reduction of health care expenditures and helps in solving the problems of unqualified medical staffs faced by both developed and developing countries.

Keywords: cloud computing (MCC), e-healthcare, availability, response time, service broker policy

Procedia PDF Downloads 378
1070 Protection of Steel Bars in Reinforce Concrete with Zinc Based Coverings

Authors: Hamed Rajabzadeh Gatabi, Soroush Dastgheibifard, Mahsa Asnafi

Abstract:

There is no doubt that reinforced concrete is known as one of the most significant materials which is used in construction industry for many years. Although, some natural elements in dealing with environment can contribute to its corrosion or failure. One of which is bar or so-called reinforcement failure. So as to combat this problem, one of the oxidization prevention methods investigated was the barrier protection method implemented over the application of an organic coating, specifically fusion-bonded epoxy. In this study comparative method is prepared on two different kinds of covered bars (zinc-riches epoxy and polyamide epoxy coated bars) and also uncoated bar. With the aim of evaluate these reinforced concretes, the stickiness, toughness, thickness and corrosion performance of coatings were compared by some tools like Cu/CuSo4 electrodes, EIS and etc. Different types of concretes were exposed to the salty environment (NaCl 3.5%) and their durability was measured. As stated by the experiments in research and investigations, thick coatings (named epoxies) have acceptable stickiness and strength. Polyamide epoxy coatings stickiness to the bars was a bit better than that of zinc-rich epoxy coatings; nonetheless it was stiffer than the zinc rich epoxy coatings. Conversely, coated bars with zinc-rich epoxy showed more negative oxidization potentials, which take revenge protection of bars by zinc particles. On the whole, zinc-rich epoxy coverings is more corrosion-proof than polyamide epoxy coatings due to consuming zinc elements and some other parameters, additionally if the epoxy coatings without surface defects are applied on the rebar surface carefully, it can be said that the life of steel structures is subjected to increase dramatically.

Keywords: surface coating, epoxy polyamide, reinforce concrete bars, salty environment

Procedia PDF Downloads 291
1069 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 40
1068 Effects of Intracerebroventricular Injection of Spexin and Its Interaction with Nitric Oxide, Serotonin, and Corticotropin Receptors on Central Food Intake Regulation in Chicken

Authors: Mohaya Farzin, Shahin Hassanpour, Morteza Zendehdel, Bita Vazir, Ahmad Asghari

Abstract:

Aim: There are several differences between birds and mammals in terms of food intake regulation. Therefore, this study aimed to investigate the effects of the intracerebroventricular (ICV) injection of spexin and its interaction with nitric oxide, serotonin, and corticotropin receptors on central food intake regulation in broiler chickens. Materials and Methods: In experiment 1, chickens received ICV injection of saline, PCPA (p-chlorophenyl alanine,1.25 µg), spexin, and PCPA+spexin. In experiments 2-7, 8-OH-DPAT (5-HT1A agonist, 15.25 nmol), SB-242084 (5-HT2C receptor antagonist, 1.5µg), L-arginine (Precursor of nitric oxide, 200 nmol), L-NAME (nitric oxide synthetase inhibitor, 100 nmol), Astressin-B (CRF1/CRF2 receptor antagonist, 30 µg) and Astressin2-B (CRF2 receptor antagonist, 30 µg) were injected to chickens instead of the PCPA. Then, food intake was measured until 120 minutes after the injection. Results: Spexin significantly decreased food consumption (P<0.05). Concomitant injection of SB-242084+spexin attenuated spexin-induced hypophagia (P<0.05). Co-injection of L-arginine+spexin enhanced spexin-induced hypophagia, and this effect was reversed by L-NAME (P<0.05). Also, concomitant injection of Astressin-B + spexin or Astressin2-B + spexin enhanced spexin-induced hypophagia (P<0.05). Conclusions: Based on these observations, spexin-induced hypophagia may be mediated by nitric oxide and 5-HT2C, CRF1, and CRF2 receptors in neonatal broiler chickens.

Keywords: spexin, serotonin, corticotropin, nitric oxide, food intake, chicken

Procedia PDF Downloads 78
1067 A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction

Authors: Huashan Tai, Chien-Hui Lung

Abstract:

Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications.

Keywords: biomass energy, orange, torrefaction

Procedia PDF Downloads 293
1066 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 279
1065 Green Synthesis of Silver Nanoparticles with Aqueous Extract of Moringa oleifera Lam Leaves and Its Ameliorative Effect on Benign Prostatic Hyperplasia in Wistar Rat

Authors: Rotimi Larayetana, Yahaya Abdulrazaq, Oladunni O. Falola, Abayomi Ajayi

Abstract:

The aim of this study was to perform green synthesis of silver nanoparticles (AgNPs) with the aqueous extract of Moringa oleifera Lam (M oleifera) leaves and determine its effects on benign prostatic hyperplasia in Wistar rats. Silver nitrate (AgNO₃) solution was reduced using the aqueous extract of Moringa oleifera Lam leaves, the resultant biogenic AgNPs were characterized by Fourier transformed infrared spectrophotometric, SEM, TEM and X-ray diffraction analysis. Animal experiments involved thirty (30) adult male Wistar rats randomly divided into five groups (A to E; n ₌ 5). Group A received only subcutaneous injection of olive oil daily while the other groups got 3 mg/kg/daily of testosterone propionate (TP) subcutaneously plus 50 mg/kg/daily of AgNPs intraperitoneally (B), 3 mg/kg/daily of TP plus 25 mg/kg/daily of AgNPs (C), 3 mg/kg/daily of TP only (D) and 25 mg/kg/daily of AgNPs only (E). The animals were sacrificed after 14 days, and the prostate gland, liver, and kidney were processed for histological analysis. Phytochemical screening and GC-MS analysis were performed to determine the composition of the M oleifera extract used. Biogenic AgNPs with an average diameter of 23 nm were synthesized. Biogenic AgNPs ameliorated hormone-induced prostate enlargement, and the inhibition of prostatic hypertrophy could be due to the presence of a significant amount of plant fatty acids and phytosterols in the aqueous extract of M oleifera extract. However, the administration of biogenic AgNPs at higher doses impacted negatively on the cytoarchitecture of the liver. Green synthesis of AgNPs with the aqueous extract of Moringa oleifera might be beneficial for the treatment of BPH.

Keywords: benign prostatic hyperplasia, biogenic synthesis, Moringa oleifera, silver nanoparticles, testosterone

Procedia PDF Downloads 97
1064 Geometric Model to Study the Mechanism of Machining and Predict the Damage Occurring During Milling of Unidirectional CFRP

Authors: Faisal Islam, J. Ramkumar

Abstract:

The applications of composite materials in aerospace, sporting and automotive industries need high quality machined surfaces and dimensional accuracy. Some studies have been done to understand the fiber failure mechanisms encountered during milling machining of CFRP composites but none are capable of explaining the exact nature of the orientation-based fiber failure mechanisms encountered in the milling machining process. The objective of this work is to gain a better understanding of the orientation-based fiber failure mechanisms occurring on the slot edges during CFRP milling machining processes. The occurrence of damage is predicted by a schematic explanation based on the mechanisms of material removal which in turn depends upon fiber cutting angles. A geometric model based on fiber cutting angle and fiber orientation angle is proposed that defines the critical and safe zone during machining and predicts the occurrence of delamination. Milling machining experiments were performed on composite samples of varying fiber orientations to verify the proposed theory. Mean fiber pulled out length was measured from the microscopic images of the damaged area to quantify the amount of damage produced. By observing the damage occurring for different fiber orientation angles and fiber cutting angles for up-milling and down-milling edges and correlating it with the material removal mechanisms as described earlier, it can be concluded that the damage/delamination mainly depends on the portion of the fiber cutting angles that lies within the critical cutting angle zone.

Keywords: unidirectional composites, milling, machining damage, delamination, carbon fiber reinforced plastics (CFRPs)

Procedia PDF Downloads 532
1063 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 155
1062 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy

Procedia PDF Downloads 250
1061 The Weavability of Waste Plants and Their Application in Fashion and Textile Design

Authors: Jichi Wu

Abstract:

The dwindling of resources requires a more sustainable design. New technology could bring new materials and processing techniques to the fashion industry and push it to a more sustainable future. Thus this paper explores cutting-edge researches on the life-cycle of closed-loop products and aims to find innovative ways to recycle and upcycle. For such a goal, the author investigated how low utilization plants and leftover fiber could be turned into ecological textiles in fashion. Through examining the physical and chemical properties (cellulose content/ fiber form) of ecological textiles to explore their wearability, this paper analyzed the prospect of bio-fabrics (weavable plants) in body-oriented fashion design and their potential in sustainable fashion and textile design. By extracting cellulose from 9 different types or sections of plants, the author intends to find an appropriate method (such as ion solution extraction) to mostly increase the weavability of plants, so raw materials could be more effectively changed into fabrics. All first-hand experiment data were carefully collected and then analyzed under the guidance of related theories. The result of the analysis was recorded in detail and presented in an understandable way. Various research methods are adopted through this project, including field trip and experiments to make comparisons and recycle materials. Cross-discipline cooperation is also conducted for related knowledge and theories. From this, experiment data will be collected, analyzed, and interpreted into a description and visualization results. Based on the above conclusions, it is possible to apply weavable plant fibres to develop new textile and fashion.

Keywords: wearable bio-textile, sustainability, economy, ecology, technology, weavability, fashion design

Procedia PDF Downloads 149
1060 Revenue Management of Perishable Products Considering Freshness and Price Sensitive Customers

Authors: Onur Kaya, Halit Bayer

Abstract:

Global grocery and supermarket sales are among the largest markets in the world and perishable products such as fresh produce, dairy and meat constitute the biggest section of these markets. Due to their deterioration over time, the demand for these products depends highly on their freshness. They become totally obsolete after a certain amount of time causing a high amount of wastage and decreases in grocery profits. In addition, customers are asking for higher product variety in perishable product categories, leading to less predictable demand per product and to more out-dating. Effective management of these perishable products is an important issue since it is observed that billions of dollars’ worth of food is expired and wasted every month. We consider coordinated inventory and pricing decisions for perishable products with a time and price dependent random demand function. We use stochastic dynamic programming to model this system for both periodically-reviewed and continuously-reviewed inventory systems and prove certain structural characteristics of the optimal solution. We prove that the optimal ordering decision scenario has a monotone structure and the optimal price value decreases by time. However, the optimal price changes in a non-monotonic structure with respect to inventory size. We also analyze the effect of 1 different parameters on the optimal solution through numerical experiments. In addition, we analyze simple-to-implement heuristics, investigate their effectiveness and extract managerial insights. This study gives valuable insights about the management of perishable products in order to decrease wastage and increase profits.

Keywords: age-dependent demand, dynamic programming, perishable inventory, pricing

Procedia PDF Downloads 248
1059 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 135
1058 Design and Implementation of Collaborative Editing System Based on Physical Simulation Engine Running State

Authors: Zhang Songning, Guan Zheng, Ci Yan, Ding Gangyi

Abstract:

The application of physical simulation engines in collaborative editing systems has an important background and role. Firstly, physical simulation engines can provide real-world physical simulations, enabling users to interact and collaborate in real time in virtual environments. This provides a more intuitive and immersive experience for collaborative editing systems, allowing users to more accurately perceive and understand various elements and operations in collaborative editing. Secondly, through physical simulation engines, different users can share virtual space and perform real-time collaborative editing within it. This real-time sharing and collaborative editing method helps to synchronize information among team members and improve the efficiency of collaborative work. Through experiments, the average model transmission speed of a single person in the collaborative editing system has increased by 141.91%; the average model processing speed of a single person has increased by 134.2%; the average processing flow rate of a single person has increased by 175.19%; the overall efficiency improvement rate of a single person has increased by 150.43%. With the increase in the number of users, the overall efficiency remains stable, and the physical simulation engine running status collaborative editing system also has horizontal scalability. It is not difficult to see that the design and implementation of a collaborative editing system based on physical simulation engines not only enriches the user experience but also optimizes the effectiveness of team collaboration, providing new possibilities for collaborative work.

Keywords: physics engine, simulation technology, collaborative editing, system design, data transmission

Procedia PDF Downloads 89
1057 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 139
1056 Vibration Absorption Strategy for Multi-Frequency Excitation

Authors: Der Chyan Lin

Abstract:

Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin⁡(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments.

Keywords: Bessel function, bandwidth, frequency modulated excitation, vibration absorber

Procedia PDF Downloads 158
1055 [Keynote Talk]: Uptake of Co(II) Ions from Aqueous Solutions by Low-Cost Biopolymers and Their Hybrid

Authors: Kateryna Zhdanova, Evelyn Szeinbaum, Michelle Lo, Yeonjae Jo, Abel E. Navarro

Abstract:

Alginate hydrogel beads (AB), spent peppermint leaf (PM), and a hybrid adsorbent of these two materials (ABPM) were studied as potential biosorbents of Cobalt (II) ions from aqueous solutions. Cobalt ion is a commonly underestimated pollutant that is responsible for several health problems. Discontinuous batch experiments were conducted at room temperature to evaluate the effect of solution acidity, mass of adsorbent on the adsorption of Co(II) ions. The interfering effect of salinity, the presence of surfactants, an organic dye, and Pb(II) ions were also studied to resemble the application of these adsorbents in real wastewater. Equilibrium results indicate that Co(II) uptake is maximized at pH values higher than 5, with adsorbent doses of 200 mg, 200 mg, and 120 mg for AB, PM, and ABPM, respectively. Co(II) adsorption followed the trend AB > ABPM > PM with Adsorption percentages of 77%, 71% and 64%, respectively. Salts had a strong negative effect on the adsorption due to the increase of the ionic strength and the competition for adsorption sites. The presence of Pb(II) ions, surfactant, and dye BY57 had a slightly negative effect on the adsorption, apparently due to their interaction with different adsorption sites that do not interfere with the removal of Co(II). A polar-electrostatic adsorption mechanism is proposed based on the experimental results. Scanning electron microscopy indicates that adsorbent has appropriate morphological and textural properties, and also that ABPM encapsulated most of the PM inside of the hydrogel beads. These experimental results revealed that AB, PM, and ABPM are promising adsorbents for the elimination of Co(II) ions from aqueous solutions under different experimental conditions. These biopolymers are proposed as eco-friendly alternatives for the removal of heavy metal ions at lower costs than the conventional techniques.

Keywords: adsorption, Co(II) ions, alginate hydrogel beads, spent peppermint leaf, pH

Procedia PDF Downloads 131
1054 Preparation of Magnetic Hydroxyapatite Composite by Wet Chemical Process for Phycobiliproteins Adsorption

Authors: Shu-Jen Chen, Yi-Chien Wan, Ruey-Chi Wang

Abstract:

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) can be applied to the fabrication of bone replacement materials, the composite of dental filling, and the adsorption of biomolecules and dyes. The integration of HAp and magnetic materials would offer several advantages for bio-separation process because the magnetic adsorbents is capable of recovered by applied magnetic field. C-phycocyanin (C-PC) and Allophycocyanin (APC), isolated from Spirulina platensis, can be used in fluorescent labeling probes, health care foods and clinical diagnostic reagents. Although the purification of C-PC and APC are reported by HAp adsorption, the adsorption of C-PC and APC by magnetic HAp composites was not reported yet. Therefore, the fabrication of HAp with magnetic silica nanoparticles for proteins adsorption was investigated in this work. First, the magnetic silica particles were prepared by covering silica layer on Fe3O4 nanoparticles with a reverse micelle method. Then, the Fe3O4@SiO2 nanoparticles were mixed with calcium carbonate to obtain magnetic silica/calcium carbonate composites (Fe3O4@SiO2/CaCO3). The Fe3O4@SiO2/CaCO3 was further reacted with K2HPO4 for preparing the magnetic silica/hydroxyapatite composites (Fe3O4@SiO2/HAp). The adsorption experiments indicated that the adsorption capacity of Fe3O4@SiO2/HAp toward C-PC and APC were highest at pH 6. The adsorption of C-PC and APC by Fe3O4@SiO2/HAp could be correlated by the pseudo-second-order model, indicating chemical adsorption dominating the adsorption process. Furthermore, the adsorption data showed that the adsorption of Fe3O4@SiO2/HAp toward C-PC and APC followed the Langmuir isotherm. The isoelectric points of C-PC and APC were around 5.0. Additionally, the zeta potential data showed the Fe3O4@SiO2/HAp composite was negative charged at pH 6. Accordingly, the adsorption mechanism of Fe3O4@SiO2/HAp toward C-PC and APC should be governed by hydrogen bonding rather than electrostatic interaction. On the other hand, as compared to C-PC, the Fe3O4@SiO2/HAp shows higher adsorption affinity toward APC. Although the Fe3O4@SiO2/HAp cannot recover C-PC and APC from Spirulina platensis homogenate, the Fe3O4@SiO2/HAp can be applied to separate C-PC and APC.

Keywords: hydroxyapatite, magnetic, C-phycocyanin, allophycocyanin

Procedia PDF Downloads 155
1053 3D Printing of Dual Tablets: Modified Multiple Release Profiles for Personalized Medicine

Authors: Veronika Lesáková, Silvia Slezáková, František Štěpánek

Abstract:

Additive manufacturing technologies producing drug dosage forms aimed at personalized medicine applications are promising strategies with several advantages over the conventional production methods. One of the emerging technologies is 3D printing which reduces manufacturing steps and thus allows a significant drop in expenses. A decrease in material consumption is also a highly impactful benefit as the tested drugs are frequently expensive substances. In addition, 3D printed dosage forms enable increased patient compliance and prevent misdosing as the dosage forms are carefully designed according to the patient’s needs. The incorporation of multiple drugs into a single dosage form further increases the degree of personalization. Our research focuses on the development of 3D printed tablets incorporating multiple drugs (candesartan, losartan) and thermoplastic polymers (e.g., KlucelTM HPC EF). The filaments, an essential feed material for 3D printing,wereproduced via hot-melt extrusion. Subsequently, the extruded filaments of various formulations were 3D printed into tablets using an FDM 3D printer. Then, we have assessed the influence of the internal structure of 3D printed tablets and formulation on dissolution behaviour by obtaining the dissolution profiles of drugs present in the 3D printed tablets. In conclusion, we have developed tablets containing multiple drugs providing modified release profiles. The 3D printing experiments demonstrate the high tunability of 3D printing as each tablet compartment is constructed with a different formulation. Overall, the results suggest that the 3D printing technology is a promising manufacturing approach to dual tablet preparation for personalized medicine.

Keywords: 3D printing, drug delivery, hot-melt extrusion, dissolution kinetics

Procedia PDF Downloads 170
1052 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki

Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas

Abstract:

The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.

Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5

Procedia PDF Downloads 80
1051 Factors Affecting Special Core Analysis Resistivity Parameters

Authors: Hassan Sbiga

Abstract:

Laboratory measurements methods were undertaken on core samples selected from three different fields (A, B, and C) from the Nubian Sandstone Formation of the central graben reservoirs in Libya. These measurements were conducted in order to determine the factors which affect resistivity parameters, and to investigate the effect of rock heterogeneity and wettability on these parameters. This included determining the saturation exponent (n) in the laboratory at two stages. The first stage was before wettability measurements were conducted on the samples, and the second stage was after the wettability measurements in order to find any effect on the saturation exponent. Another objective of this work was to quantify experimentally pores and porosity types (macro- and micro-porosity), which have an affect on the electrical properties, by integrating capillary pressure curves with other routine and special core analysis. These experiments were made for the first time to obtain a relation between pore size distribution and saturation exponent n. Changes were observed in the formation resistivity factor and cementation exponent due to ambient conditions and changes of overburden pressure. The cementation exponent also decreased from GHE-5 to GHE-8. Changes were also observed in the saturation exponent (n) and water saturation (Sw) before and after wettability measurement. Samples with an oil-wet tendency have higher irreducible brine saturation and higher Archie saturation exponent values than samples with an uniform water-wet surface. The experimental results indicate that there is a good relation between resistivity and pore type depending on the pore size. When oil begins to penetrate micro-pore systems in measurements of resistivity index versus brine saturation (after wettability measurement), a significant change in slope of the resistivity index relationship occurs.

Keywords: part of thesis, cementation, wettability, resistivity

Procedia PDF Downloads 248
1050 Student's Difficulties with Classes That Involve Laboratory Education Approach

Authors: Kayondoamunmose Kamafrika

Abstract:

Experimental based Engineering education approach plays a vital role in the development of student’s deep understanding of both social and physical sciences. Experimental based education approach through laboratory class activities prepare students to meet national demand for high-tech skilled individuals in the government and private sector. However, students across the country are faced with difficulties in classes that involve laboratory activities: poor experimental based exposure in their early development of student’s education-life-cycle, lack of student engagement in scientific method practical thinking approach, lack of communication between students and the instructor during class, a large number of students in one classroom, lack of instruments and improper equipment calibration. The purpose of this paper is to help students develop their own scientific knowledge and understanding, develop their methodologies in the design of experiments, collect and analyze data, write laboratory reports, present and explain their findings. Experimental based laboratory activities allow students to learn with high-level understanding as well as engage in the design processes of constructing knowledge through practical means of doing science. Experimental based education systems approach will act as a catalyst in the development of practical-based-educational methodologies in social and physical science and engineering domain of learning; thereby, converting laboratory classes into pilot industries and students into professional experts in finding a solution for complex problems, research, and development of super high- tech systems.

Keywords: experimental, engineering, innovation, practicability

Procedia PDF Downloads 193
1049 StockTwits Sentiment Analysis on Stock Price Prediction

Authors: Min Chen, Rubi Gupta

Abstract:

Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.

Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing

Procedia PDF Downloads 157
1048 Non-Uniform Filter Banks-based Minimum Distance to Riemannian Mean Classifition in Motor Imagery Brain-Computer Interface

Authors: Ping Tan, Xiaomeng Su, Yi Shen

Abstract:

The motion intention in the motor imagery braincomputer interface is identified by classifying the event-related desynchronization (ERD) and event-related synchronization ERS characteristics of sensorimotor rhythm (SMR) in EEG signals. When the subject imagines different limbs or different parts moving, the rhythm components and bandwidth will change, which varies from person to person. How to find the effective sensorimotor frequency band of subjects is directly related to the classification accuracy of brain-computer interface. To solve this problem, this paper proposes a Minimum Distance to Riemannian Mean Classification method based on Non-Uniform Filter Banks. During the training phase, the EEG signals are decomposed into multiple different bandwidt signals by using multiple band-pass filters firstly; Then the spatial covariance characteristics of each frequency band signal are computered to be as the feature vectors. these feature vectors will be classified by the MDRM (Minimum Distance to Riemannian Mean) method, and cross validation is employed to obtain the effective sensorimotor frequency bands. During the test phase, the test signals are filtered by the bandpass filter of the effective sensorimotor frequency bands, and the extracted spatial covariance feature vectors will be classified by using the MDRM. Experiments on the BCI competition IV 2a dataset show that the proposed method is superior to other classification methods.

Keywords: non-uniform filter banks, motor imagery, brain-computer interface, minimum distance to Riemannian mean

Procedia PDF Downloads 127
1047 Surface Induced Alteration of Nanosized Amorphous Alumina

Authors: A. Katsman, L. Bloch, Y. Etinger, Y. Kauffmann, B. Pokroy

Abstract:

Various nanosized amorphous alumina thin films in the range of (2.4 - 63.1) nm were deposited onto amorphous carbon and amorphous Si3N4 membrane grids. Transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS) and differential scanning calorimetry (DSC) techniques were used to probe the size effect on the short range order and the amorphous to crystalline phase transition temperature. It was found that the short-range order changes as a function of size: the fraction of tetrahedral Al sites is greater in thinner amorphous films. This result correlates with the change of amorphous alumina density with the film thickness demonstrated by the reflectivity experiments: the thinner amorphous films have the less density. These effects are discussed in terms of surface reconstruction of the amorphous alumina films. The average atomic binding energy in the thin film layer decreases with decease of the thickness, while the average O-Al interatomic distance increases. The reconstruction of amorphous alumina is induced by the surface reconstruction, and the short range order changes being dependent on the density. Decrease of the surface energy during reconstruction is the driving force of the alumina reconstruction (density change) followed by relaxation process (short range order change). The amorphous to crystalline phase transition temperature measured by DSC rises with the decrease in thickness from 997.6°C for 13.9 nm to 1020.4 °C for 2.7 nm thick. This effect was attributed to the different film densities: formation of nanovoids preceding and accompanying crystallization process influences the crystallization rate, and by these means, the temperature of crystallization peak.

Keywords: amorphous alumina, density, short range order, size effect

Procedia PDF Downloads 468
1046 Biochar - A Multi-Beneficial and Cost-Effective Amendment to Clay Soil for Stormwater Runoff Treatment

Authors: Mohammad Khalid, Mariya Munir, Jacelyn Rice Boyaue

Abstract:

Highways are considered a major source of pollution to storm-water, and its runoff can introduce various contaminants, including nutrients, Indicator bacteria, heavy metals, chloride, and phosphorus compounds, which can have negative impacts on receiving waters. This study assessed the ability of biochar for contaminants removal and to improve the water holding capacity of soil biochar mixture. For this, ten commercially available biochar has been strategically selected. Lab scale batch testing was done at 3% and 6% by the weight of the soil to find the preliminary estimate of contaminants removal along with hydraulic conductivity and water retention capacity. Furthermore, from the above-conducted studies, six best performing candidate and an application rate of 6% has been selected for the column studies. Soil biochar mixture was filled in 7.62 cm assembled columns up to a fixed height of 76.2 cm based on hydraulic conductivity. A total of eight column experiments have been conducted for nutrient, heavy metal, and indicator bacteria analysis over a period of one year, which includes a drying as well as a deicing period. The saturated hydraulic conductivity was greatly improved, which is attributed to the high porosity of the biochar soil mixture. Initial data from the column testing shows that biochar may have the ability to significantly remove nutrients, indicator bacteria, and heavy metals. The overall study demonstrates that biochar could be efficiently applied with clay soil to improve the soil's hydraulic characteristics as well as remove the pollutants from the stormwater runoff.

Keywords: biochar, nutrients, indicator bacteria, storm-water treatment, sustainability

Procedia PDF Downloads 123