Search results for: fracture classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2778

Search results for: fracture classification

588 Analysis of the Unmanned Aerial Vehicles’ Incidents and Accidents: The Role of Human Factors

Authors: Jacob J. Shila, Xiaoyu O. Wu

Abstract:

As the applications of unmanned aerial vehicles (UAV) continue to increase across the world, it is critical to understand the factors that contribute to incidents and accidents associated with these systems. Given the variety of daily applications that could utilize the operations of the UAV (e.g., medical, security operations, construction activities, landscape activities), the main discussion has been how to safely incorporate the UAV into the national airspace system. The types of UAV incidents being reported range from near sightings by other pilots to actual collisions with aircraft or UAV. These incidents have the potential to impact the rest of aviation operations in a variety of ways, including human lives, liability costs, and delay costs. One of the largest causes of these incidents cited is the human factor; other causes cited include maintenance, aircraft, and others. This work investigates the key human factors associated with UAV incidents. To that end, the data related to UAV incidents that have occurred in the United States is both reviewed and analyzed to identify key human factors related to UAV incidents. The data utilized in this work is gathered from the Federal Aviation Administration (FAA) drone database. This study adopts the human factor analysis and classification system (HFACS) to identify key human factors that have contributed to some of the UAV failures to date. The uniqueness of this work is the incorporation of UAV incident data from a variety of applications and not just military data. In addition, identifying the specific human factors is crucial towards developing safety operational models and human factor guidelines for the UAV. The findings of these common human factors are also compared to similar studies in other countries to determine whether these factors are common internationally.

Keywords: human factors, incidents and accidents, safety, UAS, UAV

Procedia PDF Downloads 245
587 Image Recognition Performance Benchmarking for Edge Computing Using Small Visual Processing Unit

Authors: Kasidis Chomrat, Nopasit Chakpitak, Anukul Tamprasirt, Annop Thananchana

Abstract:

Internet of Things devices or IoT and Edge Computing has become one of the biggest things happening in innovations and one of the most discussed of the potential to improve and disrupt traditional business and industry alike. With rises of new hang cliff challenges like COVID-19 pandemic that posed a danger to workforce and business process of the system. Along with drastically changing landscape in business that left ruined aftermath of global COVID-19 pandemic, looming with the threat of global energy crisis, global warming, more heating global politic that posed a threat to become new Cold War. How emerging technology like edge computing and usage of specialized design visual processing units will be great opportunities for business. The literature reviewed on how the internet of things and disruptive wave will affect business, which explains is how all these new events is an effect on the current business and how would the business need to be adapting to change in the market and world, and example test benchmarking for consumer marketed of newer devices like the internet of things devices equipped with new edge computing devices will be increase efficiency and reducing posing a risk from a current and looming crisis. Throughout the whole paper, we will explain the technologies that lead the present technologies and the current situation why these technologies will be innovations that change the traditional practice through brief introductions to the technologies such as cloud computing, edge computing, Internet of Things and how it will be leading into future.

Keywords: internet of things, edge computing, machine learning, pattern recognition, image classification

Procedia PDF Downloads 156
586 Geosynthetic Reinforced Unpaved Road: Literature Study and Design Example

Authors: D. Jayalakshmi, S. S. Bhosale

Abstract:

This paper, in its first part, presents the state-of-the-art literature of design approaches for geosynthetic reinforced unpaved roads. The literature starting since 1970 and the critical appraisal of flexible pavement design by Giroud and Han (2004) and Jonathan Fannin (2006) is presented. The design example is illustrated for Indian conditions. The example emphasizes the results computed by Giroud and Han's (2004) design method with the Indian road congress guidelines by IRC SP 72 -2015. The input data considered are related to the subgrade soil condition of Maharashtra State in India. The unified soil classification of the subgrade soil is inorganic clay with high plasticity (CH), which is expansive with a California bearing ratio (CBR) of 2% to 3%. The example exhibits the unreinforced case and geotextile as reinforcement by varying the rut depth from 25 mm to 100 mm. The present result reveals the base thickness for the unreinforced case from the IRC design catalogs is in good agreement with Giroud and Han (2004) approach for a range of 75 mm to 100 mm rut depth. Since Giroud and Han (2004) method is applicable for both reinforced and unreinforced cases, for the same data with appropriate Nc factor, for the same rut depth, the base thickness for the reinforced case has arrived for the Indian condition. From this trial, for the CBR of 2%, the base thickness reduction due to geotextile inclusion is 35%. For the CBR range of 2% to 5% with different stiffness in geosynthetics, the reduction in base course thickness will be evaluated, and the validation will be executed by the full-scale accelerated pavement testing set up at the College of Engineering Pune (COE), India.

Keywords: base thickness, design approach, equation, full scale accelerated pavement set up, Indian condition

Procedia PDF Downloads 196
585 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix

Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung

Abstract:

Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.

Keywords: medical technology, artificial intelligence, radiology, lung cancer

Procedia PDF Downloads 72
584 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 86
583 Systematic Literature Review and Bibliometric Analysis of Interorganizational Employee Mobility Determinants

Authors: Iva Zdrilić, Petra Došenović Bonča, Darija Aleksić

Abstract:

Since the boundaryless career, with its emphasis on cross-employer movements, was introduced as a new paradigm of career development, inter-organizational employee mobility has been increasing. Although this phenomenon may have positive implications for individual careers and destination organizations, the consequences for the source organizations losing workers are less clear. The aim of this paper is thus to develop a comprehensive typology of possible inter-organizational employee mobility determinants. Since the most common classification differentiates between mobility determinants at different levels (i.e., economic, organizational, and individual), this paper focuses on building a comprehensive multi-level typology of inter-organizational mobility determinants across diverse sectors and industries. By using a structured literature review approach and bibliometric analysis, the paper reveals both intricate relationships between different mobility determinants and the complexity of inter-organizational networks and social ties. The latter appears as both a mobility determinant (at the organizational and individual level) and a mobility effect. Indeed, inter-organizational employee mobility leads to the formation of networks between source and destination organizations. These networks are practically based on the social ties between mobile employees and their colleagues and, in this way, they close the "inter-organizational employee mobility - inter-organizational network/ties" circle. The paper contributes to the career development literature by uncovering hitherto underexplored diverse determinants of intra- and inter-sectoral mobility as well as the conflicting results of the existing studies on some factors (e.g., inter-organizational networks and/or social ties) that appear both as a mobility determinant and a mobility effect.

Keywords: inter-organizational mobility, social ties, inter-organizational network, knowledge transfer

Procedia PDF Downloads 117
582 An Image Processing Scheme for Skin Fungal Disease Identification

Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya

Abstract:

Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.

Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification

Procedia PDF Downloads 233
581 Investigating the Characteristics of Correlated Parking-Charging Behaviors for Electric Vehicles: A Data-Driven Approach

Authors: Xizhen Zhou, Yanjie Ji

Abstract:

In advancing the management of integrated electric vehicle (EV) parking-charging behaviors, this study uses Changshu City in Suzhou as a case study to establish a data association mechanism for parking-charging platforms and to develop a database for EV parking-charging behaviors. Key indicators, such as charging start time, initial state of charge, final state of charge, and parking-charging time difference, are considered. Utilizing the K-S test method, the paper examines the heterogeneity of parking-charging behavior preferences among pure EV and non-pure EV users. The K-means clustering method is employed to analyze the characteristics of parking-charging behaviors for both user groups, thereby enhancing the overall understanding of these behaviors. The findings of this study reveal that using a classification model, the parking-charging behaviors of pure EVs can be classified into five distinct groups, while those of non-pure EVs can be separated into four groups. Among them, both types of EV users exhibit groups with low range anxiety for complete charging with special journeys, complete charging at destination, and partial charging. Additionally, both types have a group with high range anxiety, characterized by pure EV users displaying a preference for complete charging with specific journeys, while non-pure EV users exhibit a preference for complete charging. Notably, pure EV users also display a significant group engaging in nocturnal complete charging. The findings of this study can provide technical support for the scientific and rational layout and management of integrated parking and charging facilities for EVs.

Keywords: traffic engineering, potential preferences, cluster analysis, EV, parking-charging behavior

Procedia PDF Downloads 80
580 Learning Dynamic Representations of Nodes in Temporally Variant Graphs

Authors: Sandra Mitrovic, Gaurav Singh

Abstract:

In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.

Keywords: churn prediction, dynamic networks, node2vec, auto-encoders

Procedia PDF Downloads 316
579 C-Spine Imaging in a Non-trauma Centre: Compliance with NEXUS Criteria Audit

Authors: Andrew White, Abigail Lowe, Kory Watkins, Hamed Akhlaghi, Nicole Winter

Abstract:

The timing and appropriateness of diagnostic imaging are critical to the evaluation and management of traumatic injuries. Within the subclass of trauma patients, the prevalence of c-spine injury is less than 4%. However, the incidence of delayed diagnosis within this cohort has been documented as up to 20%, with inadequate radiological examination most cited issue. In order to assess those in which c-spine injury cannot be fully excluded based on clinical examination alone and, therefore, should undergo diagnostic imaging, a set of criteria is used to provide clinical guidance. The NEXUS (National Emergency X-Radiography Utilisation Study) criteria is a validated clinical decision-making tool used to facilitate selective c-spine radiography. The criteria allow clinicians to determine whether cervical spine imaging can be safely avoided in appropriate patients. The NEXUS criteria are widely used within the Emergency Department setting given their ease of use and relatively straightforward application and are used in the Victorian State Trauma System’s guidelines. This audit utilized retrospective data collection to examine the concordance of c-spine imaging in trauma patients to that of the NEXUS criteria and assess compliance with state guidance on diagnostic imaging in trauma. Of the 183 patients that presented with trauma to the head, neck, or face (244 excluded due to incorrect triage), 98 did not undergo imaging of the c-spine. Out of those 98, 44% fulfilled at least one of the NEXUS criteria, meaning the c-spine could not be clinically cleared as per the current guidelines. The criterion most met was intoxication, comprising 42% (18 of 43), with midline spinal tenderness (or absence of documentation of this) the second most common with 23% (10 of 43). Intoxication being the most met criteria is significant but not unexpected given the cohort of patients seen at St Vincent’s and within many emergency departments in general. Given these patients will always meet NEXUS criteria, an element of clinical judgment is likely needed, or concurrent use of the Canadian C-Spine Rules to exclude the need for imaging. Midline tenderness as a met criterion was often in the context of poor or absent documentation relating to this, emphasizing the importance of clear and accurate assessments. The distracting injury was identified in 7 out of the 43 patients; however, only one of these patients exhibited a thoracic injury (T11 compression fracture), with the remainder comprising injuries to the extremities – some studies suggest that C-spine imaging may not be required in the evaluable blunt trauma patient despite distracting injuries in any body regions that do not involve the upper chest. This emphasises the need for standardised definitions for distracting injury, at least at a departmental/regional level. The data highlights the currently poor application of the NEXUS guidelines, with likely common themes throughout emergency departments, highlighting the need for further education regarding implementation and potential refinement/clarification of criteria. Of note, there appeared to be no significant differences between levels of experience with respect to inappropriately clearing the c-spine clinically with respect to the guidelines.

Keywords: imaging, guidelines, emergency medicine, audit

Procedia PDF Downloads 72
578 Radio-Frequency Technologies for Sensing and Imaging

Authors: Cam Nguyen

Abstract:

Rapid, accurate, and safe sensing and imaging of physical quantities or structures finds many applications and is of significant interest to society. Sensing and imaging using radio-frequency (RF) techniques, particularly, has gone through significant development and subsequently established itself as a unique territory in the sensing world. RF sensing and imaging has played a critical role in providing us many sensing and imaging abilities beyond our human capabilities, benefiting both civilian and military applications - for example, from sensing abnormal conditions underneath some structures’ surfaces to detection and classification of concealed items, hidden activities, and buried objects. We present the developments of several sensing and imaging systems implementing RF technologies like ultra-wide band (UWB), synthetic-pulse, and interferometry. These systems are fabricated completely using RF integrated circuits. The UWB impulse system operates over multiple pulse durations from 450 to 1170 ps with 5.5-GHz RF bandwidth. It performs well through tests of various samples, demonstrating its usefulness for subsurface sensing. The synthetic-pulse system operating from 0.6 to 5.6 GHz can assess accurately subsurface structures. The synthetic-pulse system operating from 29.72-37.7 GHz demonstrates abilities for various surface and near-surface sensing such as profile mapping, liquid-level monitoring, and anti-personnel mine locating. The interferometric system operating at 35.6 GHz demonstrates its multi-functional capability for measurement of displacements and slow velocities. These RF sensors are attractive and useful for various surface and subsurface sensing applications. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: RF sensors, radars, surface sensing, subsurface sensing

Procedia PDF Downloads 316
577 Code Embedding for Software Vulnerability Discovery Based on Semantic Information

Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson

Abstract:

Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.

Keywords: code representation, deep learning, source code semantics, vulnerability discovery

Procedia PDF Downloads 161
576 Retrospective Analysis of Facial Skin Cancer Patients Treated in the Department of Oral and Maxillofacial Surgery Kiel

Authors: Abdullah Saeidi, Aydin Gülses, Christan Flörke

Abstract:

Skin cancer of the face region is the most common type of malignancy and surgical excision is the preferred approach. However, the clinical long term results reported in the literature are still controversial. Objectives: To describe; 1. Demographical characteristics 2. Affected site, distribution and TNM classification regarding tumor type 3. Surgical aspects • Surgical removal: excision principles, safety margins, the need for secondary resection, primary reconstruction/ defect closure, anesthesia protocol, duration of hospital stay (if any) • Secondary intervention for defect closure/reconstruction: Flap technique, anesthesia protocol, duration of hospital stay (if any), postoperative wound management etc. 4. Tumor recurrences 5. Clinical outcomes 6. Studying the possible therapy approach throw Biostatistical relation and correlation between multiple Histological, diagnostics and clinical Faktors. following surgical ablation of the skin cancer of the head and neck region. Methods: Selection and statistical analysis of medical records of patients who had admitted to the Department of Oral and Maxillofacial Surgery, Universitätsklinikum Schleswig Holstein, Campus Kiel during the period of 2015-2019 will be retrospectively evaluated. Data will be collected via ORBIS Information-Management-System (ORBIS AG, Saarbrücken, Germany).

Keywords: non melanoma skin cancer, face skin cancer, skin reconstruction, non melanoma skin cancer recurrence, non melanoma skin cancer metastases

Procedia PDF Downloads 106
575 Convolution Neural Network Based on Hypnogram of Sleep Stages to Predict Dosages and Types of Hypnotic Drugs for Insomnia

Authors: Chi Wu, Dean Wu, Wen-Te Liu, Cheng-Yu Tsai, Shin-Mei Hsu, Yin-Tzu Lin, Ru-Yin Yang

Abstract:

Background: The results of previous studies compared the benefits and risks of receiving insomnia medication. However, the effects between hypnotic drugs used and enhancement of sleep quality were still unclear. Objective: The aim of this study is to establish a prediction model for hypnotic drugs' dosage used for insomnia subjects and associated the relationship between sleep stage ratio change and drug types. Methodologies: According to American Academy of Sleep Medicine (AASM) guideline, sleep stages were classified and transformed to hypnogram via the polysomnography (PSG) in a hospital in New Taipei City (Taiwan). The subjects with diagnosis for insomnia without receiving hypnotic drugs treatment were be set as the comparison group. Conversely, hypnotic drugs dosage within the past three months was obtained from the clinical registration for each subject. Furthermore, the collecting subjects were divided into two groups for training and testing. After training convolution neuron network (CNN) to predict types of hypnotics used and dosages are taken, the test group was used to evaluate the accuracy of classification. Results: We recruited 76 subjects in this study, who had been done PSG for transforming hypnogram from their sleep stages. The accuracy of dosages obtained from confusion matrix on the test group by CNN is 81.94%, and accuracy of hypnotic drug types used is 74.22%. Moreover, the subjects with high ratio of wake stage were correctly classified as requiring medical treatment. Conclusion: CNN with hypnogram was potentially used for adjusting the dosage of hypnotic drugs and providing subjects to pre-screening the types of hypnotic drugs taken.

Keywords: convolution neuron network, hypnotic drugs, insomnia, polysomnography

Procedia PDF Downloads 195
574 Cone Beam Computed Tomography: A Useful Diagnostic Tool to Determine Root Canal Morphology in a Sample of Egyptian Population

Authors: H. El-Messiry, M. El-Zainy, D. Abdelkhalek

Abstract:

Cone-beam computed tomography (CBCT) provides high-quality 3-dimensional images of dental structures because of its high spatial resolution. The study of dental morphology is important in research as it provides information about diversities within a population. Many studies have shown different shapes and numbers of roots canals among different races, especially in molars. The aim of this study was to determine the morphology of root canals of mandibular first and third molars in a sample of Egyptian population using CBCT scanning. Fifty mandibular first Molars (M1) and fifty mandibular third (M3) extracted molars were collected. Thick rectangular molds were made using pink wax to hold the samples. Molars were embedded in the wax mold by aligning them in rows leaving arbitrary 0.5cm space between them. The molds with the samples in were submitted for CBCT scan. The number and morphology of root canals were assessed and classified according to Vertucci's classification. The mesial and the distal roots were examined separately. Finally, data was analyzed using Fisher exact test. The most prevalent mesial root canal frequency in M1 was type IV (60%) and type II (40 %), while M3 showed prevalence of type I (40%) and II (40%). Distal root canal morphology showed prevalence of type I in both M1 (66%) and M3 (86%). So, it can be concluded that CBCT scanning provides supplemental information about the root canal configurations of mandibular molars in a sample of Egyptian population. This study may help clinicians in the root canal treatment of mandibular molars.

Keywords: cone beam computed tomography, mandibular first molar, mandibular third molar, root canal morphology

Procedia PDF Downloads 318
573 Retinal Changes in Patients with Idiopathic Inflammatory Myopathies: A Case-Control Study

Authors: Rachna Agarwal, R. Naveen, Darpan Thakre, Rohit Shahi, Maryam Abbasi, Upendra Rathore, Latika Gupta

Abstract:

Aim: Retinal changes are the window to systemic vasculature. Therefore, we explored retinal changes in patients with idiopathic inflammatory myopathies (IIM) as a surrogate for vascular health. Methods: Adult and juvenile IIM patients visiting a tertiary care centre in 2021 satisfying the International Myositis Classification Criteria were enrolled for detailed ophthalmic examination in comparison with healthy controls (HC). Patients with conditions that precluded thorough posterior chamber examination were excluded. Scale variables are expressed as median (IQR). Multivariate analysis (binary logistic regression-BLR) was conducted, adjusting for age, gender, and comorbidities besides factors significant in univariate analysis. Results: 43 patients with IIM [31 females; age 36 (23-45) years; disease duration 5.5 (2-12) months] were enrolled for participation. DM (44%) was the most common diagnosis. IIM patients exhibited frequent attenuation of retinal vessels (32.6% vs. 4.3%, p <0.001), AV nicking (14% vs. 2.2%, p=0.053), and vascular tortuosity (18.6% vs. 2.2%, p=0.012), besides decreased visual acuity (53.5% vs. 10.9%, p<0.001) and immature cataracts (34.9% vs. 2.2%, p<0.001). Attenuation of vessels [OR 10.9 (1.7-71), p=0.004] emerged as significantly different from HC after adjusting for covariates in BLR. Notably, adults with IIM were more predisposed to retinal abnormalities [21 (57%) vs. 1 (16%), p=0.068], especially attenuation of vessels [14(38%) vs. 0(0), p=0.067] than jIIM. However, no difference was found in retinal features amongst the subtypes of adult IIM, nor did they correlate with MDAAT, MDI, or HAQ-DI. Conclusion: Retinal microvasculopathy and diminution of vision occur in nearly one-third to half of the patients with IIM. Microvasculopathy occurs across subtypes of IIM, and more so in adults, calling for further investigation as a surrogate for damage assessment and potentially even systemic vascular health.

Keywords: idiopathic inflammatory myopathies, vascular health, retinal microvasculopathy, arterial attenuation

Procedia PDF Downloads 93
572 Extraction and Analysis of Anthocyanins Contents from Different Stage Flowers of the Orchids Dendrobium Hybrid cv. Ear-Sakul

Authors: Orose Rugchati, Khumthong Mahawongwiriya

Abstract:

Dendrobium hybrid cv. Ear-Sakul has become one of the important commercial commodities in Thailand agricultural industry worldwide, either as potted plants or as cut flowers due to the attractive color produced in flower petals. Anthocyanins are the main flower pigments and responsible for the natural attractive display of petal colors. These pigments play an important role in functionality, such as to attract animal pollinators, classification, and grading of these orchids. Dendrobium hybrid cv. Ear-Sakul has been collected from local area farm in different stage flowers (F1, F2-F5, and F6). Anthocyanins pigment were extracted from the fresh flower by solvent extraction (MeOH–TFA 99.5:0.5v/v at 4ºC) and purification with ethyl acetate. The main anthocyanins components are cyanidin, pelargonidin, and delphinidin. Pure anthocyanin contents were analysis by UV-Visible spectroscopy technique at λ max 535, 520 and 546 nm respectively. The anthocyanins contents were converted in term of monomeric anthocyanins pigment (mg/L). The anthocyanins contents of all sample were compared with standard pigments cyanidin, pelargonidin and delphinidin. From this experiment is a simple extraction and analysis anthocyanins content in different stage of flowers results shown that monomeric anthocyanins pigment contents of different stage flowers (F1, F2-F5 and F6 ): cyanidin – 3 – glucoside (mg/l) are 0.85+0.08, 24.22+0.12 and 62.12+0.6; Pelargonidin 3,5-di- glucoside(mg/l) 10.37+0.12, 31.06+0.8 and 81.58+ 0.5; Delphinidin (mg/l) 6.34+0.17, 18.98+0.56 and 49.87+0.7; and the appearance of extraction pure anthocyanins in L(a, b): 2.71(1.38, -0.48), 1.06(0.39,-0.66) and 2.64(2.71,-3.61) respectively. Dendrobium Hybrid cv. Ear-Sakul could be used as a source of anthocyanins by simple solvent extraction and stage of flowers as a guideline for the prediction amount of main anthocyanins components are cyanidin, pelargonidin, and delphinidin could be application and development in quantities, and qualities with the advantage for food pharmaceutical and cosmetic industries.

Keywords: analysis, anthocyanins contents, different stage flowers, Dendrobium Hybrid cv. Ear-Sakul

Procedia PDF Downloads 151
571 Self-Organizing Maps for Credit Card Fraud Detection

Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 60
570 Taxonomic Analyses of Some Members of Cucurbitoideae Using Phytolith Marker

Authors: J. K. Ebigwai, E. Asuquo

Abstract:

Systematic affinities among Cucurbitaceae members are highly debatable as exemplified by diverging views on their phylogenies. Worst still is the overriding reliance on morphometric marker in the delimitation of cucurbitoideae members. Considerable symplesiomorphic and synapmorphic character states have been observed among some members of same genera than do with some members of other genera. The broad study aims at establishing phylogenies among species of Cucumis (Melothrieae), Momordica, Telfairia (Jolliffieae), Trichosanthes (Trichosantheae), Citrullus, Lagenaria, Luffa (Benincaseae) and Cucurbita (Cucurbita) using anatomical, cytological, Palynological, serological, and phytolith markers. However, this paper shall present preliminary findings on the phytolith character states for Cucumis melo, Momordica charantia, Telfairia occidentales, Trichosanthes dioica, Citrullus vulgaris, Lagenaria siceraria, Luffa cylindrical, Cucurbita pepo and Cucurbita maxima. Heavy liquid floatation method was employed in the extraction of the phytolith matter from the leaf tissues of these species. The result revealed that a bilobate short cell and a trapeziform sinuate form were absent in all the species except in Cucumis melo, Citrullus vulgaris and Lagenaria siceraria. Also a globular granulate form was observed exclusively in Telfairia occidentales, Cucurbita maxima, Momordica charantia and Luffa cylindrical. Other forms of phytolith observed were not diagnostic as they were not species specific. The results tentatively suggests a closer examination of the existing classification system.

Keywords: bilobate short cell, cucums, phytolith, telfairia, trapeziform sinuate

Procedia PDF Downloads 346
569 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods

Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne

Abstract:

The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.

Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.

Procedia PDF Downloads 33
568 Quantification of E-Waste: A Case Study in Federal University of Espírito Santo, Brazil

Authors: Andressa S. T. Gomes, Luiza A. Souza, Luciana H. Yamane, Renato R. Siman

Abstract:

The segregation of waste of electrical and electronic equipment (WEEE) in the generating source, its characterization (quali-quantitative) and identification of origin, besides being integral parts of classification reports, are crucial steps to the success of its integrated management. The aim of this paper was to count WEEE generation at the Federal University of Espírito Santo (UFES), Brazil, as well as to define sources, temporary storage sites, main transportations routes and destinations, the most generated WEEE and its recycling potential. Quantification of WEEE generated at the University in the years between 2010 and 2015 was performed using data analysis provided by UFES’s sector of assets management. EEE and WEEE flow in the campuses information were obtained through questionnaires applied to the University workers. It was recorded 6028 WEEEs units of data processing equipment disposed by the university between 2010 and 2015. Among these waste, the most generated were CRT screens, desktops, keyboards and printers. Furthermore, it was observed that these WEEEs are temporarily stored in inappropriate places at the University campuses. In general, these WEEE units are donated to NGOs of the city, or sold through auctions (2010 and 2013). As for recycling potential, from the primary processing and further sale of printed circuit boards (PCB) from the computers, the amount collected could reach U$ 27,839.23. The results highlight the importance of a WEEE management policy at the University.

Keywords: solid waste, waste of electrical and electronic equipment, waste management, institutional solid waste generation

Procedia PDF Downloads 260
567 Invasion of Pectinatella magnifica in Freshwater Resources of the Czech Republic

Authors: J. Pazourek, K. Šmejkal, P. Kollár, J. Rajchard, J. Šinko, Z. Balounová, E. Vlková, H. Salmonová

Abstract:

Pectinatella magnifica (Leidy, 1851) is an invasive freshwater animal that lives in colonies. A colony of Pectinatella magnifica (a gelatinous blob) can be up to several feet in diameter large and under favorable conditions it exhibits an extreme growth rate. Recently European countries around rivers of Elbe, Oder, Danube, Rhine and Vltava have confirmed invasion of Pectinatella magnifica, including freshwater reservoirs in South Bohemia (Czech Republic). Our project (Czech Science Foundation, GAČR P503/12/0337) is focused onto biology and chemistry of Pectinatella magnifica. We monitor the organism occurrence in selected South Bohemia ponds and sandpits during the last years, collecting information about physical properties of surrounding water, and sampling the colonies for various analyses (classification, maps of secondary metabolites, toxicity tests). Because the gelatinous matrix is during the colony lifetime also a host for algae, bacteria and cyanobacteria (co-habitants), in this contribution, we also applied a high performance liquid chromatography (HPLC) method for determination of potentially present cyanobacterial toxins (microcystin-LR, microcystin-RR, nodularin). Results from the last 3-year monitoring show that these toxins are under limit of detection (LOD), so that they do not represent a danger yet. The final goal of our study is to assess toxicity risks related to fresh water resources invaded by Pectinatella magnifica, and to understand the process of invasion, which can enable to control it.

Keywords: cyanobacteria, fresh water resources, Pectinatella magnifica invasion, toxicity monitoring

Procedia PDF Downloads 239
566 The Technophobia among Older Adults in China

Authors: Erhong Sun, Xuchun Ye

Abstract:

Technophobia, namely the fear or dislike of modern advanced technologies, plays a central role in age-related digital divides and is considered a new risk factor for older adults, which can affect the daily lives of people through low adherence to digital living. Indeed, there is considerable heterogeneity in the group of older adults who feel technophobia. Therefore, the aim of this study was to identify different technophobia typologies of older people and to examine their associations with the subjective age factor. A sample of 704 retired elderly over the age of 55 was recruited in China. Technophobia and subjective age were assessed with a questionnaire, respectively. Latent profile analysis was used to identify technophobia subgroups, using three dimensions including techno-anxiety, techno-paranoia, and privacy concerns as indicators. The association between the identified technophobia subgroups and subjective age was explored. In summary, four different technophobia typologies were identified among older adults in China. Combined with an investigation of personal background characteristics and subjective age, it draws a more nuanced image of the technophobia phenome among older adults in China. First, not all older adults suffer from technophobia, with about half of the elderly subjects belonging to the profiles of “Low-technophobia” and “Medium-technophobia.” Second, privacy concern plays an important role in the classification of technophobia among older adults. Third, subjective age might be a protective factor for technophobia in older adults. Although the causal direction between identified technophobia typologies and subjective age remains uncertain, our suggests that future interventions should better focus on subjective age by breaking the age stereotype of technology to reduce the negative effect of technophobia on older. Future development of this research will involve extensive investigation of the detailed impact of technophobia in senior populations, measurement of the negative outcomes, as well as formulation of innovative educational and clinical pathways.

Keywords: technophobia, older adults, latent profile analysis, subjective age

Procedia PDF Downloads 75
565 Comparison of Mini-BESTest versus Berg Balance Scale to Evaluate Balance Disorders in Parkinson's Disease

Authors: R. Harihara Prakash, Shweta R. Parikh, Sangna S. Sheth

Abstract:

The purpose of this study was to explore the usefulness of the Mini-BESTest compared to the Berg Balance Scale in evaluating balance in people with Parkinson's Disease (PD) of varying severity. Evaluation were done to obtain (1) the distribution of patients scores to look for ceiling effects, (2) concurrent validity with severity of disease, and (3) the sensitivity & specificity of separating people with or without postural response deficits. Methods and Material: Seventy-seven(77) people with Parkinson's Disease were tested for balance deficits using the Berg Balance Scale, Mini-BESTest. Unified Parkinson’s Disease Rating Scale (UPDRS) III and the Hoehn & Yahr (H&Y) disease severity scales were used for classification. Materials used in this study were case record sheet, chair without arm rests or wheels, Incline ramp, stopwatch, a box, 3 meter distance measured out and marked on the floor with tape [from chair]. Statistical analysis used: Multiple Linear regression was carried out of UPDRS jointly on the two scores for the Berg and Mini-BESTest. Receiver operating characteristic curves for classifying people into two groups based on a threshold for the H&Y score, to discriminate between mild PD versus more severe PD.Correlation co-efficient to find relativeness between the two variables. Results: The Mini-BESTest is highly correlated with the Berg (r = 0.732,P < 0.001), but avoids the ceiling compression effect of the Berg for mild PD (skewness −0.714 Berg, −0.512 Mini-BESTest). Consequently, the Mini-BESTest is more effective than the Berg for predicting UPDRS Motor score (P < 0.001 Mini-BESTest versus P = 0.72 Berg), and for discriminating between those with and without postural response deficits as measured by the H&Y (ROC).

Keywords: balance, berg balance scale, MINI BESTest, parkinson's disease

Procedia PDF Downloads 396
564 Analysis of Vibration of Thin-Walled Parts During Milling Made of EN AW-7075 Alloy

Authors: Jakub Czyżycki, Paweł Twardowski

Abstract:

Thin-walled components made of aluminum alloys are increasingly found in many fields of industry, and they dominate the aerospace industry. The machining of thinwalled structures encounters many difficulties related to the high susceptibility of the workpiece, which causes vibrations including the most unfavorable ones called chatter. The effect of these phenomena is the difficulty in obtaining the required geometric dimensions and surface quality. The purpose of this study is to analyze vibrations arising during machining of thin-walled workpieces made of aluminum alloy EN AW-7075. Samples representing actual thin-walled workpieces were examined in a different range of dimensions characterizing thin-walled workpieces. The tests were carried out in HSM high-speed machining (cutting speed vc = 1400 m/min) using a monolithic solid carbide endmill. Measurement of vibration was realized using a singlecomponent piezoelectric accelerometer 4508C from Brüel&Kjær which was mounted directly on the sample before machining, the measurement was made in the normal feed direction AfN. In addition, the natural frequency of the tested thin-walled components was investigated using a laser vibrometer for an broader analysis of the tested samples. The effect of vibrations on machining accuracy was presented in the form of surface images taken with an optical measuring device from Alicona. A classification of the vibrations produced during the test was carried out, and were analyzed in both the time and frequency domains. Observed significant influence of the thickness of the thin-walled component on the course of vibrations during machining.

Keywords: high-speed machining, thin-walled elements, thin-walled components, milling, vibrations

Procedia PDF Downloads 58
563 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 60
562 Monitoring Urban Green Space Cover Change Using GIS and Remote Sensing in Two Rapidly Urbanizing Cities, Debre Berhan and Debre Markos, Ethiopia

Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta

Abstract:

Monitoring the amount of green space in urban areas is important for ensuring sustainable development and proper management. The study analyzed changes in urban green space coverage over the past 20 years in two rapidly urbanizing cities in Ethiopia, Debre Berhan and Debre Markos, using GIS and remote sensing. The researchers used Landsat 5 and 8 data with a spatial resolution of 30 m to determine different land use and land cover classes, including urban green spaces, barren and croplands, built-up areas, and water bodies. The classification accuracy ranged between 90% and 91.4%, with a Kappa Statistic of 0.85 to 0.88. The results showed that both cities experienced significant decreases in vegetation cover in their urban cores between 2000 and 2020, with radical changes observed from green spaces and croplands to built-up areas. In Debre Berhan, barren and croplands decreased by 32.96%, while built-up and green spaces increased by 357.9% and 37.4%, respectively, in 2020. In Debre Markos, built-up areas increased by 224.2%, while green spaces and barren and croplands decreased by 41% and 5.71%, respectively. The spatial structure of cities and planning policies were noticed as the major factors for big green cover change. Thus it has an implication for other rapidly urbanized cities in Africa and Asia. Overall, rapid urbanization threatens green spaces and agricultural areas, highlighting the need for ecological-based spatial planning in rapidly urbanizing cities.

Keywords: green space coverage, GIS and remote sensing, Landsat, LULC, Ethiopia

Procedia PDF Downloads 57
561 Study of Elastic-Plastic Fatigue Crack in Functionally Graded Materials

Authors: Somnath Bhattacharya, Kamal Sharma, Vaibhav Sonkar

Abstract:

Composite materials emerged in the middle of the 20th century as a promising class of engineering materials providing new prospects for modern technology. Recently, a new class of composite materials known as functionally graded materials (FGMs) has drawn considerable attention of the scientific community. In general, FGMs are defined as composite materials in which the composition or microstructure or both are locally varied so that a certain variation of the local material properties is achieved. This gradual change in composition and microstructure of material is suitable to get gradient of properties and performances. FGMs are synthesized in such a way that they possess continuous spatial variations in volume fractions of their constituents to yield a predetermined composition. These variations lead to the formation of a non-homogeneous macrostructure with continuously varying mechanical and / or thermal properties in one or more than one direction. Lightweight functionally graded composites with high strength to weight and stiffness to weight ratios have been used successfully in aircraft industry and other engineering applications like in electronics industry and in thermal barrier coatings. In the present work, elastic-plastic crack growth problems (using Ramberg-Osgood Model) in an FGM plate under cyclic load has been explored by extended finite element method. Both edge and centre crack problems have been solved by taking additionally holes, inclusions and minor cracks under plane stress conditions. Both soft and hard inclusions have been implemented in the problems. The validity of linear elastic fracture mechanics theory is limited to the brittle materials. A rectangular plate of functionally graded material of length 100 mm and height 200 mm with 100% copper-nickel alloy on left side and 100% ceramic (alumina) on right side is considered in the problem. Exponential gradation in property is imparted in x-direction. A uniform traction of 100 MPa is applied to the top edge of the rectangular domain along y direction. In some problems, domain contains major crack along with minor cracks or / and holes or / and inclusions. Major crack is located the centre of the left edge or the centre of the domain. The discontinuities, such as minor cracks, holes, and inclusions are added either singly or in combination with each other. On the basis of this study, it is found that effect of minor crack in the domain’s failure crack length is minimum whereas soft inclusions have moderate effect and the effect of holes have maximum effect. It is observed that the crack growth is more before the failure in each case when hard inclusions are present in place of soft inclusions.

Keywords: elastic-plastic, fatigue crack, functionally graded materials, extended finite element method (XFEM)

Procedia PDF Downloads 390
560 Contribution of Spatial Teledetection to the Geological Mapping of the Imiter Buttonhole: Application to the Mineralized Structures of the Principal Corps B3 (CPB3) of the Imiter Mine (Anti-atlas, Morocco)

Authors: Bouayachi Ali, Alikouss Saida, Baroudi Zouhir, Zerhouni Youssef, Zouhair Mohammed, El Idrissi Assia, Essalhi Mourad

Abstract:

The world-class Imiter silver deposit is located on the northern flank of the Precambrian Imiter buttonhole. This deposit is formed by epithermal veins hosted in the sandstone-pelite formations of the lower complex and in the basic conglomerates of the upper complex, these veins are controlled by a regional scale fault cluster, oriented N70°E to N90°E. The present work on the contribution of remote sensing on the geological mapping of the Imiter buttonhole and application to the mineralized structures of the Principal Corps B3. Mapping on satellite images is a very important tool in mineral prospecting. It allows the localization of the zones of interest in order to orientate the field missions by helping the localization of the major structures which facilitates the interpretation, the programming and the orientation of the mining works. The predictive map also allows for the correction of field mapping work, especially the direction and dimensions of structures such as dykes, corridors or scrapings. The use of a series of processing such as SAM, PCA, MNF and unsupervised and supervised classification on a Landsat 8 satellite image of the study area allowed us to highlight the main facies of the Imite area. To improve the exploration research, we used another processing that allows to realize a spatial distribution of the alteration mineral indices, and the application of several filters on the different bands to have lineament maps.

Keywords: principal corps B3, teledetection, Landsat 8, Imiter II, silver mineralization, lineaments

Procedia PDF Downloads 96
559 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 126