Search results for: Pareto optimization
1155 Optimization of Monascus Orange Pigments Production Using pH-Controlled Fed-Batch Fermentation
Authors: Young Min Kim, Deokyeong Choe, Chul Soo Shin
Abstract:
Monascus pigments, commonly used as a natural colorant in Asia, have many biological activities, such as cholesterol level control, anti-obesity, anti-cancer, and anti-oxidant, that have recently been elucidated. Especially, amino acid derivatives of Monascus pigments are receiving much attention because they have higher biological activities than original Monascus pigments. Previously, there have been two ways to produce amino acid derivatives: one-step production and two-step production. However, the one-step production has low purity, and the two-step production—precursor(orange pigments) fermentation and derivatives synthesis—has low productivity and growth rate during its precursor fermentation step. In this study, it was verified that pH is a key factor that affects the stability of orange pigments and the growth rate of Monascus. With an optimal pH profile obtained by pH-stat fermentation, we designed a process of precursor(orange pigments) fermentation that is a pH-controlled fed-batch fermentation. The final concentration of orange pigments in this process increased to 5.5g/L which is about 30% higher than the concentration produced from the previously used precursor fermentation step.Keywords: cultivation process, fed-batch fermentation, monascus pigments, pH stability
Procedia PDF Downloads 3031154 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks
Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun
Abstract:
Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic
Procedia PDF Downloads 5321153 Improvement of Process Competitiveness Using Intelligent Reference Models
Authors: Julio Macedo
Abstract:
Several methodologies are now available to conceive the improvements of a process so that it becomes competitive as for example total quality, process reengineering, six sigma, define measure analysis improvement control method. These improvements are of different nature and can be external to the process represented by an optimization model or a discrete simulation model. In addition, the process stakeholders are several and have different desired performances for the process. Hence, the methodologies above do not have a tool to aid in the conception of the required improvements. In order to fill this void we suggest the use of intelligent reference models. A reference model is a set of qualitative differential equations and an objective function that minimizes the gap between the current and the desired performance indexes of the process. The reference models are intelligent so when they receive the current state of the problematic process and the desired performance indexes they generate the required improvements for the problematic process. The reference models are fuzzy cognitive maps added with an objective function and trained using the improvements implemented by the high performance firms. Experiments done in a set of students show the reference models allow them to conceive more improvements than students that do not use these models.Keywords: continuous improvement, fuzzy cognitive maps, process competitiveness, qualitative simulation, system dynamics
Procedia PDF Downloads 911152 A QoE-driven Cross-layer Resource Allocation Scheme for High Traffic Service over Open Wireless Network Downlink
Authors: Liya Shan, Qing Liao, Qinyue Hu, Shantao Jiang, Tao Wang
Abstract:
In this paper, a Quality of Experience (QoE)-driven cross-layer resource allocation scheme for high traffic service over Open Wireless Network (OWN) downlink is proposed, and the related problem about the users in the whole cell including the users in overlap region of different cells has been solved.A method, in which assess models of the BestEffort service and the no-reference assess algorithm for video service are adopted, to calculate the Mean Opinion Score (MOS) value for high traffic service has been introduced. The cross-layer architecture considers the parameters in application layer, media access control layer and physical layer jointly. Based on this architecture and the MOS value, the Binary Constrained Particle Swarm Optimization (B_CPSO) algorithm is used to solve the cross-layer resource allocation problem. In addition,simulationresults show that the proposed scheme significantly outperforms other schemes in terms of maximizing average users’ MOS value for the whole system as well as maintaining fairness among users.Keywords: high traffic service, cross-layer resource allocation, QoE, B_CPSO, OWN
Procedia PDF Downloads 5451151 A Genetic Algorithm Approach to Solve a Weaving Job Scheduling Problem, Aiming Tardiness Minimization
Authors: Carolina Silva, João Nuno Oliveira, Rui Sousa, João Paulo Silva
Abstract:
This study uses genetic algorithms to solve a job scheduling problem in a weaving factory. The underline problem regards an NP-Hard problem concerning unrelated parallel machines, with sequence-dependent setup times. This research uses real data regarding a weaving industry located in the North of Portugal, with a capacity of 96 looms and a production, on average, of 440000 meters of fabric per month. Besides, this study includes a high level of complexity once most of the real production constraints are applied, and several real data instances are tested. Topics such as data analyses and algorithm performance are addressed and tested, to offer a solution that can generate reliable and due date results. All the approaches will be tested in the operational environment, and the KPIs monitored, to understand the solution's impact on the production, with a particular focus on the total number of weeks of late deliveries to clients. Thus, the main goal of this research is to develop a solution that allows for the production of automatically optimized production plans, aiming to the tardiness minimizing.Keywords: genetic algorithms, textile industry, job scheduling, optimization
Procedia PDF Downloads 1631150 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types
Authors: Chaghoub Soraya, Zhang Xiaoyan
Abstract:
This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.Keywords: approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median
Procedia PDF Downloads 2071149 Target and Biomarker Identification Platform to Design New Drugs against Aging and Age-Related Diseases
Authors: Peter Fedichev
Abstract:
We studied fundamental aspects of aging to develop a mathematical model of gene regulatory network. We show that aging manifests itself as an inherent instability of gene network leading to exponential accumulation of regulatory errors with age. To validate our approach we studied age-dependent omic data such as transcriptomes, metabolomes etc. of different model organisms and humans. We build a computational platform based on our model to identify the targets and biomarkers of aging to design new drugs against aging and age-related diseases. As biomarkers of aging, we choose the rate of aging and the biological age since they completely determine the state of the organism. Since rate of aging rapidly changes in response to an external stress, this kind of biomarker can be useful as a tool for quantitative efficacy assessment of drugs, their combinations, dose optimization, chronic toxicity estimate, personalized therapies selection, clinical endpoints achievement (within clinical research), and death risk assessments. According to our model, we propose a method for targets identification for further interventions against aging and age-related diseases. Being a biotech company, we offer a complete pipeline to develop an anti-aging drug-candidate.Keywords: aging, longevity, biomarkers, senescence
Procedia PDF Downloads 2811148 The Tariffs of Water Service for Productive Users: A Model for Defining Fare Classes
Authors: M. Macchiaroli, V. Pellecchia, L. Dolores
Abstract:
The water supply for production users (craft, commercial, industrial), understood as the set of water supply and wastewater collection services becomes an increasingly felt problem in a water scarcity regime. In fact, disputes are triggered between the different social parties for the fair and efficient use of water resources. Within this aspect, the problem arises of the different pricing of services between civil users and production users. Of particular interest is the question of defining the tariff classes depending on consumption levels. If for civil users, this theme is strongly permeated by social profiles (a topic dealt with by the author in a forthcoming research contribution) connected with the inalienability of the right to have water and with the reconciliation of the needs of the weakest groups of the population, for consumers in the production sector the logic adopted by the manager may be inspired by criteria of greater corporate rationality. This work illustrates the Italian regulatory framework and shows an optimization model of tariff classes in the production sector that reconciles the public objective of sustainable use of the resource and the needs of a production system in search of recovery after the depressing effects caused by COVID-19 pandemic.Keywords: decision making, economic evaluation, urban water management, water tariff
Procedia PDF Downloads 1191147 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling
Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie
Abstract:
Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling
Procedia PDF Downloads 981146 Models, Resources and Activities of Project Scheduling Problems
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, José J. Hernández-Flores, Edith Olaco Garcia
Abstract:
The Project Scheduling Problem (PSP) is a generic name given to a whole class of problems in which the best form, time, resources and costs for project scheduling are necessary. The PSP is an application area related to the project management. This paper aims at being a guide to understand PSP by presenting a survey of the general parameters of PSP: the Resources (those elements that realize the activities of a project), and the Activities (set of operations or own tasks of a person or organization); the mathematical models of the main variants of PSP and the algorithms used to solve the variants of the PSP. The project scheduling is an important task in project management. This paper contains mathematical models, resources, activities, and algorithms of project scheduling problems. The project scheduling problem has attracted researchers of the automotive industry, steel manufacturer, medical research, pharmaceutical research, telecommunication, industry, aviation industry, development of the software, manufacturing management, innovation and technology management, construction industry, government project management, financial services, machine scheduling, transportation management, and others. The project managers need to finish a project with the minimum cost and the maximum quality.Keywords: PSP, Combinatorial Optimization Problems, Project Management; Manufacturing Management, Technology Management.
Procedia PDF Downloads 4221145 Robust ResNets for Chemically Reacting Flows
Authors: Randy Price, Harbir Antil, Rainald Löhner, Fumiya Togashi
Abstract:
Chemically reacting flows are common in engineering applications such as hypersonic flow, combustion, explosions, manufacturing process, and environmental assessments. The number of reactions in combustion simulations can exceed 100, making a large number of flow and combustion problems beyond the capabilities of current supercomputers. Motivated by this, deep neural networks (DNNs) will be introduced with the goal of eventually replacing the existing chemistry software packages with DNNs. The DNNs used in this paper are motivated by the Residual Neural Network (ResNet) architecture. In the continuum limit, ResNets become an optimization problem constrained by an ODE. Such a feature allows the use of ODE control techniques to enhance the DNNs. In this work, DNNs are constructed, which update the species un at the nᵗʰ timestep to uⁿ⁺¹ at the n+1ᵗʰ timestep. Parallel DNNs are trained for each species, taking in uⁿ as input and outputting one component of uⁿ⁺¹. These DNNs are applied to multiple species and reactions common in chemically reacting flows such as H₂-O₂ reactions. Experimental results show that the DNNs are able to accurately replicate the dynamics in various situations and in the presence of errors.Keywords: chemical reacting flows, computational fluid dynamics, ODEs, residual neural networks, ResNets
Procedia PDF Downloads 1251144 Non-Invasive Imaging of Tissue Using Near Infrared Radiations
Authors: Ashwani Kumar Aggarwal
Abstract:
NIR Light is non-ionizing and can pass easily through living tissues such as breast without any harmful effects. Therefore, use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. This blurred reconstructed image has been enhanced using a digital filter which is optimal in mean square sense.Keywords: least-squares optimization, filtering, tomography, laser interaction, light scattering
Procedia PDF Downloads 3191143 Dynamic Simulation for Surface Wear Prognosis of the Main Bearings in the Internal Combustion Engine
Authors: Yanyan Zhang, Ziyu Diao, Zhentao Liu, Ruidong Yan
Abstract:
The wear character of the main bearing is one of the critical indicators for the overhaul of an internal combustion engine, and the aim of this paper is to reveal the dynamic wear mechanism of the main bearings. A numerical simulation model combined multi-body dynamic equations of the engine, the average Reynolds equations of the bearing lubricant, asperity contact and wear model of the joint surfaces were established under typical operating conditions. The wear results were verified by experimental data, and then the influence of operating conditions, bearing clearance and cylinder pressure on the wear character of selected main bearings were analyzed. The results show that the contribution degree of different working conditions on the wear profile and depth of each bearing is obviously different, and the increase of joint clearance or cylinder pressure will accelerate the wear. The numerical model presented can be used to wear prognosis for joints and provide guidance for optimization design of sliding bearings.Keywords: dynamic simulation, multi-body dynamics, sliding bearing, surface wear
Procedia PDF Downloads 1541142 Molecular Electrostatic Potential in Z-3N(2-Ethoxyphenyl), 2-N'(2-Ethoxyphenyl) Imino Thiazolidin-4-one Molecule by Ab Initio and DFT Methods
Authors: Manel Boulakoud, Abdelkader Chouaih, Fodil Hamzaoui
Abstract:
In the present work we are interested in the determination of the Molecular electrostatic potential (MEP) in Z-3N(2-Ethoxyphenyl), 2-N’(2-Ethoxyphenyl) imino thiazolidin-4-one molecule by ab initio and Density Functional Theory (DFT) in the ground state. The MEP is related to the electronic density and is a very useful descriptor in understanding sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions. First, geometry optimization was carried out using Hartree–Fock (HF) and DFT methods with 6-311G(d,p) basis set. In order to get more information on the molecule, its stability has been analyzed by natural bond orbital (NBO) analysis. Mulliken population analyses have been calculated. Finally, the molecular electrostatic potential (MEP) and HOMO-LUMO energy levels have been performed. The calculated HOMO and LUMO energies show also the charge transfer within the molecule. The energy gap obtained is about 4 eV which explain the stability of the studied compound. The obtained molecular electrostatic potential from the two methods confirms the nature of the electron charge transfer at the molecular shell and locate the electropositive part and the electronegative part in molecular scale of the title compound.Keywords: DFT, ab initio, HOMO-LUMO, organic compounds
Procedia PDF Downloads 5411141 Optimization of SWL Algorithms Using Alternative Adder Module in FPGA
Authors: Tayab D. Memon, Shahji Farooque, Marvi Deshi, Imtiaz Hussain Kalwar, B. S. Chowdhry
Abstract:
Recently single-bit ternary FIR-like filter (SBTFF) hardware synthesize in FPGA is reported and compared with multi-bit FIR filter on similar spectral characteristics. Results shows that SBTFF dominates upon multi-bit filter overall. In this paper, an optimized adder module for ternary quantized sigma-delta modulated signal is presented. The adder is simulated using ModelSim for functional verification the area-performance of the proposed adder were obtained through synthesis in Xilinx and compared to conventional adder trees. The synthesis results show that the proposed adder tree achieves higher clock rates and lower chip area at higher inputs to the adder block; whereas conventional adder tree achieves better performance and lower chip area at lower number of inputs to the same adder block. These results enhance the usefulness of existing short word length DSP algorithms for fast and efficient mobile communication.Keywords: short word length (SWL), DSP algorithms, FPGA, SBTFF, VHDL
Procedia PDF Downloads 3491140 Ab Initio Studies on Strain-Dependant Thermal Transport Properties of Graphene
Authors: Archishman Gupta, Ankit Arora
Abstract:
In this work, we present a comprehensive investigation of graphene’s thermal conductivity (κ) using first-principles density functional perturbation theory calculations, with a focus on the phonon and lattice vibrational properties underlying its superior heat transport capabilities. The study highlights the role of phonon frequencies, lifetimes, and mode-resolved contributions in determining graphene’s thermal performance, emphasizing its high phonon group velocities and long mean free paths that contribute to thermal conductivity exceeding 3000 W/mK at room temperature. The results are compared with other two-dimensional materials like silicene (κ < 10 W/mK) and MoS₂ (κ ≈ 83 W/mK) to underline graphene’s advantages in nanoscale applications. Here, we report the concept of "velocity-lifetime trade-off" and use it to explain graphene’s excellent invariance to high tensile and compressive strains as it exhibits minimal variation in thermal conductivity, making it an ideal material for applications requiring stability in environments with strain variability and deformation. This study establishes graphene as a benchmark material for thermal transport in next-generation 2D channel FET devices and offers a roadmap for its optimization in practical applications.Keywords: phonons, thermal conductivity, transport, strain, vibrational analysis
Procedia PDF Downloads 71139 Optimization of Process Parameters Affecting on Spring-Back in V-Bending Process for High Strength Low Alloy Steel HSLA 420 Using FEA (HyperForm) and Taguchi Technique
Authors: Navajyoti Panda, R. S. Pawar
Abstract:
In this study, process parameters like punch angle, die opening, grain direction, and pre-bend condition of the strip for deep draw of high strength low alloy steel HSLA 420 are investigated. The finite element method (FEM) in association with the Taguchi and the analysis of variance (ANOVA) techniques are carried out to investigate the degree of importance of process parameters in V-bending process for HSLA 420&ST12 grade material. From results, it is observed that punch angle had a major influence on the spring-back. Die opening also showed very significant role on spring back. On the other hand, it is revealed that grain direction had the least impact on spring back; however, if strip from flat sheet is taken, then it is less prone to spring back as compared to the strip from sheet metal coil. HyperForm software is used for FEM simulation and experiments are designed using Taguchi method. Percentage contribution of the parameters is obtained through the ANOVA techniques.Keywords: bending, spring-back, v-bending, FEM, Taguchi, HSLA 420 and St12 materials, HyperForm, profile projector
Procedia PDF Downloads 1941138 Study on Errors in Estimating the 3D Gaze Point for Different Pupil Sizes Using Eye Vergences
Authors: M. Pomianek, M. Piszczek, M. Maciejewski
Abstract:
The binocular eye tracking technology is increasingly being used in industry, entertainment and marketing analysis. In the case of virtual reality, eye tracking systems are already the basis for user interaction with the environment. In such systems, the high accuracy of determining the user's eye fixation point is very important due to the specificity of the virtual reality head-mounted display (HMD). Often, however, there are unknown errors occurring in the used eye tracking technology, as well as those resulting from the positioning of the devices in relation to the user's eyes. However, can the virtual environment itself influence estimation errors? The paper presents mathematical analyses and empirical studies of the determination of the fixation point and errors resulting from the change in the size of the pupil in response to the intensity of the displayed scene. The article contains both static laboratory tests as well as on the real user. Based on the research results, optimization solutions were proposed that would reduce the errors of gaze estimation errors. Studies show that errors in estimating the fixation point of vision can be minimized both by improving the pupil positioning algorithm in the video image and by using more precise methods to calibrate the eye tracking system in three-dimensional space.Keywords: eye tracking, fixation point, pupil size, virtual reality
Procedia PDF Downloads 1361137 T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control
Authors: R. S. Sheu, H. Usman, M. S. Lawal
Abstract:
Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability.Keywords: T-S fuzzy model, state feedback control, linear matrix inequality (LMI), frequency deviation control
Procedia PDF Downloads 3991136 Benchmarking of Petroleum Tanker Discharge Operations at a Nigerian Coastal Terminal and Jetty Facilitates Optimization of the Ship–Shore Interface
Authors: Bassey O. Bassey
Abstract:
Benchmarking has progressively become entrenched as a requisite activity for process improvement and enhancing service delivery at petroleum jetties and terminals, most especially during tanker discharge operations at the ship – shore interface, as avoidable delays result in extra operating costs, non-productive time, high demurrage payments and ultimate product scarcity. The jetty and terminal in focus had been operational for 3 and 8 years respectively, with proper operational and logistic records maintained to evaluate their progress over time in order to plan and implement modifications and review of procedures for greater technical and economic efficiency. Regular and emergency staff meetings were held on a team, departmental and company-wide basis to progressively address major challenges that were encountered during each operation. The process and outcome of the resultant collectively planned changes carried out within the past two years forms the basis of this paper, which mirrors the initiatives effected to enhance operational and maintenance excellence at the affected facilities. Operational modifications included a second cargo receipt line designated for gasoline, product loss control at jetty and shore ends, enhanced product recovery and quality control, and revival of terminal–jetty backloading operations. Logistic improvements were the incorporation of an internal logistics firm and shipping agency, fast tracking of discharge procedures for tankers, optimization of tank vessel selection process, and third party product receipt and throughput. Maintenance excellence was achieved through construction of two new lay barges and refurbishment of the existing one; revamping of existing booster pump and purchasing of a modern one as reserve capacity; extension of Phase 1 of the jetty to accommodate two vessels and construction of Phase 2 for two more vessels; regular inspection, draining, drying and replacement of cargo hoses; corrosion management program for all process facilities; and an improved, properly planned and documented maintenance culture. Safety, environmental and security compliance were enhanced by installing state-of-the-art fire fighting facilities and equipment, seawater intake line construction as backup for borehole at the terminal, remediation of the shoreline and marine structures, modern spill containment equipment, improved housekeeping and accident prevention practices, and installation of hi-technology security enhancements, among others. The end result has been observed over the past two years to include improved tanker turnaround time, higher turnover on product sales, consistent product availability, greater indigenous human capacity utilisation by way of direct hires and contracts, as well as customer loyalty. The lessons learnt from this exercise would, therefore, serve as a model to be adapted by other operators of similar facilities, contractors, academics and consultants in a bid to deliver greater sustainability and profitability of operations at the ship – shore interface to this strategic industry.Keywords: benchmarking, optimisation, petroleum jetty, petroleum terminal
Procedia PDF Downloads 3681135 Spectrophotometric Evaluation of Custom Microalgae-Based Bioink Formulations for Optimized Green Bioprinting
Authors: Olubusuyi Ayowole, Bashir Khoda
Abstract:
Green bioprinting, from the context of merging 3D bioprinting with microalgae cell organization, holds promise for industrial-scale optimization. This study employs spectrophotometric analysis to explore post-bioprinting cell growth density variation within hybrid hydrogel biomaterial scaffolds. Three hydrogel biomaterials—Alginic acid sodium salt (ALGINATE), Nanofibrillated Cellulose (NFC) – TEMPO, and CarboxyMethyl Cellulose (CMC)—are chosen for their scaffolding capabilities. Bioink development and analysis of their impact on cell proliferation and morphology are conducted. Chlorella microalgae cell growth within hydrogel compositions is probed using absorbance measurements, with additional assessment of shear thinning properties. Notably, NFC exhibits reduced shear thinning compared to CMC. Results reveal that while mono-hydrogel substrates with pronounced adhesion inhibit Chlorella cell proliferation, Alginate fosters increased cell concentration alongside a slight viscosity rise.Keywords: green bioprinting, 3d bioprinting, microalgae cell, hybrid hydrogel scaffolds, spectrophotometric analysis, bioink development, shear thinning properties
Procedia PDF Downloads 351134 Performance Optimization of Low-Cost Solar Dryer Using Modified PI Controller
Authors: Rajesh Kondareddy, Prakash Kumar Nayak, Maunash Das, Vrinatri Velentina Boro
Abstract:
Today, there is a huge global concern for sustainable development which would include minimizing the consumption of non-renewable energies without affecting the basic global economy. Solar drying is one of the important processes used for extending the shelf life of agricultural products. The performance of a low cost automated solar dryer fitted with cascade control scheme and modified PI controller for drying chilli was investigated. The dryer was composed of designed solar collector (air heater) fitted with cylindrical pipes to improve the air velocity and a solar drying chamber containing rack of two cheese cloth (net) trays both being integrated together. The air allowed in through air inlet is heated up in the solar collector and channelled through the drying chamber where it is utilized in drying (removing the moisture content from the food substance or agricultural produce loaded). Here, to maintain the temperature in the heating chambers and to improve performance, a modified PI (Proportional–Integral) controller was used due its simplicity and robustness. Drying time for drying chilli from the initial moisture content of 88.5% (wb) to 7.3% (wb) was estimated to be 14 hours in solar dryer whereas 32 h was observed in the open sun drying.Keywords: cascade control, chilli, PI controller, solar dryer
Procedia PDF Downloads 2901133 A Robust Model Predictive Control for a Photovoltaic Pumping System Subject to Actuator Saturation Nonlinearity and Parameter Uncertainties: A Linear Matrix Inequality Approach
Authors: Sofiane Bououden, Ilyes Boulkaibet
Abstract:
In this paper, a robust model predictive controller (RMPC) for uncertain nonlinear system under actuator saturation is designed to control a DC-DC buck converter in PV pumping application, where this system is subject to actuator saturation and parameter uncertainties. The considered nonlinear system contains a linear constant part perturbed by an additive state-dependent nonlinear term. Based on the saturating actuator property, an appropriate linear feedback control law is constructed and used to minimize an infinite horizon cost function within the framework of linear matrix inequalities. The proposed approach has successfully provided a solution to the optimization problem that can stabilize the nonlinear plants. Furthermore, sufficient conditions for the existence of the proposed controller guarantee the robust stability of the system in the presence of polytypic uncertainties. In addition, the simulation results have demonstrated the efficiency of the proposed control scheme.Keywords: PV pumping system, DC-DC buck converter, robust model predictive controller, nonlinear system, actuator saturation, linear matrix inequality
Procedia PDF Downloads 1831132 Split-Flow Method to Reduce Duty Required in Amine Gas Sweetening Units
Authors: Abdallah Sofiane Berrouk, Dara Satyadileep
Abstract:
This paper investigates the feasibility of retrofitting a middle-east based commercial amine sweetening unit with a split-flow scheme which involves withdrawing a portion of partially stripped semi-lean solvent from the stripping column and re-injecting it in the absorption column to reduce the overall energy consumption of the unit. This method is comprehensively explored by performing parametric analysis of the split fraction of the semi-lean solvent using a kinetics based process simulator ProMax V 3.2. Re-boiler duty, condenser duty, solvent cooling and pumping loads are analysed as functions of a split fraction of the semi-lean solvent from the stripper. It is shown that the proposed method significantly reduces the overall energy consumption of the unit resulting in an annual savings of 325,000 USD. The thorough economic analysis is performed using Aspen Economic Evaluation V 8.4 to reveal that the retrofit scheme pays back the capital cost in less than eight years and is highly recommended for any commercial plant having suitable provisions for solvent inlet/withdrawal on the columns.Keywords: split flow, Amine, gas processing, optimization
Procedia PDF Downloads 3351131 Optimization of Bio-Based Mixture of Canarium Luzonicum and Calcium Oxide as Coating Material for Reinforcing Steel Bars
Authors: Charizza D. Montarin, Daryl Jae S. Sigue, Gilford Estores
Abstract:
Philippines was moderately vulnerable to corrosion and to prevent this problem, surface coating should be applied. The main objective of this research was to develop and optimize a bio-based mixture of Pili Resin and Lime as Coating Materials. There are three (3) factors to be considered in choosing the best coating material such as chemical adhesion, friction, and the bearing/shear against the steel bar-concrete interface. Fortunately, both proportions of the Bio-based coating materials (50:50 and 65:35) do not have red rust formation complying with ASTM B117 but failed in terms of ASTM D 3359. Splitting failures of concrete were observed in the Unconfined Reinforced Concrete Samples. All of the steel bars (uncoated and coated) surpassed the Minimum Bond strength (NSCP 2015) about 203% to 285%. The experiments were about 1% to 3% of the results from the ANSYS Simulations with and without Salt Spray Test. Using the bio-based and epoxy coatings, normal splitting strengths were declined. However, there has no significant difference between the results. Thus, the bio-based coating materials can be used as an alternative for the epoxy coating materials and it was highly recommended for Low – Rise Building only.Keywords: Canarium luzonicum, calcium oxide, corrosion, finite element simulations
Procedia PDF Downloads 3291130 An Application of Content Analysis, SWOT Analysis, and the TOPSIS Method: A Case Study of the 'Tourism Ambassador' Program in Indonesia
Authors: Gilang Maulana Majid
Abstract:
If a government program remains scientifically uncontested for a long time, it is likely that its effects will be far from expected as there is no concrete evaluation of the steps being taken. This article identifies how such a theory aptly describes the case of the 'tourism ambassador' program in Indonesia. Being set out as one of the tourism promotional means of many regional governments in Indonesia, this program is heavily criticized for being ineffective despite a large number of budgets being spent on an annual basis. Taking the program as a case study, this article applies content analysis, SWOT analysis, and TOPSIS as data analysis methods, with a total of 56 tourism ambassadors invited to become coders, respondents, and/or interviewees in this research. The study reveals the SWOT of the program, recognizes four strategies that can be taken to optimize the program's effects and prioritizes a strategy based on the preferences of the involved tourism ambassadors using TOPSIS. It is found that incorporation of technology such as the creation of an online platform is, among others, the most expected approach to be taken to solve the problems concerning tourism ambassador program. However, based on the costs and benefits of each strategy presented in the current study, each alternative appears to have trade-offs between one and another.Keywords: Indonesia, optimization strategies, 'Tourism Ambassador' program, SWOT-TOPSIS
Procedia PDF Downloads 1711129 Progressive Watershed Management Approaches in Iran
Authors: S. H. R. Sadeghi, A. Sadoddin, A. Najafinejad
Abstract:
Expansionism and ever-increasing population menace all different resources worldwide. The issue, hence, is critical in developing countries like Iran where new technologies are rapidly luxuriated and unguardedly applied, resulting in unexpected outcomes. However, uncommon and comprehensive approaches are introduced to take all the different aspects involved into consideration. In the last decade, few approaches such as community-based, stakeholders-oriented, adaptive and ultimately integrated management, have emerged and are developing for efficient, Co-management or best management, economic and sustainable development and management of watershed resources in Iran. In the present paper, an attempt has been made to focus on state-of-the-art approaches for the management of watershed resources applied in Iran. The study has been then supported by reports of some case studies conducted throughout the country involving previously mentioned approaches. Scrutinizing results of the researches verified a progressive tendency of the managerial approaches in watershed management strategies leading to a general approaching balance situation. The approaches are firmly rooted in educational, research, executive, legal and policy-making sectors leading to some recuperation at different levels. However, there is a long way ahead to naturalize detrimental effects of unscientific, illegal and over exploitation of the watershed resources in Iran.Keywords: comprehensive management, ecosystem balance, integrated watershed management, land resources optimization
Procedia PDF Downloads 3741128 Modeling, Analysis, and Optimization of Process Parameters of Metal Spinning
Authors: B. Ravi Kumar, S. Gajanana, K. Hemachandra Reddy, K. Udayani
Abstract:
Physically into various derived shapes and sizes under the effect of externally applied forces. The spinning process is an advanced plastic working technology and is frequently used for manufacturing axisymmetric shapes. Over the last few decades, Sheet metal spinning has developed significantly and spun products have widely used in various industries. Nowadays the process has been expanded to new horizons in industries, since tendency to use minimum tool and equipment costs and also using lower forces with the output of excellent surface quality and good mechanical properties. The automation of the process is of greater importance, due to its wider applications like decorative household goods, rocket nose cones, gas cylinders, etc. This paper aims to gain insight into the conventional spinning process by employing experimental and numerical methods. The present work proposes an approach for optimizing process parameters are mandrel speed (rpm), roller nose radius (mm), thickness of the sheet (mm). Forming force, surface roughness and strain are the responses.in spinning of Aluminum (2024-T3) using DOE-Response Surface Methodology (RSM) and Analysis of variance (ANOVA). The FEA software is used for modeling and analysis. The process parameters considered in the experimentation.Keywords: FEA, RSM, process parameters, sheet metal spinning
Procedia PDF Downloads 3221127 Optimal Design of Propellant Grain Shape Based on Structural Strength Analysis
Authors: Chen Xiong, Tong Xin, Li Hao, Xu Jin-Sheng
Abstract:
Experiment and simulation researches on the structural integrity of propellant grain in solid rocket motor (SRM) with high volumetric fraction were conducted. First, by using SRM parametric modeling functions with secondary development tool Python of ABAQUS, the three dimensional parameterized modeling programs of star shaped grain, wheel shaped grain and wing cylindrical grain were accomplished. Then, the mechanical properties under different loads for star shaped grain were obtained with the application of automatically established finite element model in ABAQUS. Next, several optimization algorithms are introduced to optimize the star shaped grain, wheel shaped grain and wing cylindrical grain. After meeting the demands of burning surface changes and volumetric fraction, the optimum three dimensional shapes of grain were obtained. Finally, by means of parametric modeling functions, pressure data of SRM’s cold pressurization test was directly applied to simulation of grain in terms of mechanical performance. The results verify the reliability and practical of parameterized modeling program of SRM.Keywords: cold pressurization test, ğarametric modeling, structural integrity, propellant grain, SRM
Procedia PDF Downloads 3661126 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 303