Search results for: spatial and temporal data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26844

Search results for: spatial and temporal data

24684 Generic Data Warehousing for Consumer Electronics Retail Industry

Authors: S. Habte, K. Ouazzane, P. Patel, S. Patel

Abstract:

The dynamic and highly competitive nature of the consumer electronics retail industry means that businesses in this industry are experiencing different decision making challenges in relation to pricing, inventory control, consumer satisfaction and product offerings. To overcome the challenges facing retailers and create opportunities, we propose a generic data warehousing solution which can be applied to a wide range of consumer electronics retailers with a minimum configuration. The solution includes a dimensional data model, a template SQL script, a high level architectural descriptions, ETL tool developed using C#, a set of APIs, and data access tools. It has been successfully applied by ASK Outlets Ltd UK resulting in improved productivity and enhanced sales growth.

Keywords: consumer electronics, data warehousing, dimensional data model, generic, retail industry

Procedia PDF Downloads 413
24683 Sequential Data Assimilation with High-Frequency (HF) Radar Surface Current

Authors: Lei Ren, Michael Hartnett, Stephen Nash

Abstract:

The abundant measured surface current from HF radar system in coastal area is assimilated into model to improve the modeling forecasting ability. A simple sequential data assimilation scheme, Direct Insertion (DI), is applied to update model forecast states. The influence of Direct Insertion data assimilation over time is analyzed at one reference point. Vector maps of surface current from models are compared with HF radar measurements. Root-Mean-Squared-Error (RMSE) between modeling results and HF radar measurements is calculated during the last four days with no data assimilation.

Keywords: data assimilation, CODAR, HF radar, surface current, direct insertion

Procedia PDF Downloads 574
24682 Measured versus Default Interstate Traffic Data in New Mexico, USA

Authors: M. A. Hasan, M. R. Islam, R. A. Tarefder

Abstract:

This study investigates how the site specific traffic data differs from the Mechanistic Empirical Pavement Design Software default values. Two Weigh-in-Motion (WIM) stations were installed in Interstate-40 (I-40) and Interstate-25 (I-25) to developed site specific data. A computer program named WIM Data Analysis Software (WIMDAS) was developed using Microsoft C-Sharp (.Net) for quality checking and processing of raw WIM data. A complete year data from November 2013 to October 2014 was analyzed using the developed WIM Data Analysis Program. After that, the vehicle class distribution, directional distribution, lane distribution, monthly adjustment factor, hourly distribution, axle load spectra, average number of axle per vehicle, axle spacing, lateral wander distribution, and wheelbase distribution were calculated. Then a comparative study was done between measured data and AASHTOWare default values. It was found that the measured general traffic inputs for I-40 and I-25 significantly differ from the default values.

Keywords: AASHTOWare, traffic, weigh-in-motion, axle load distribution

Procedia PDF Downloads 343
24681 Colonialism and Modernism in Architecture, the Case of a Blank Page Opportunity in Casablanka

Authors: Nezha Alaoui

Abstract:

The early 1950s French colonial context in Morocco provided an opportunity for architects to question the modernist established order by building dwellings for the local population. The dwellings were originally designed to encourage Muslims to adopt an urban lifestyle based on local customs. However, the inhabitants transformed their dwelling into a hybrid habitation. This paper aims to prove the relevance of the design process in accordance with the local colonial context by analyzing the dwellers' appropriation process and the modification of their habitat.

Keywords: colonial heritage, appropriation process, islamic spatial habit, housing experiment, modernist mass housing

Procedia PDF Downloads 128
24680 The History of Sambipitu Formation Temperature during the Early Miocene Epooch at Kali Ngalang, Nglipar, Gunung Kidul Regency

Authors: R. Harman Dwi, Ryan Avirsa, P. Abraham Ivan

Abstract:

Understanding of temperatures in the past, present, and future temperatures can be possible to do by analysis abundance of fossil foraminifera. This research was conducted in Sambipitu Formation, Ngalang River, Nglipar, Gunung Kidul Regency. The research method is divided into 3 stages: 1) study of literature, research based on previous researchers, 2) spatial, observation and sampling every 5-10 meters, 3) descriptive, analyzing samples consisting of a 10-gram sample weight, washing sample using 30% peroxide, biostratigraphy analysis, paleotemperature analysis using abundance of fossil, diversity analysis using Simpson diversity index method, and comparing current temperature data. There are two phases based on the appearance of Globorotalia menardii and Pulleniatina obliqueculata pointed to Phase Tropical Area, and the appearance of fossil Globigerinoides ruber and Orbulina universa fossil shows the phase of Subtropical Area. Paleotemperatur based on the appearance of Globorotalia menardii, Globigerinoides trilobus, Globigerinoides ruber, Orbulina universa, and Pulleniatina obliqueculata pointed to Warm Water Area and Warm Water Area (average surface water approximate 25°C).

Keywords: abundance, biostratigraphy, Simpson diversity index method, paleotemperature

Procedia PDF Downloads 172
24679 Non-Time and Non-Sense: Temporalities of Addiction for Heroin Users in Scotland

Authors: Laura Roe

Abstract:

This study draws on twelve months of ethnographic fieldwork conducted in 2017 with heroin and poly-substance users in Scotland and explores experiences of time and temporality as factors in continuing drug use. The research largely took place over the year in which drug-related deaths in Scotland reached a record high, and were statistically recorded as the highest in Europe. This qualitative research is therefore significant in understanding both evolving patterns of drug use and the experiential lifeworlds of those who use heroin and other substances in high doses. Methodologies included participant observation, structured and semi-structured interviews, and unstructured conversations with twenty-two regular participants. The fieldwork was conducted in two needle exchanges, a community recovery group and in the community. The initial aim of the study was to assess evolving patterns of drug preferences in order to explore a clinical and user-reported rise in the use of novel psychoactive substances (NPS), which are typically considered to be highly potent, synthetic substances, often available at a low cost. It was found, however, that while most research participants had experimented with NPS with varying intensity, those who used every day regularly consumed heroin, methadone, and alcohol with benzodiazepines such as diazepam or anticonvulsants such as gabapentin. The research found that many participants deliberately pursued the non-fatal effects of overdose, aiming to induce states of dissociation, detachment and uneven consciousness, and did so by both mixing substances and experimenting with novel modes of consumption. Temporality was significant in the decision to consume cocktails of substances, as users described wishing to sever themselves from time; entering into states of ‘non-time’ and insensibility through specific modes of intoxication. Time and temporality similarly impacted other aspects of addicted life. Periods of attempted abstinence witnessed a slowing of time’s passage that was tied to affective states of boredom and melancholy, in addition to a disruptive return of distressing and difficult memories. Abject past memories frequently dominated and disrupted the present, which otherwise could be highly immersive due to the time and energy-consuming nature of seeking drugs while in financial difficulty. There was furthermore a discordance between individual user temporalities and the strict time-based regimes of recovery services and institutional bodies, and the study aims to highlight the impact of such a disjuncture on the efficacy of treatment programs. Many participants had difficulty in adhering to set appointments or temporal frameworks due to their specific temporal situatedness. Overall, exploring increasing tendencies of heroin users in Scotland towards poly-substance use, this study draws on experiences and perceptions of time, analysing how temporality comes to bear on the ways drugs are sought and consumed, and how recovery is imagined and enacted. The study attempts to outline the experiential, intimate and subjective worlds of heroin and poly-substance users while explicating the structural and historical factors that shape them.

Keywords: addiction, poly-substance use, temporality, timelessness

Procedia PDF Downloads 118
24678 High-Dimensional Single-Cell Imaging Maps Inflammatory Cell Types in Pulmonary Arterial Hypertension

Authors: Selena Ferrian, Erin Mccaffrey, Toshie Saito, Aiqin Cao, Noah Greenwald, Mark Robert Nicolls, Trevor Bruce, Roham T. Zamanian, Patricia Del Rosario, Marlene Rabinovitch, Michael Angelo

Abstract:

Recent experimental and clinical observations are advancing immunotherapies to clinical trials in pulmonary arterial hypertension (PAH). However, comprehensive mapping of the immune landscape in pulmonary arteries (PAs) is necessary to understand how immune cell subsets interact to induce pulmonary vascular pathology. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to interrogate the immune landscape in PAs from idiopathic (IPAH) and hereditary (HPAH) PAH patients. Massive immune infiltration in I/HPAH was observed with intramural infiltration linked to PA occlusive changes. The spatial context of CD11c+DCs expressing SAMHD1, TIM-3 and IDO-1 within immune-enriched microenvironments and neutrophils were associated with greater immune activation in HPAH. Furthermore, CD11c-DC3s (mo-DC-like cells) within a smooth muscle cell (SMC) enriched microenvironment were linked to vessel score, proliferating SMCs, and inflamed endothelial cells. Experimental data in cultured cells reinforced a causal relationship between neutrophils and mo-DCs in mediating pulmonary arterial SMC proliferation. These findings merit consideration in developing effective immunotherapies for PAH.

Keywords: pulmonary arterial hypertension, vascular remodeling, indoleamine 2-3-dioxygenase 1 (IDO-1), neutrophils, monocyte-derived dendritic cells, BMPR2 mutation, interferon gamma (IFN-γ)

Procedia PDF Downloads 174
24677 The Narrative Coherence of Autistic Children’s Accounts of an Experienced Event over Time

Authors: Fuming Yang, Telma Sousa Almeida, Xinyu Li, Yunxi Deng, Heying Zhang, Michael E. Lamb

Abstract:

Twenty-seven children aged 6-15 years with autism spectrum disorder (ASD) and 32 typically developing children were questioned about their participation in a set of activities after a two-week delay and again after a two-month delay, using a best-practice interview protocol. This paper assessed the narrative coherence of children’s reports based on key story grammar elements and temporal features included in their accounts of the event. Results indicated that, over time, both children with ASD and typically developing (TD) children decreased their narrative coherence. Children with ASD were no different from TD peers with regards to story length and syntactic complexity. However, they showed significantly less coherence than TD children. They were less likely to use the gist of the story to organize their narrative coherence. Interviewer prompts influenced children’s narrative coherence. The findings indicated that children with ASD could provide meaningful and reliable testimony about an event they personally experienced, but the narrative coherence of their reports deteriorates over time and is affected by interviewer prompts.

Keywords: autism spectrum disorders, delay, eyewitness testimony, narrative coherence

Procedia PDF Downloads 289
24676 Use of Artificial Intelligence and Two Object-Oriented Approaches (k-NN and SVM) for the Detection and Characterization of Wetlands in the Centre-Val de Loire Region, France

Authors: Bensaid A., Mostephaoui T., Nedjai R.

Abstract:

Nowadays, wetlands are the subject of contradictory debates opposing scientific, political and administrative meanings. Indeed, given their multiple services (drinking water, irrigation, hydrological regulation, mineral, plant and animal resources...), wetlands concentrate many socio-economic and biodiversity issues. In some regions, they can cover vast areas (>100 thousand ha) of the landscape, such as the Camargue area in the south of France, inside the Rhone delta. The high biological productivity of wetlands, the strong natural selection pressures and the diversity of aquatic environments have produced many species of plants and animals that are found nowhere else. These environments are tremendous carbon sinks and biodiversity reserves depending on their age, composition and surrounding environmental conditions, wetlands play an important role in global climate projections. Covering more than 3% of the earth's surface, wetlands have experienced since the beginning of the 1990s a tremendous revival of interest, which has resulted in the multiplication of inventories, scientific studies and management experiments. The geographical and physical characteristics of the wetlands of the central region conceal a large number of natural habitats that harbour a great biological diversity. These wetlands, one of the natural habitats, are still influenced by human activities, especially agriculture, which affects its layout and functioning. In this perspective, decision-makers need to delimit spatial objects (natural habitats) in a certain way to be able to take action. Thus, wetlands are no exception to this rule even if it seems to be a difficult exercise to delimit a type of environment as whose main characteristic is often to occupy the transition between aquatic and terrestrial environment. However, it is possible to map wetlands with databases, derived from the interpretation of photos and satellite images, such as the European database Corine Land cover, which allows quantifying and characterizing for each place the characteristic wetland types. Scientific studies have shown limitations when using high spatial resolution images (SPOT, Landsat, ASTER) for the identification and characterization of small wetlands (1 hectare). To address this limitation, it is important to note that these wetlands generally represent spatially complex features. Indeed, the use of very high spatial resolution images (>3m) is necessary to map small and large areas. However, with the recent evolution of artificial intelligence (AI) and deep learning methods for satellite image processing have shown a much better performance compared to traditional processing based only on pixel structures. Our research work is also based on spectral and textural analysis on THR images (Spot and IRC orthoimage) using two object-oriented approaches, the nearest neighbour approach (k-NN) and the Super Vector Machine approach (SVM). The k-NN approach gave good results for the delineation of wetlands (wet marshes and moors, ponds, artificial wetlands water body edges, ponds, mountain wetlands, river edges and brackish marshes) with a kappa index higher than 85%.

Keywords: land development, GIS, sand dunes, segmentation, remote sensing

Procedia PDF Downloads 72
24675 Impacts of Present and Future Climate Variability on Forest Ecosystem in Mediterranean Region

Authors: Orkan Ozcan, Nebiye Musaoglu, Murat Turkes

Abstract:

Climate change is largely recognized as one of the real, pressing and significant global problems. The concept of ‘climate change vulnerability’ helps us to better comprehend the cause/effect relationships behind climate change and its impact on human societies, socioeconomic sectors, physiographical and ecological systems. In this study, multifactorial spatial modeling was applied to evaluate the vulnerability of a Mediterranean forest ecosystem to climate change. As a result, the geographical distribution of the final Environmental Vulnerability Areas (EVAs) of the forest ecosystem is based on the estimated final Environmental Vulnerability Index (EVI) values. This revealed that at current levels of environmental degradation, physical, geographical, policy enforcement and socioeconomic conditions, the area with a ‘very low’ vulnerability degree covered mainly the town, its surrounding settlements and the agricultural lands found mainly over the low and flat travertine plateau and the plains at the east and southeast of the district. The spatial magnitude of the EVAs over the forest ecosystem under the current environmental degradation was also determined. This revealed that the EVAs classed as ‘very low’ account for 21% of the total area of the forest ecosystem, those classed as ‘low’ account for 36%, those classed as ‘medium’ account for 20%, and those classed as ‘high’ account for 24%. Based on regionally averaged future climate assessments and projected future climate indicators, both the study site and the western Mediterranean sub-region of Turkey will probably become associated with a drier, hotter, more continental and more water-deficient climate. This analysis holds true for all future scenarios, with the exception of RCP4.5 for the period from 2015 to 2030. However, the present dry-sub humid climate dominating this sub-region and the study area shows a potential for change towards more dry climatology and for it to become a semiarid climate in the period between 2031 and 2050 according to the RCP8.5 high emission scenario. All the observed and estimated results and assessments summarized in the study show clearly that the densest forest ecosystem in the southern part of the study site, which is characterized by mainly Mediterranean coniferous and some mixed forest and the maquis vegetation, will very likely be influenced by medium and high degrees of vulnerability to future environmental degradation, climate change and variability.

Keywords: forest ecosystem, Mediterranean climate, RCP scenarios, vulnerability analysis

Procedia PDF Downloads 353
24674 A Policy Strategy for Building Energy Data Management in India

Authors: Shravani Itkelwar, Deepak Tewari, Bhaskar Natarajan

Abstract:

The energy consumption data plays a vital role in energy efficiency policy design, implementation, and impact assessment. Any demand-side energy management intervention's success relies on the availability of accurate, comprehensive, granular, and up-to-date data on energy consumption. The Building sector, including residential and commercial, is one of the largest consumers of energy in India after the Industrial sector. With economic growth and increasing urbanization, the building sector is projected to grow at an unprecedented rate, resulting in a 5.6 times escalation in energy consumption till 2047 compared to 2017. Therefore, energy efficiency interventions will play a vital role in decoupling the floor area growth and associated energy demand, thereby increasing the need for robust data. In India, multiple institutions are involved in the collection and dissemination of data. This paper focuses on energy consumption data management in the building sector in India for both residential and commercial segments. It evaluates the robustness of data available through administrative and survey routes to estimate the key performance indicators and identify critical data gaps for making informed decisions. The paper explores several issues in the data, such as lack of comprehensiveness, non-availability of disaggregated data, the discrepancy in different data sources, inconsistent building categorization, and others. The identified data gaps are justified with appropriate examples. Moreover, the paper prioritizes required data in order of relevance to policymaking and groups it into "available," "easy to get," and "hard to get" categories. The paper concludes with recommendations to address the data gaps by leveraging digital initiatives, strengthening institutional capacity, institutionalizing exclusive building energy surveys, and standardization of building categorization, among others, to strengthen the management of building sector energy consumption data.

Keywords: energy data, energy policy, energy efficiency, buildings

Procedia PDF Downloads 185
24673 Monitoring Peri-Urban Growth and Land Use Dynamics with GIS and Remote Sensing Techniques: A Case Study of Burdwan City, India

Authors: Mohammad Arif, Soumen Chatterjee, Krishnendu Gupta

Abstract:

The peri-urban interface is an area of transition where the urban and rural areas meet and interact. So the peri-urban areas, which is characterized by strong urban influence, easy access to markets, services and other inputs, are ready supplies of labour but distant from the land paucity and pollution related to urban growth. Hence, the present study is primarily aimed at quantifying the spatio-temporal pattern of land use/land cover change during the last three decades (i.e., 1987 to 2016) in the peri-urban area of Burdwan city. In the recent past, the morphology of the study region has rapid change due to high growth of population and establishment of industries. The change has predominantly taken place along the State and National Highway 2 (NH-2) and around the Burdwan Municipality for meeting both residential and commercial purposes. To ascertain the degree of change in land use and land cover, over the specified time, satellite imageries and topographical sheets are employed. The data is processed through appropriate software packages to arrive at a deduction that most of the land use changes have occurred by obliterating agricultural land & water bodies and substituting them by built area and industrial spaces. Geospatial analysis of study area showed that this area has experienced a steep increase (30%) of built-up areas and excessive decrease (15%) in croplands between 1987 and 2016. Increase in built-up areas is attributed to the increase of out-migration during this period from the core city. This study also examined social, economic and institutional factors that lead to this rapid land use change in peri-urban areas of the Burdwan city by carrying out a field survey of 250 households in peri-urban areas. The research concludes with an urgency for regulating land subdivisions in peri-urban areas to prevent haphazard land use development. It is expected that the findings of the study would go a long way in facilitating better policy making.

Keywords: growth, land use land cover, morphology, peri-urban, policy making

Procedia PDF Downloads 175
24672 Asymmetric Relation between Earnings and Returns

Authors: Seungmin Chee

Abstract:

This paper investigates which of the two arguments, conservatism or liquidation option, is a true underlying driver of the asymmetric slope coefficient result regarding the association between earnings and returns. The analysis of the relation between earnings and returns in four mutually exclusive settings segmented by ‘profits vs. losses’ and ‘positive returns vs. negative returns’ suggests that liquidation option rather than conservatism is likely to cause the asymmetric slope coefficient result. Furthermore, this paper documents the temporal changes between Basu period (1963-1990) and post-Basu period (1990-2005). Although no significant change in degree of conservatism or value relevance of losses is reported, stronger negative relation between losses and positive returns is observed in the post-Basu period. Separate regression analysis of each quintile based on the rankings of price to sales ratio and book to market ratio suggests that the strong negative relation is driven by growth firms.

Keywords: conservatism, earnings, liquidation option, returns

Procedia PDF Downloads 375
24671 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System

Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes

Abstract:

The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.

Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models

Procedia PDF Downloads 81
24670 A Survey on Data-Centric and Data-Aware Techniques for Large Scale Infrastructures

Authors: Silvina Caíno-Lores, Jesús Carretero

Abstract:

Large scale computing infrastructures have been widely developed with the core objective of providing a suitable platform for high-performance and high-throughput computing. These systems are designed to support resource-intensive and complex applications, which can be found in many scientific and industrial areas. Currently, large scale data-intensive applications are hindered by the high latencies that result from the access to vastly distributed data. Recent works have suggested that improving data locality is key to move towards exascale infrastructures efficiently, as solutions to this problem aim to reduce the bandwidth consumed in data transfers, and the overheads that arise from them. There are several techniques that attempt to move computations closer to the data. In this survey we analyse the different mechanisms that have been proposed to provide data locality for large scale high-performance and high-throughput systems. This survey intends to assist scientific computing community in understanding the various technical aspects and strategies that have been reported in recent literature regarding data locality. As a result, we present an overview of locality-oriented techniques, which are grouped in four main categories: application development, task scheduling, in-memory computing and storage platforms. Finally, the authors include a discussion on future research lines and synergies among the former techniques.

Keywords: data locality, data-centric computing, large scale infrastructures, cloud computing

Procedia PDF Downloads 259
24669 Influence of Ammonia Emissions on Aerosol Formation in Northern and Central Europe

Authors: A. Aulinger, A. M. Backes, J. Bieser, V. Matthias, M. Quante

Abstract:

High concentrations of particles pose a threat to human health. Thus, legal maximum concentrations of PM10 and PM2.5 in ambient air have been steadily decreased over the years. In central Europe, the inorganic species ammonium sulphate and ammonium nitrate make up a large fraction of fine particles. Many studies investigate the influence of emission reductions of sulfur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. While emissions of sulphate and nitrogen oxides are quite well known, ammonia emissions are subject to high uncertainty. This is due to the uncertainty of location, amount, time of fertilizer application in agriculture, and the storage and treatment of manure from animal husbandry. For this study, we implemented a crop growth model into the SMOKE emission model. Depending on temperature, local legislation, and crop type individual temporal profiles for fertilizer and manure application are calculated for each model grid cell. Additionally, the diffusion from soils and plants and the direct release from open and closed barns are determined. The emission data was used as input for the Community Multiscale Air Quality (CMAQ) model. Comparisons to observations from the EMEP measurement network indicate that the new ammonia emission module leads to a better agreement of model and observation (for both ammonia and ammonium). Finally, the ammonia emission model was used to create emission scenarios. This includes emissions based on future European legislation, as well as a dynamic evaluation of the influence of different agricultural sectors on particle formation. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of total PM2.5 concentrations during winter time in the model domain. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year.

Keywords: ammonia, ammonia abatement strategies, ctm, seasonal impact, secondary aerosol formation

Procedia PDF Downloads 351
24668 Wind Speed Data Analysis in Colombia in 2013 and 2015

Authors: Harold P. Villota, Alejandro Osorio B.

Abstract:

The energy meteorology is an area for study energy complementarity and the use of renewable sources in interconnected systems. Due to diversify the energy matrix in Colombia with wind sources, is necessary to know the data bases about this one. However, the time series given by 260 automatic weather stations have empty, and no apply data, so the purpose is to fill the time series selecting two years to characterize, impute and use like base to complete the data between 2005 and 2020.

Keywords: complementarity, wind speed, renewable, colombia, characteri, characterization, imputation

Procedia PDF Downloads 164
24667 Explaining the Steps of Designing and Calculating the Content Validity Ratio Index of the Screening Checklist of Preschool Students (5 to 7 Years Old) Exposed to Learning Difficulties

Authors: Sajed Yaghoubnezhad, Sedygheh Rezai

Abstract:

Background and Aim: Since currently in Iran, students with learning disabilities are identified after entering school, and with the approach to the gap between IQ and academic achievement, the purpose of this study is to design and calculate the content validity of the pre-school screening checklist (5-7) exposed to learning difficulties. Methods: This research is a fundamental study, and in terms of data collection method, it is quantitative research with a descriptive approach. In order to design this checklist, after reviewing the research background and theoretical foundations, cognitive abilities (visual processing, auditory processing, phonological awareness, executive functions, spatial visual working memory and fine motor skills) are considered the basic variables of school learning. The basic items and worksheets of the screening checklist of pre-school students 5 to 7 years old with learning difficulties were compiled based on the mentioned abilities and were provided to the specialists in order to calculate the content validity ratio index. Results: Based on the results of the table, the validity of the CVR index of the background information checklist is equal to 0.9, and the CVR index of the performance checklist of preschool children (5 to7 years) is equal to 0.78. In general, the CVR index of this checklist is reported to be 0.84. The results of this study provide good evidence for the validity of the pre-school sieve screening checklist (5-7) exposed to learning difficulties.

Keywords: checklist, screening, preschoolers, learning difficulties

Procedia PDF Downloads 102
24666 Industrial Process Mining Based on Data Pattern Modeling and Nonlinear Analysis

Authors: Hyun-Woo Cho

Abstract:

Unexpected events may occur with serious impacts on industrial process. This work utilizes a data representation technique to model and to analyze process data pattern for the purpose of diagnosis. In this work, the use of triangular representation of process data is evaluated using simulation process. Furthermore, the effect of using different pre-treatment techniques based on such as linear or nonlinear reduced spaces was compared. This work extracted the fault pattern in the reduced space, not in the original data space. The results have shown that the non-linear technique based diagnosis method produced more reliable results and outperforms linear method.

Keywords: process monitoring, data analysis, pattern modeling, fault, nonlinear techniques

Procedia PDF Downloads 387
24665 Brain-Computer Interface Based Real-Time Control of Fixed Wing and Multi-Rotor Unmanned Aerial Vehicles

Authors: Ravi Vishwanath, Saumya Kumaar, S. N. Omkar

Abstract:

Brain-computer interfacing (BCI) is a technology that is almost four decades old, and it was developed solely for the purpose of developing and enhancing the impact of neuroprosthetics. However, in the recent times, with the commercialization of non-invasive electroencephalogram (EEG) headsets, the technology has seen a wide variety of applications like home automation, wheelchair control, vehicle steering, etc. One of the latest developed applications is the mind-controlled quadrotor unmanned aerial vehicle. These applications, however, do not require a very high-speed response and give satisfactory results when standard classification methods like Support Vector Machine (SVM) and Multi-Layer Perceptron (MLPC). Issues are faced when there is a requirement for high-speed control in the case of fixed-wing unmanned aerial vehicles where such methods are rendered unreliable due to the low speed of classification. Such an application requires the system to classify data at high speeds in order to retain the controllability of the vehicle. This paper proposes a novel method of classification which uses a combination of Common Spatial Paradigm and Linear Discriminant Analysis that provides an improved classification accuracy in real time. A non-linear SVM based classification technique has also been discussed. Further, this paper discusses the implementation of the proposed method on a fixed-wing and VTOL unmanned aerial vehicles.

Keywords: brain-computer interface, classification, machine learning, unmanned aerial vehicles

Procedia PDF Downloads 283
24664 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 245
24663 Quantifying and Prioritizing Agricultural Residue Biomass Energy Potential in Ethiopia

Authors: Angesom Gebrezgabiher Tesfay, Afafaw Hailesilasie Tesfay, Muyiwa Samuel Adaramola

Abstract:

The energy demand boost in Ethiopia urges sustainable fuel options while it is mainly supplemented by traditional biomass and imported conventional fuels. To satisfy the deficiency it has to be sourced from all renewables. Thus identifying resources and estimating potential is vital to the sector. This study aims at an in-depth assessment to quantify, prioritize, and analyze agricultural residue biomass energy and related characteristic forms. Biomass use management and modernization seeks successive information and a clue about the resource quantity and characteristic. Five years of crop yield data for thirteen crops were collected. Conversion factors for their 20 residues are surveyed from the literature. Then residues amount potentially available for energy and their energy is estimated regional, crop-wise, residue-wise, and shares compared. Their potential value for energy is analyzed from two perspectives and prioritized. The gross potential is estimated to be 495PJ, equivalent to 12/17 million tons of oil/coal. At 30% collection efficiency, it is the same as conventional fuel import in 2018. Maize and sorghum potential and spatial availability are preeminent. Cotton and maize presented the highest potential values for energy from application and resource perspectives. Oromia and Amhara regions' contributions are the highest. The resource collection and application trends are required for future management that implicates a prospective study.

Keywords: crop residue, biomass potential, biomass resource, Ethiopian energy

Procedia PDF Downloads 124
24662 Recommender System Based on Mining Graph Databases for Data-Intensive Applications

Authors: Mostafa Gamal, Hoda K. Mohamed, Islam El-Maddah, Ali Hamdi

Abstract:

In recent years, many digital documents on the web have been created due to the rapid growth of ’social applications’ communities or ’Data-intensive applications’. The evolution of online-based multimedia data poses new challenges in storing and querying large amounts of data for online recommender systems. Graph data models have been shown to be more efficient than relational data models for processing complex data. This paper will explain the key differences between graph and relational databases, their strengths and weaknesses, and why using graph databases is the best technology for building a realtime recommendation system. Also, The paper will discuss several similarity metrics algorithms that can be used to compute a similarity score of pairs of nodes based on their neighbourhoods or their properties. Finally, the paper will discover how NLP strategies offer the premise to improve the accuracy and coverage of realtime recommendations by extracting the information from the stored unstructured knowledge, which makes up the bulk of the world’s data to enrich the graph database with this information. As the size and number of data items are increasing rapidly, the proposed system should meet current and future needs.

Keywords: graph databases, NLP, recommendation systems, similarity metrics

Procedia PDF Downloads 104
24661 Digital Revolution a Veritable Infrastructure for Technological Development

Authors: Osakwe Jude Odiakaosa

Abstract:

Today’s digital society is characterized by e-education or e-learning, e-commerce, and so on. All these have been propelled by digital revolution. Digital technology such as computer technology, Global Positioning System (GPS) and Geographic Information System (GIS) has been having a tremendous impact on the field of technology. This development has positively affected the scope, methods, speed of data acquisition, data management and the rate of delivery of the results (map and other map products) of data processing. This paper tries to address the impact of revolution brought by digital technology.

Keywords: digital revolution, internet, technology, data management

Procedia PDF Downloads 449
24660 Microscopic Analysis of Bulk, High-TC Superconductors by Transmission Kikuchi Diffraction

Authors: Anjela Koblischka-Veneva, Michael Koblischka

Abstract:

In this contribution, the transmission-Kikuchi diffrac-tion (TKD, or sometimes called t-EBSD) is applied to bulk, melt-grown YBa2Cu3O7 (YBCO) superconductors prepared by the MTMG (melt-textured melt-grown) technique and the infiltration (IG) growth technique. TEM slices required for the analysis were prepared by means of focused ion-beam (FIB) milling using mechanically polished sample surfaces, which enable a proper selection of the in-teresting regions for investigations. The required optical transparency was reached by an additional polishing step of the resulting surfaces using FIB-Ga-ion and Ar-ion milling. The improved spatial resolution of TKD enabled the investigation of the tiny Y2BaCuO5 (Y-211) particles having a diameter of about 50-100 nm embedded within the YBCO matrix and of other added secondary phase particles. With the TKD technique, the microstructural properties of the YBCO matrix are studied in detail. It is observed that the matrix shows effects of stress/strain, depending on the size and distribution of the embedded particles, which are important for providing additional flux pinning centers in such superconducting bulk samples. Using the Kernel average misorientation (KAM) maps, the strain induced in the superconducting matrix around the particles, which increases the flux pinning effectivity, can be clearly revealed. This type of analysis of the EBSD/TKD data is, therefore, also important for other material systems, where nanoparticles are embedded in a matrix.

Keywords: electron backscatter Diffraction, transmission Kikuchi diffraction, SEM, YBCO, microstructure, nanoparticles

Procedia PDF Downloads 129
24659 Innovation Eco-Systems and Cities: Sustainable Innovation and Urban Form

Authors: Claudia Trillo

Abstract:

Regional innovation eco-ecosystems are composed of a variety of interconnected urban innovation eco-systems, mutually reinforcing each other and making the whole territorial system successful. Combining principles drawn from the new economic growth theory and from the socio-constructivist approach to the economic growth, with the new geography of innovation emerging from the networked nature of innovation districts, this paper explores the spatial configuration of urban innovation districts, with the aim of unveiling replicable spatial patterns and transferable portfolios of urban policies. While some authors suggest that cities should be considered ideal natural clusters, supporting cross-fertilization and innovation thanks to the physical setting they provide to the construction of collective knowledge, still a considerable distance persists between regional development strategies and urban policies. Moreover, while public and private policies supporting entrepreneurship normally consider innovation as the cornerstone of any action aimed at uplifting the competitiveness and economic success of a certain area, a growing body of literature suggests that innovation is non-neutral, hence, it should be constantly assessed against equity and social inclusion. This paper draws from a robust qualitative empirical dataset gathered through 4-years research conducted in Boston to provide readers with an evidence-based set of recommendations drawn from the lessons learned through the investigation of the chosen innovation districts in the Boston area. The evaluative framework used for assessing the overall performance of the chosen case studies stems from the Habitat III Sustainable Development Goals rationale. The concept of inclusive growth has been considered essential to assess the social innovation domain in each of the chosen cases. The key success factors for the development of the Boston innovation ecosystem can be generalized as follows: 1) a quadruple helix model embedded in the physical structure of the two cities (Boston and Cambridge), in which anchor Higher Education (HE) institutions continuously nurture the Entrepreneurial Environment. 2) an entrepreneurial approach emerging from the local governments, eliciting risk-taking and bottom-up civic participation in tackling key issues in the city. 3) a networking structure of some intermediary actors supporting entrepreneurial collaboration, cross-fertilization and co-creation, which collaborate at multiple-scales thus enabling positive spillovers from the stronger to the weaker contexts. 4) awareness of the socio-economic value of the built environment as enabler of cognitive networks allowing activation of the collective intelligence. 5) creation of civic-led spaces enabling grassroot collaboration and cooperation. Evidence shows that there is not a single magic recipe for the successful implementation of place-based and social innovation-driven strategies. On the contrary, the variety of place-grounded combinations of micro and macro initiatives, embedded in the social and spatial fine grain of places and encompassing a diversity of actors, can create the conditions enabling places to thrive and local economic activities to grow in a sustainable way.

Keywords: innovation-driven sustainable Eco-systems , place-based sustainable urban development, sustainable innovation districts, social innovation, urban policie

Procedia PDF Downloads 104
24658 Role of Web Graphics and Interface in Creating Visitor Trust

Authors: Pramika J. Muthya

Abstract:

This paper investigates the impact of web graphics and interface design on building visitor trust in websites. A quantitative survey approach was used to examine how aesthetic and usability elements of website design influence user perceptions of trustworthiness. 133 participants aged 18-25 who live in urban Bangalore and engage in online transactions were recruited via convenience sampling. Data was collected through an online survey measuring trust levels based on website design, using validated constructs like the Visual Aesthetic of Websites Inventory (VisAWI). Statistical analysis, including ordinal regression, was conducted to analyze the results. The findings show a statistically significant relationship between web graphics and interface design and the level of trust visitors place in a website. The goodness-of-fit statistics and highly significant model fitting information provide strong evidence for rejecting the null hypothesis of no relationship. Well-designed visual aesthetics like simplicity, diversity, colorfulness, and craftsmanship are key drivers of perceived credibility. Intuitive navigation and usability also increase trust. The results emphasize the strategic importance for companies to invest in appealing graphic design, consistent with existing theoretical frameworks. There are also implications for taking a user-centric approach to web design and acknowledging the reciprocal link between pre-existing user trust and perception of visuals. While generalizable, limitations include possible sampling and self-report biases. Further research can build on these findings to deepen understanding of nuanced cultural and temporal factors influencing online trust. Overall, this study makes a significant contribution by providing empirical evidence that reinforces the crucial impact of thoughtful graphic design in fostering lasting user trust in websites.

Keywords: web graphics, interface design, visitor trust, website design, aesthetics, user experience, online trust, visual design, graphic design, user perceptions, user expectations

Procedia PDF Downloads 51
24657 BigCrypt: A Probable Approach of Big Data Encryption to Protect Personal and Business Privacy

Authors: Abdullah Al Mamun, Talal Alkharobi

Abstract:

As data size is growing up, people are became more familiar to store big amount of secret information into cloud storage. Companies are always required to need transfer massive business files from one end to another. We are going to lose privacy if we transmit it as it is and continuing same scenario repeatedly without securing the communication mechanism means proper encryption. Although asymmetric key encryption solves the main problem of symmetric key encryption but it can only encrypt limited size of data which is inapplicable for large data encryption. In this paper we propose a probable approach of pretty good privacy for encrypt big data using both symmetric and asymmetric keys. Our goal is to achieve encrypt huge collection information and transmit it through a secure communication channel for committing the business and personal privacy. To justify our method an experimental dataset from three different platform is provided. We would like to show that our approach is working for massive size of various data efficiently and reliably.

Keywords: big data, cloud computing, cryptography, hadoop, public key

Procedia PDF Downloads 320
24656 Implementation of Big Data Concepts Led by the Business Pressures

Authors: Snezana Savoska, Blagoj Ristevski, Violeta Manevska, Zlatko Savoski, Ilija Jolevski

Abstract:

Big data is widely accepted by the pharmaceutical companies as a result of business demands create through legal pressure. Pharmaceutical companies have many legal demands as well as standards’ demands and have to adapt their procedures to the legislation. To manage with these demands, they have to standardize the usage of the current information technology and use the latest software tools. This paper highlights some important aspects of experience with big data projects implementation in a pharmaceutical Macedonian company. These projects made improvements of their business processes by the help of new software tools selected to comply with legal and business demands. They use IT as a strategic tool to obtain competitive advantage on the market and to reengineer the processes towards new Internet economy and quality demands. The company is required to manage vast amounts of structured as well as unstructured data. For these reasons, they implement projects for emerging and appropriate software tools which have to deal with big data concepts accepted in the company.

Keywords: big data, unstructured data, SAP ERP, documentum

Procedia PDF Downloads 271
24655 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis

Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales

Abstract:

This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.

Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis

Procedia PDF Downloads 194