Search results for: metal ion detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5828

Search results for: metal ion detection

3668 Performance and Damage Detection of Composite Structural Insulated Panels Subjected to Shock Wave Loading

Authors: Anupoju Rajeev, Joanne Mathew, Amit Shelke

Abstract:

In the current study, a new type of Composite Structural Insulated Panels (CSIPs) is developed and investigated its performance against shock loading which can replace the conventional wooden structural materials. The CSIPs is made of Fibre Cement Board (FCB)/aluminum as the facesheet and the expanded polystyrene foam as the core material. As tornadoes are very often in the western countries, it is suggestable to monitor the health of the CSIPs during its lifetime. So, the composite structure is installed with three smart sensors located randomly at definite locations. Each smart sensor is fabricated with an embedded half stainless phononic crystal sensor attached to both ends of the nylon shaft that can resist the shock and impact on facesheet as well as polystyrene foam core and safeguards the system. In addition to the granular crystal sensors, the accelerometers are used in the horizontal spanning and vertical spanning with a definite offset distance. To estimate the health and damage of the CSIP panel using granular crystal sensor, shock wave loading experiments are conducted. During the experiments, the time of flight response from the granular sensors is measured. The main objective of conducting shock wave loading experiments on the CSIP panels is to study the effect and the sustaining capacity of the CSIP panels in the extreme hazardous situations like tornados and hurricanes which are very common in western countries. The effects have been replicated using a shock tube, an instrument that can be used to create the same wind and pressure intensity of tornado for the experimental study. Numerous experiments have been conducted to investigate the flexural strength of the CSIP. Furthermore, the study includes the damage detection using three smart sensors embedded in the CSIPs during the shock wave loading.

Keywords: composite structural insulated panels, damage detection, flexural strength, sandwich structures, shock wave loading

Procedia PDF Downloads 149
3667 Atomic Layer Deposition of Metal Oxides on Si/C Materials for the Improved Cycling Stability of High-Capacity Lithium-Ion Batteries

Authors: Philipp Stehle, Dragoljub Vrankovic, Montaha Anjass

Abstract:

Due to its high availability and extremely high specific capacity, silicon (Si) is the most promising anode material for next generation lithium-ion batteries (LIBs). However, Si anodes are suffering from high volume changes during cycling causing unstable solid-electrolyte interface (SEI). One approach for mitigation of these effects is to embed Si particles into a carbon matrix to create silicon/carbon composites (Si/C). These typically show more stable electrochemical performance than bare silicon materials. Nevertheless, the same failure mechanisms mentioned earlier appear in a less pronounced form. In this work, we further improved the cycling performance of two commercially available Si/C materials by coating thin metal oxide films of different thicknesses on the powders via Atomic Layer Deposition (ALD). The coated powders were analyzed via ICP-OES and AFM measurements. Si/C-graphite anodes with automotive-relevant loadings (~3.5 mAh/cm2) were processed out of the materials and tested in half coin cells (HCCs) and full pouch cells (FPCs). During long-term cycling in FPCs, a significant improvement was observed for some of the ALD-coated materials. After 500 cycles, the capacity retention was already up to 10% higher compared to the pristine materials. Cycling of the FPCs continued until they reached a state of health (SOH) of 80%. By this point, up to the triple number of cycles were achieved by ALD-coated compared to pristine anodes. Post-mortem analysis via various methods was carried out to evaluate the differences in SEI formation and thicknesses.

Keywords: silicon anodes, li-ion batteries, atomic layer deposition, silicon-carbon composites, surface coatings

Procedia PDF Downloads 127
3666 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 94
3665 Development, Evaluation and Scale-Up of a Mental Health Care Plan (MHCP) in Nepal

Authors: Nagendra P. Luitel, Mark J. D. Jordans

Abstract:

Globally, there is a significant gap between the number of individuals in need of mental health care and those who actually receive treatment. The evidence is accumulating that mental health services can be delivered effectively by primary health care workers through community-based programs and task-sharing approaches. Changing the role of specialist mental health workers from service delivery to building clinical capacity of the primary health care (PHC) workers could help in reducing treatment gap in low and middle-income countries (LMICs). We developed a comprehensive mental health care plan in 2012 and evaluated its feasibility and effectiveness over the past three years. Initially, a mixed method formative study was conducted for the development of mental health care plan (MHCP). Routine monitoring and evaluation data, including client flow and reports of satisfaction, were obtained from beneficiaries (n=135) during the pilot-testing phase. Repeated community survey (N=2040); facility detection survey (N=4704) and the cohort study (N=576) were conducted for evaluation of the MHCP. The resulting MHCP consists of twelve packages divided over the community, health facility, and healthcare organization platforms. Detection of mental health problems increased significantly after introducing MHCP. Service implementation data support the real-life applicability of the MHCP, with reasonable treatment uptake. Currently, MHCP has been implemented in the entire Chitwan district where over 1400 people (438 people with depression, 406 people with psychosis, 181 people with epilepsy, 360 people with alcohol use disorder and 51 others) have received mental health services from trained health workers. Key barriers were identified and addressed, namely dissatisfaction with privacy, perceived burden among health workers, high drop-out rates and continue the supply of medicines. The results indicated that involvement of PHC workers in detection and management of mental health problems is an effective strategy to minimize treatment gap on mental health care in Nepal.

Keywords: mental health, Nepal, primary care, treatment gap

Procedia PDF Downloads 297
3664 Removal of Lead Ions from Aqueous Medium Using Devised Column Filters Packed with Chitosan from Trash Crab Shells: A Characterization Study

Authors: Charles Klein O. Gorit, Mark Tristan J. Quimque Jr., M. Cecilia V. Almeda, Concepcion M. Salvana

Abstract:

Chitosan is a promising biopolymer commonly found in crustacean shells that has plausible effects in water purification and wastewater treatment. It is a primary derivative of chitin and considered second of the most abundant biopolymer prior to cellulose. Morphological analysis had been done using Scanning Electron Microscopy with Energy Dispersive Microscopy (SEM/EDS), and due to its porous nature, it showcases a certain degree of porosity, hence, larger adsorption site of heavy metal. The Energy Dispersive Spectroscopy of the chitosan and ‘lead-bound’ chitosan, shows a relative increase of percent abundance of lead cation from 1.44% to 2.08% hence, adsorption occurs. Chitosan, as a nitrogenous polysaccharide, subjected to Fourier transform infrared spectroscopy (FTIR) analysis shows amide bands ranging from 1635.36 cm⁻¹ for amide 1 band and 1558.40 cm-1 for amide 2 band with NH stretching. For ‘lead-bound’ chitosan, the FT-IR analysis shows a change in peaks upon adsorption of Pb(II) cation. The spectrum shows broadening of OH and NH stretching band. Such observation can be attributed to the probability that the attachment of Pb(II) ions is in these functional groups. A column filter was devised with lead-bound chitosan to determine the zero point charge (pHzpc) of the biopolymer. The results show that at pH 8.34, below than the zpc level of literatures cited for lead which ranges from pH 4 to 7, favors the adsorption site of chitosan and its capability to adsorb traces amount of aqueous lead.

Keywords: chitosan, biopolymer, FT-IR, SEM, zero-point charge, heavy metal, lead ions

Procedia PDF Downloads 154
3663 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree

Procedia PDF Downloads 412
3662 Applications of Hyperspectral Remote Sensing: A Commercial Perspective

Authors: Tuba Zahra, Aakash Parekh

Abstract:

Hyperspectral remote sensing refers to imaging of objects or materials in narrow conspicuous spectral bands. Hyperspectral images (HSI) enable the extraction of spectral signatures for objects or materials observed. These images contain information about the reflectance of each pixel across the electromagnetic spectrum. It enables the acquisition of data simultaneously in hundreds of spectral bands with narrow bandwidths and can provide detailed contiguous spectral curves that traditional multispectral sensors cannot offer. The contiguous, narrow bandwidth of hyperspectral data facilitates the detailed surveying of Earth's surface features. This would otherwise not be possible with the relatively coarse bandwidths acquired by other types of imaging sensors. Hyperspectral imaging provides significantly higher spectral and spatial resolution. There are several use cases that represent the commercial applications of hyperspectral remote sensing. Each use case represents just one of the ways that hyperspectral satellite imagery can support operational efficiency in the respective vertical. There are some use cases that are specific to VNIR bands, while others are specific to SWIR bands. This paper discusses the different commercially viable use cases that are significant for HSI application areas, such as agriculture, mining, oil and gas, defense, environment, and climate, to name a few. Theoretically, there is n number of use cases for each of the application areas, but an attempt has been made to streamline the use cases depending upon economic feasibility and commercial viability and present a review of literature from this perspective. Some of the specific use cases with respect to agriculture are crop species (sub variety) detection, soil health mapping, pre-symptomatic crop disease detection, invasive species detection, crop condition optimization, yield estimation, and supply chain monitoring at scale. Similarly, each of the industry verticals has a specific commercially viable use case that is discussed in the paper in detail.

Keywords: agriculture, mining, oil and gas, defense, environment and climate, hyperspectral, VNIR, SWIR

Procedia PDF Downloads 83
3661 Detection of PCD-Related Transcription Factors for Improving Salt Tolerance in Plant

Authors: A. Bahieldin, A. Atef, S. Edris, N. O. Gadalla, S. M. Hassan, M. A. Al-Kordy, A. M. Ramadan, A. S. M. Al- Hajar, F. M. El-Domyati

Abstract:

The idea of this work is based on a natural exciting phenomenon suggesting that suppression of genes related to the program cell death (or PCD) mechanism might help the plant cells to efficiently tolerate abiotic stresses. The scope of this work was the detection of PCD-related transcription factors (TFs) that might also be related to salt stress tolerance in plant. Two model plants, e.g., tobacco and Arabidopsis, were utilized in order to investigate this phenomenon. Occurrence of PCD was first proven by Evans blue staining and DNA laddering after tobacco leaf discs were treated with oxalic acid (OA) treatment (20 mM) for 24 h. A number of 31 TFs up regulated after 2 h and co-expressed with genes harboring PCD-related domains were detected via RNA-Seq analysis and annotation. These TFs were knocked down via virus induced gene silencing (VIGS), an RNA interference (RNAi) approach, and tested for their influence on triggering PCD machinery. Then, Arabidopsis SALK knocked out T-DNA insertion mutants in selected TFs analogs to those in tobacco were tested under salt stress (up to 250 mM NaCl) in order to detect the influence of different TFs on conferring salt tolerance in Arabidopsis. Involvement of a number of candidate abiotic-stress related TFs was investigated.

Keywords: VIGS, PCD, RNA-Seq, transcription factors

Procedia PDF Downloads 276
3660 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan

Authors: Asma Shaheen, Javed Iqbal

Abstract:

The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.

Keywords: groundwater, geostatistical, heavy metals, industrial effluent

Procedia PDF Downloads 232
3659 The Optimization of the Parameters for Eco-Friendly Leaching of Precious Metals from Waste Catalyst

Authors: Silindile Gumede, Amir Hossein Mohammadi, Mbuyu Germain Ntunka

Abstract:

Goal 12 of the 17 Sustainable Development Goals (SDGs) encourages sustainable consumption and production patterns. This necessitates achieving the environmentally safe management of chemicals and all wastes throughout their life cycle and the proper disposal of pollutants and toxic waste. Fluid catalytic cracking (FCC) catalysts are widely used in the refinery to convert heavy feedstocks to lighter ones. During the refining processes, the catalysts are deactivated and discarded as hazardous toxic solid waste. Spent catalysts (SC) contain high-cost metal, and the recovery of metals from SCs is a tactical plan for supplying part of the demand for these substances and minimizing the environmental impacts. Leaching followed by solvent extraction, has been found to be the most efficient method to recover valuable metals with high purity from spent catalysts. However, the use of inorganic acids during the leaching process causes a secondary environmental issue. Therefore, it is necessary to explore other alternative efficient leaching agents that are economical and environmentally friendly. In this study, the waste catalyst was collected from a domestic refinery and was characterised using XRD, ICP, XRF, and SEM. Response surface methodology (RSM) and Box Behnken design were used to model and optimize the influence of some parameters affecting the acidic leaching process. The parameters selected in this investigation were the acid concentration, temperature, and leaching time. From the characterisation results, it was found that the spent catalyst consists of high concentrations of Vanadium (V) and Nickel (Ni); hence this study focuses on the leaching of Ni and V using a biodegradable acid to eliminate the formation of the secondary pollution.

Keywords: eco-friendly leaching, optimization, metal recovery, leaching

Procedia PDF Downloads 72
3658 Automatic Detection Of Diabetic Retinopathy

Authors: Zaoui Ismahene, Bahri Sidi Mohamed, Abbassa Nadira

Abstract:

Diabetic Retinopathy (DR) is a leading cause of vision impairment and blindness among individuals with diabetes. Early diagnosis is crucial for effective treatment, yet current diagnostic methods rely heavily on manual analysis of retinal images, which can be time-consuming and prone to subjectivity. This research proposes an automated system for the detection of DR using Jacobi wavelet-based feature extraction combined with Support Vector Machines (SVM) for classification. The integration of wavelet analysis with machine learning techniques aims to improve the accuracy, efficiency, and reliability of DR diagnosis. In this study, retinal images are preprocessed through normalization, resizing, and noise reduction to enhance the quality of the images. The Jacobi wavelet transform is then applied to extract both global and local features, effectively capturing subtle variations in retinal images that are indicative of DR. These extracted features are fed into an SVM classifier, known for its robustness in handling high-dimensional data and its ability to achieve high classification accuracy. The SVM classifier is optimized using parameter tuning to improve performance. The proposed methodology is evaluated using a comprehensive dataset of retinal images, encompassing a range of DR severity levels. The results show that the proposed system outperforms traditional wavelet-based methods, demonstrating significantly higher accuracy, sensitivity, and specificity in detecting DR. By leveraging the discriminative power of Jacobi wavelet features and the robustness of SVM, the system provides a promising solution for the automatic detection of DR, which could assist ophthalmologists in early diagnosis and intervention, ultimately improving patient outcomes. This research highlights the potential of combining wavelet-based image processing with machine learning for advancing automated medical diagnostics.

Keywords: iabetic retinopathy (DR), Jacobi wavelets, machine learning, feature extraction, classification

Procedia PDF Downloads 13
3657 Vibratinal Spectroscopic Identification of Beta-Carotene in Usnic Acid and PAHs as a Potential Martian Analogue

Authors: A. I. Alajtal, H. G. M. Edwards, M. A. Elbagermi

Abstract:

Raman spectroscopy is currently a part of the instrumentation suite of the ESA ExoMars mission for the remote detection of life signatures in the Martian surface and subsurface. Terrestrial analogues of Martian sites have been identified and the biogeological modifications incurred as a result of extremophilic activity have been studied. Analytical instrumentation protocols for the unequivocal detection of biomarkers in suitable geological matrices are critical for future unmanned explorations, including the forthcoming ESA ExoMars mission to search for life on Mars scheduled for 2018 and Raman spectroscopy is currently a part of the Pasteur instrumentation suite of this mission. Here, Raman spectroscopy using 785nm excitation was evaluated for determining various concentrations of beta-carotene in admixture with polyaromatic hydrocarbons and usnic acid have been investigated by Raman microspectrometry to determine the lowest levels detectable in simulation of their potential identification remotely in geobiological conditions in Martian scenarios. Information from this study will be important for the development of a miniaturized Raman instrument for targetting Martian sites where the biosignatures of relict or extant life could remain in the geological record.

Keywords: raman spectroscopy, mars-analog, beta-carotene, PAHs

Procedia PDF Downloads 343
3656 Experimental Investigation of Mechanical Friction Influence in Semi-Hydraulic Clutch Actuation System Over Mileage

Authors: Abdul Azarrudin M. A., Pothiraj K., Kandasamy Satish

Abstract:

In the current automobile scenario, there comes a demand on more sophistication and comfort drive feel on passenger segments. The clutch pedal effort is one such customer touch feels in manual transmission vehicles, where the driver continuous to operate the clutch pedal in his entire the driving maneuvers. Hence optimum pedal efforts at green condition and over mileage to be ensured for fatigue free the driving. As friction is one the predominant factor and its tendency to challenge the technicality by causing the function degradation. One such semi-hydraulic systems shows load efficiency of about 70-75% over lifetime only due to the increase in friction which leads to the increase in pedal effort and cause fatigue to the vehicle driver. This work deals with the study of friction with different interfaces and its influence in the fulcrum points over mileage, with the objective of understanding the trend over mileage and determining the alternative ways of resolving it. In that one way of methodology is the reduction of friction by experimental investigation of various friction reduction interfaces like metal-to-metal interface and it has been tried out and is detailed further. Also, the specific attention has been put up considering the fulcrum load and its contact interfaces to move on with this study. The main results of the experimental data with the influence of three different contact interfaces are being presented with an ultimate intention of ending up into less fatigue with longer consistent pedal effort, thus smoothens the operation of the end user. The Experimental validation also has been done through rig-level test setup to depict the performance at static condition and in-parallel vehicle level test has also been performed to record the additional influences if any.

Keywords: automobile, clutch, friction, fork

Procedia PDF Downloads 127
3655 Poly (L-Lysine)-Coated Liquid Crystal Droplets for Sensitive Detection of DNA and Its Applications in Controlled Release of Drug Molecules

Authors: Indu Verma, Santanu Kumar Pal

Abstract:

Interactions between DNA and adsorbed Poly (L-lysine) (PLL) on liquid crystal (LC) droplets were investigated using polarizing optical microcopy (POM) and epi-fluorescence microscopy. Earlier, we demonstrated that adsorption of PLL to the LC/aqueous interface resulted in homeotropic orientation of the LC and thus exhibited a radial configuration of the LC confined within the droplets. Subsequent adsorption of DNA (single stranded DNA/double stranded DNA) at PLL coated LC droplets was found to trigger a LC reorientation within the droplets leading to pre-radial/bipolar configuration of those droplets. To our surprise, subsequent exposure of complementary ssDNA (c-ssDNA) to ssDNA/ adsorbed PLL modified LC droplets did not cause the LC reorientation. This is likely due to the formation of polyplexes (DNA-PLL complex) as confirmed by fluorescence microscopy and atomic force microscopy. In addition, dsDNA adsorbed PLL droplets have been found to be effectively used to displace (controlled release) propidium iodide (a model drug) encapsulated within dsDNA over time. These observations suggest the potential for a label free droplet based LC detection system that can respond to DNA and may provide a simple method to develop DNA-based drug nano-carriers.

Keywords: DNA biosensor, drug delivery, interfaces, liquid crystal droplets

Procedia PDF Downloads 302
3654 Radiation Annealing of Radiation Embrittlement of the Reactor Pressure Vessel

Authors: E. A. Krasikov

Abstract:

Influence of neutron irradiation on RPV steel degradation are examined with reference to the possible reasons of the substantial experimental data scatter and furthermore – nonstandard (non-monotonous) and oscillatory embrittlement behavior. In our glance, this phenomenon may be explained by presence of the wavelike component in the embrittlement kinetics. We suppose that the main factor affecting steel anomalous embrittlement is fast neutron intensity (dose rate or flux), flux effect manifestation depends on state-of-the-art fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Data on radiation damage change including through the ex-service RPVs taking into account chemical factor, fast neutron fluence and neutron flux were obtained and analyzed. In our opinion, controversy in the estimation on neutron flux on radiation degradation impact may be explained by presence of the wavelike component in the embrittlement kinetics. Therefore, flux effect manifestation depends on fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Moreover as a hypothesis we suppose that at some stages of irradiation damaged metal have to be partially restored by irradiation i.e. neutron bombardment. Nascent during irradiation structure undergo occurring once or periodically transformation in a direction both degradation and recovery of the initial properties. According to our hypothesis, at some stage(s) of metal structure degradation neutron bombardment became recovering factor. As a result, oscillation arises that in turn leads to enhanced data scatter.

Keywords: annealing, embrittlement, radiation, RPV steel

Procedia PDF Downloads 346
3653 Comparison of Real-Time PCR and FTIR with Chemometrics Technique in Analysing Halal Supplement Capsules

Authors: Mohd Sukri Hassan, Ahlam Inayatullah Badrul Munir, M. Husaini A. Rahman

Abstract:

Halal authentication and verification in supplement capsules are highly required as the gelatine available in the market can be from halal or non-halal sources. It is an obligation for Muslim to consume and use the halal consumer goods. At present, real-time polymerase chain reaction (RT-PCR) is the most common technique being used for the detection of porcine and bovine DNA in gelatine due to high sensitivity of the technique and higher stability of DNA compared to protein. In this study, twenty samples of supplements capsules from different products with different Halal logos were analyzed for porcine and bovine DNA using RT-PCR. Standard bovine and porcine gelatine from eurofins at a range of concentration from 10-1 to 10-5 ng/µl were used to determine the linearity range, limit of detection and specificity on RT-PCR (SYBR Green method). RT-PCR detected porcine (two samples), bovine (four samples) and mixture of porcine and bovine (six samples). The samples were also tested using FT-IR technique where normalized peak of IR spectra were pre-processed using Savitsky Golay method before Principal Components Analysis (PCA) was performed on the database. Scores plot of PCA shows three clusters of samples; bovine, porcine and mixture (bovine and porcine). The RT-PCR and FT-IR with chemometrics technique were found to give same results for porcine gelatine samples which can be used for Halal authentication.

Keywords: halal, real-time PCR, gelatine, chemometrics

Procedia PDF Downloads 243
3652 Polymeric Composites with Synergetic Carbon and Layered Metallic Compounds for Supercapacitor Application

Authors: Anukul K. Thakur, Ram Bilash Choudhary, Mandira Majumder

Abstract:

In this technologically driven world, it is requisite to develop better, faster and smaller electronic devices for various applications to keep pace with fast developing modern life. In addition, it is also required to develop sustainable and clean sources of energy in this era where the environment is being threatened by pollution and its severe consequences. Supercapacitor has gained tremendous attention in the recent years because of its various attractive properties such as it is essentially maintenance-free, high specific power, high power density, excellent pulse charge/discharge characteristics, exhibiting a long cycle-life, require a very simple charging circuit and safe operation. Binary and ternary composites of conducting polymers with carbon and other layered transition metal dichalcogenides have shown tremendous progress in the last few decades. Compared with bulk conducting polymer, these days conducting polymers have gained more attention because of their high electrical conductivity, large surface area, short length for the ion transport and superior electrochemical activity. These properties make them very suitable for several energy storage applications. On the other hand, carbon materials have also been studied intensively, owing to its rich specific surface area, very light weight, excellent chemical-mechanical property and a wide range of the operating temperature. These have been extensively employed in the fabrication of carbon-based energy storage devices and also as an electrode material in supercapacitors. Incorporation of carbon materials into the polymers increases the electrical conductivity of the polymeric composite so formed due to high electrical conductivity, high surface area and interconnectivity of the carbon. Further, polymeric composites based on layered transition metal dichalcogenides such as molybdenum disulfide (MoS2) are also considered important because they are thin indirect band gap semiconductors with a band gap around 1.2 to 1.9eV. Amongst the various 2D materials, MoS2 has received much attention because of its unique structure consisting of a graphene-like hexagonal arrangement of Mo and S atoms stacked layer by layer to give S-Mo-S sandwiches with weak Van-der-Waal forces between them. It shows higher intrinsic fast ionic conductivity than oxides and higher theoretical capacitance than the graphite.

Keywords: supercapacitor, layered transition-metal dichalcogenide, conducting polymer, ternary, carbon

Procedia PDF Downloads 262
3651 Development of a Device for Detecting Fluids in the Esophagus

Authors: F. J. Puertas, M. Castro, A. Tebar, P. J. Fito, R. Gadea, J. M. Monzó, R. J. Colom

Abstract:

There is a great diversity of diseases that affect the integrity of the walls of the esophagus, generally of a digestive nature. Among them, gastroesophageal reflux is a common disease in the general population, affecting the patient's quality of life; however, there are still unmet diagnostic and therapeutic issues. The consequences of untreated or asymptomatic acid reflux on the esophageal mucosa are not only pain, heartburn, and acid regurgitation but also an increased risk of esophageal cancer. Currently, the diagnostic methods to detect problems in the esophageal tract are invasive and annoying, as 24-hour impedance-pH monitoring forces the patient to be uncomfortable for hours to be able to make a correct diagnosis. In this work, the development of a sensor able to measure in depth is proposed, allowing the detection of liquids circulating in the esophageal tract. The multisensor detection system is based on radiofrequency photospectrometry. At an experimental level, consumers representative of the population in terms of sex and age have been used, placing the sensors between the trachea and the diaphragm analyzing the measurements in vacuum, water, orange juice and saline medium. The results obtained have allowed us to detect the appearance of different liquid media in the esophagus, segregating them based on their ionic content.

Keywords: bioimpedance, dielectric spectroscopy, gastroesophageal reflux, GERD

Procedia PDF Downloads 106
3650 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 63
3649 Smart-Textile Containers for Urban Mobility

Authors: René Vieroth, Christian Dils, M. V. Krshiwoblozki, Christine Kallmayer, Martin Schneider-Ramelow, Klaus-Dieter Lang

Abstract:

Green urban mobility in commercial and private contexts is one of the great challenges for the continuously growing cities all over the world. Bicycle based solutions are already and since a long time the key to success. Modern developments like e-bikes and high-end cargo-bikes complement the portfolio. Weight, aerodynamic drag, and security for the transported goods are the key factors for working solutions. Recent achievements in the field of smart-textiles allowed the creation of a totally new generation of intelligent textile cargo containers, which fulfill those demands. The fusion of technical textiles, design and electrical engineering made it possible to create an ecological solution which is very near to become a product. This paper shows all the details of this solution that includes an especially developed sensor textile for cut detection, a protective textile layer for intrusion prevention, an universal-charging-unit for energy harvesting from diverse sources and a low-energy alarm system with GSM/GPRS connection, GPS location and RFID interface.

Keywords: cargo-bike, cut-detection, e-bike, energy-harvesting, green urban mobility, logistics, smart-textiles, textile-integrity sensor

Procedia PDF Downloads 319
3648 Optimization of MAG Welding Process Parameters Using Taguchi Design Method on Dead Mild Steel

Authors: Tadele Tesfaw, Ajit Pal Singh, Abebaw Mekonnen Gezahegn

Abstract:

Welding is a basic manufacturing process for making components or assemblies. Recent welding economics research has focused on developing the reliable machinery database to ensure optimum production. Research on welding of materials like steel is still critical and ongoing. Welding input parameters play a very significant role in determining the quality of a weld joint. The metal active gas (MAG) welding parameters are the most important factors affecting the quality, productivity and cost of welding in many industrial operations. The aim of this study is to investigate the optimization process parameters for metal active gas welding for 60x60x5mm dead mild steel plate work-piece using Taguchi method to formulate the statistical experimental design using semi-automatic welding machine. An experimental study was conducted at Bishoftu Automotive Industry, Bishoftu, Ethiopia. This study presents the influence of four welding parameters (control factors) like welding voltage (volt), welding current (ampere), wire speed (m/min.), and gas (CO2) flow rate (lit./min.) with three different levels for variability in the welding hardness. The objective functions have been chosen in relation to parameters of MAG welding i.e., welding hardness in final products. Nine experimental runs based on an L9 orthogonal array Taguchi method were performed. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the welding characteristics of dead mild steel plate and used in order to obtain optimum levels for every input parameter at 95% confidence level. The optimal parameters setting was found is welding voltage at 22 volts, welding current at 125 ampere, wire speed at 2.15 m/min and gas flow rate at 19 l/min by using the Taguchi experimental design method within the constraints of the production process. Finally, six conformations welding have been carried out to compare the existing values; the predicated values with the experimental values confirm its effectiveness in the analysis of welding hardness (quality) in final products. It is found that welding current has a major influence on the quality of welded joints. Experimental result for optimum setting gave a better hardness of welding condition than initial setting. This study is valuable for different material and thickness variation of welding plate for Ethiopian industries.

Keywords: Weld quality, metal active gas welding, dead mild steel plate, orthogonal array, analysis of variance, Taguchi method

Procedia PDF Downloads 486
3647 Functionalized Magnetic Iron Oxide Nanoparticles for Extraction of Protein and Metal Nanoparticles from Complex Fluids

Authors: Meenakshi Verma, Mandeep Singh Bakshi, Kultar Singh

Abstract:

Magnetic nanoparticles have received incredible importance in view of their diverse applications, which arise primarily due to their response to the external magnetic field. The magnetic behaviour of magnetic nanoparticles (NPs) helps them in numerous different ways. The most important amongst them is the ease with which they can be purified and also can be separated from the media in which they are present merely by applying an external magnetic field. This exceptional ease of separation of the magnetic NPs from an aqueous media enables them to use for extracting/removing metal pollutants from complex aqueous medium. Functionalized magnetic NPs can be subjected for the metallic impurities extraction if are favourably adsorbed on the NPs surfaces. We have successfully used the magnetic NPs as vehicles for gold and silver NPs removal from the complex fluids. The NPs loaded with gold and silver NPs pollutant fractions has been easily removed from the aqueous media by using external magnetic field. Similarly, we have used the magnetic NPs for extraction of protein from complex media and then constantly washed with pure water to eliminate the unwanted surface adsorbed components for quantitative estimation. The purified and protein loaded magnetic NPs are best analyzed with SDS Page to not only for characterization but also for separating the protein fractions. A collective review of the results indicates that we have synthesized surfactant coated iron oxide NPs and then functionalized these with selected materials. These surface active magnetic NPs work very well for the extraction of metallic NPs from the aqueous bulk and make the whole process environmentally sustainable. Also, magnetic NPs-Au/Ag/Pd hybrids have excellent protein extracting properties. They are much easier to use in order to extract the magnetic impurities as well as protein fractions under the effect of external magnetic field without any complex conventional purification methods.

Keywords: magnetic nanoparticles, protein, functionalized, extraction

Procedia PDF Downloads 106
3646 Free Raducal Scavenging Activity of Fractionated Extract and Structural Elucidation of Isolated Compounds from Hydrocotyl Bonariensis Comm. Ex Lam Leaves

Authors: Emmanuel O Ajani, Sabiu S, Mariam Zakari, Fisayo A Bamisaye

Abstract:

Hydrocotyl bonariensis is a plant which anticataractogenic potentials have been reported. In the present study an attempt was made to evaluate the in vitro antioxidant activity of the fractionates of the leaves extract and also characterize some of its chemical constituents. DPPH, H₂O₂, OH and NO free radical scavenging, metal chelating and reducing power activity was used to evaluate the antioxidant activity of the crude extract fractionates. Fresh leaves of Hydrocotyl bonariensis leaves were extracted in 70% methanol. The extract was partitioned with different solvent system of increasing polarity (n-hexane, chloroform, ethyl acetate methanol and water). Compounds were isolated from the aqueous practitionate using accelerated gradient chromatography, vacuum liquid chromatography, preparative TLC and conventional column chromatography. The presence of the chemical groups was established with HPLC and Fourier Transform Infra Red. The structures of isolated compounds were elucidated by spectroscopic study and chemical shifts. Data from the study indicates that all the fractionates contain compounds with free radical scavenging activity. This activity was more pronounced in the aqueous fractionate (DPPH IC₅₀, 0025 ± 0.011 mg/ml, metal chelating capacity 27.5%, OH- scavenging IC₅₀, 0.846 ± 0.037 mg/ml, H₂O₂ scavenging IC₅₀ 0.521 ± 0.015 mg/ml, reducing power IC₅₀ 0.248 ± 0.025 mg/ml and NO scavenging IC₅₀ 0.537 ± 0.038 mg/ml). Two compounds were isolated and when compared with data from the literature; the structures were suggestive of polyphenolic flavonoid, quercetin and 3-O-β-D-glucopyranosyl-sitosterol. The result indicates that H. bonariensis leaves contain bioactive compounds with antioxidant activity.

Keywords: antioxidant, cataract, free radical, flavonoids, hydrocotyl bonariensis

Procedia PDF Downloads 277
3645 Image Processing-Based Maize Disease Detection Using Mobile Application

Authors: Nathenal Thomas

Abstract:

In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.

Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot

Procedia PDF Downloads 78
3644 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID

Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis

Abstract:

Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.

Keywords: artificial intelligence, COVID, neural network, machine learning

Procedia PDF Downloads 100
3643 Molecular Detection and Characterization of Shiga Toxogenic Escherichia coli Associated with Dairy Product

Authors: Mohamed Al-Hazmi, Abdullah Al-Arfaj, Moussa Ihab

Abstract:

Raw, unpasteurized milk can carry dangerous bacteria such as Salmonella, E. coli, and Listeria, which are responsible for causing numerous foodborne illnesses. The objective of this study was molecular characterization of shiga toxogenic E. coli in raw milk collected from different Egyptian governorates by multiplex PCR. During the period of 25th May to 25th October 2012, a total of 320 bulk-tank milk samples were collected from 10 cow farms located in different Egyptian governorates. Bacteriological examination of milk samples revealed the presence of E. coli organisms in 65 samples (20.3%), serotyping of the E. coli isolates revealed, 35 strains (10.94%) O111, 15 strains (4.69%) O157: H7, 10 strains (3.13%) O128 and 5 strains (1.56%) O119. Multiplex PCR for detection of shiga toxin type 2 and intimin genes revealed positive amplification of 255 bp fragment of shiga toxin type 2 gene and 384 bp fragment of intimin gene from all E. coli serovar O157: H7, while from serovar O111 were 25 (71.43%), 20 (57.14%) and from serovar O128 were 6 (60%), 8 (80%), respectively. The results of multiplex PCR assay are useful for identification of STEC possessing the eaeA and stx2 genes.

Keywords: raw milk, E. coli, multiplex PCR, Shiga toxin type 2, intimin gene

Procedia PDF Downloads 310
3642 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique

Authors: S. S. Sravanthi, Swati Ghosh Acharyya

Abstract:

Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity. 

Keywords: automobiles, welding, corrosion, lap joints, Micro XRD

Procedia PDF Downloads 125
3641 Change Detection of Vegetative Areas Using Land Use Land Cover Derived from NDVI of Desert Encroached Areas

Authors: T. Garba, T. O. Quddus, Y. Y. Babanyara, M. A. Modibbo

Abstract:

Desertification is define as the changing of productive land into a desert as the result of ruination of land by man-induced soil erosion, which forces famers in the affected areas to move migrate or encourage into reserved areas in search of a fertile land for their farming activities. This study therefore used remote sensing imageries to determine the level of changes in the vegetative areas. To achieve that Normalized Difference of the Vegetative Index (NDVI), classified imageries and image slicing derived from landsat TM 1986, land sat ETM 1999 and Nigeria sat 1 2007 were used to determine changes in vegetations. From the Classified imageries it was discovered that there a more natural vegetation in classified images of 1986 than that of 1999 and 2007. This finding is also future in the three NDVI imageries, it was discovered that there is increased in high positive pixel value from 0.04 in 1986 to 0.22 in 1999 and to 0.32 in 2007. The figures in the three histogram also indicted that there is increased in vegetative areas from 29.15 Km2 in 1986, to 60.58 Km2 in 1999 and then to 109 Km2 in 2007. The study recommends among other things that there is need to restore natural vegetation through discouraging of farming activities in and around the natural vegetation in the study area.

Keywords: vegetative index, classified imageries, change detection, landsat, vegetation

Procedia PDF Downloads 365
3640 Klotho Level as a Marker of Low Bone Mineral Density in Egyptian Sickle Cell Disease Patients

Authors: Mona Hamdy, Iman Shaheen, Hadeel Seif Eldin, Basma Ali, Omnia Abdeldayem

Abstract:

Summary: Bone involvement of sickle cell disease (SCD) patients varies from acute clinical manifestations of painful vaso-occlusive crises or osteomyelitis to more chronic affection of bone mineral density (BMD) and debilitating osteonecrosis and osteoporosis. Secreted klotho protein is involved in calcium (Ca) reabsorption in the kidney. This study aimed to measure serum klotho levels in children with SCD to determine the possibility of using it as a marker of low BMD in children with SCD in correlation with a dual-energy radiograph absorptiometry scan. This study included 60 sickle disease patients and 30 age-matched and sex-matched control participants without SCD. A highly statistically significant difference was found between patients with normal BMD and those with low BMD, with serum Ca and klotho levels being lower in the latter group. Klotho serum level correlated positively with both serum Ca and BMD. Serum klotho level showed 94.9% sensitivity and 95.2% specificity in the detection of low BMD. Both serum Ca and klotho serum levels may be useful markers for detection of low BMD related to SCD with high sensitivity and specificity; however, klotho may be a better indicator as it is less affected by the nutritional and endocrinal status of patients or by intake of Ca supplements.

Keywords: sickle cell disease, BMD, osteoporosis, DEXA, klotho

Procedia PDF Downloads 107
3639 Reliability of Dissimilar Metal Soldered Joint in Fabrication of Electromagnetic Interference Shielded Door Frame

Authors: Rehan Waheed, Hasan Aftab Saeed, Wasim Tarar, Khalid Mahmood, Sajid Ullah Butt

Abstract:

Electromagnetic Interference (EMI) shielded doors made from brass extruded channels need to be welded with shielded enclosures to attain optimum shielding performance. Control of welding induced distortion is a problem in welding dissimilar metals like steel and brass. In this research, soldering of the steel-brass joint has been proposed to avoid weld distortion. The material used for brass channel is UNS C36000. The thickness of brass is defined by the manufacturing process, i.e. extrusion. The thickness of shielded enclosure material (ASTM A36) can be varied to produce joint between the dissimilar metals. Steel sections of different gauges are soldered using (91% tin, 9% zinc) solder to the brass, and strength of joint is measured by standard test procedures. It is observed that thin steel sheets produce a stronger bond with brass. The steel sections further require to be welded with shielded enclosure steel sheets through TIG welding process. Stresses and deformation in the vicinity of soldered portion is calculated through FE simulation. Crack formation in soldered area is also studied through experimental work. It has been found that in thin sheets deformation produced due to applied force is localized and has no effect on soldered joint area whereas in thick sheets profound cracks have been observed in soldered joint. The shielding effectiveness of EMI shielded door is compromised due to these cracks. The shielding effectiveness of the specimens is tested and results are compared.

Keywords: dissimilar metal, EMI shielding, joint strength, soldering

Procedia PDF Downloads 166