Search results for: low cost production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12431

Search results for: low cost production

10271 Analysis of Supply Chain Risk Management Strategies: Case Study of Supply Chain Disruptions

Authors: Marcelo Dias Carvalho, Leticia Ishikawa

Abstract:

Supply Chain Risk Management refers to a set of strategies used by companies to avoid supply chain disruption caused by damage at production facilities, natural disasters, capacity issues, inventory problems, incorrect forecasts, and delays. Many companies use the techniques of the Toyota Production System, which in a way goes against a better management of supply chain risks. This paper studies key events in some multinationals to analyze the trade-off between the best supply chain risk management techniques and management policies designed to create lean enterprises. The result of a good balance of these actions is the reduction of losses, increased customer trust in the company and better preparedness to face the general risks of a supply chain.

Keywords: just in time, lean manufacturing, supply chain disruptions, supply chain management

Procedia PDF Downloads 338
10270 Comparison of the Material Response Based on Production Technologies of Metal Foams

Authors: Tamas Mankovits

Abstract:

Lightweight cellular-type structures like metal foams have excellent mechanical properties, therefore the interest in these materials is widely spreading as load-bearing structural elements, e.g. as implants. Numerous technologies are available to produce metal foams. In this paper the material response of closed cell foam structures produced by direct foaming and additive technology is compared. The production technology circumstances are also investigated. Geometrical variations are developed for foam structures produced by additive manufacturing and simulated by finite element method to be able to predict the mechanical behavior.

Keywords: additive manufacturing, direct foaming, finite element method, metal foam

Procedia PDF Downloads 197
10269 Use of GIS and Remote Sensing for Calculating the Installable Photovoltaic and Thermal Power on All the Roofs of the City of Aix-en-Provence, France

Authors: Sofiane Bourchak, Sébastien Bridier

Abstract:

The objective of this study is to show how to calculate and map solar energy’s quantity (instantaneous and accumulated global solar radiation during the year) available on roofs in the city Aix-en-Provence which has a population of 140,000 inhabitants. The result is a geographic information system (GIS) layer, which represents hourly and monthly the production of solar energy on roofs throughout the year. Solar energy professionals can use it to optimize implementations and to size energy production systems. The results are presented as a set of maps, tables and histograms in order to determine the most effective costs in Aix-en-Provence in terms of photovoltaic power (electricity) and thermal power (hot water).

Keywords: geographic information system, photovoltaic, thermal, solar potential, solar radiation

Procedia PDF Downloads 437
10268 Building Information Modeling Acting as Protagonist and Link between the Virtual Environment and the Real-World for Efficiency in Building Production

Authors: Cristiane R. Magalhaes

Abstract:

Advances in Information and Communication Technologies (ICT) have led to changes in different sectors particularly in architecture, engineering, construction, and operation (AECO) industry. In this context, the advent of BIM (Building Information Modeling) has brought a number of opportunities in the field of the digital architectural design process bringing integrated design concepts that impact on the development, elaboration, coordination, and management of ventures. The project scope has begun to contemplate, from its original stage, the third dimension, by means of virtual environments (VEs), composed of models containing different specialties, substituting the two-dimensional products. The possibility to simulate the construction process of a venture in a VE starts at the beginning of the design process offering, through new technologies, many possibilities beyond geometrical digital modeling. This is a significant change and relates not only to form, but also to how information is appropriated in architectural and engineering models and exchanged among professionals. In order to achieve the main objective of this work, the Design Science Research Method will be adopted to elaborate an artifact containing strategies for the application and use of ICTs from BIM flows, with pre-construction cut-off to the execution of the building. This article intends to discuss and investigate how BIM can be extended to the site acting as a protagonist and link between the Virtual Environments and the Real-World, as well as its contribution to the integration of the value chain and the consequent increase of efficiency in the production of the building. The virtualization of the design process has reached high levels of development through the use of BIM. Therefore it is essential that the lessons learned with the virtual models be transposed to the actual building production increasing precision and efficiency. Thus, this paper discusses how the Fourth Industrial Revolution has impacted on property developments and how BIM could be the propellant acting as the main fuel and link between the virtual environment and the real production for the structuring of flows, information management and efficiency in this process. The results obtained are partial and not definite up to the date of this publication. This research is part of a doctoral thesis development, which focuses on the discussion of the impact of digital transformation in the construction of residential buildings in Brazil.

Keywords: building information modeling, building production, digital transformation, ICT

Procedia PDF Downloads 123
10267 Sustainable Intensification of Agriculture in Victoria’s Food Bowl: Optimizing Productivity with the use of Decision-Support Tools

Authors: M. Johnson, R. Faggian, V. Sposito

Abstract:

A participatory and engaged approach is key in connecting agricultural managers to sustainable agricultural systems to support and optimize production in Victoria’s food bowl. A sustainable intensification (SI) approach is well documented globally, but participation rates amongst Victorian farmers is fragmentary, and key outcomes and implementation strategies are poorly understood. Improvement in decision-support management tools and a greater understanding of the productivity gains available upon implementation of SI is necessary. This paper reviews the current understanding and uptake of SI practices amongst farmers in one of Victoria’s premier food producing regions, the Goulburn Broken; and it spatially analyses the potential for this region to adapt to climate change and optimize food production. A Geographical Information Systems (GIS) approach is taken to develop an interactive decision-support tool that can be accessible to on-ground agricultural managers. The tool encompasses multiple criteria analysis (MCA) that identifies factors during the construction phase of the tool, using expert witnesses and regional knowledge, framed within an Analytical Hierarchy Process. Given the complexities of the interrelations between each of the key outcomes, this participatory approach, in which local realities and factors inform the key outcomes and help to strategies for a particular region, results in a robust strategy for sustainably intensifying production in key food producing regions. The creation of an interactive, locally embedded, decision-support management and education tool can help to close the gap between farmer knowledge and production, increase on-farm adoption of sustainable farming strategies and techniques, and optimize farm productivity.

Keywords: agriculture, decision-support management tool, Geographic Information System, GIS, sustainable intensification

Procedia PDF Downloads 166
10266 Case Study of Mechanised Shea Butter Production in South-Western Nigeria Using the LCA Approach from Gate-to-Gate

Authors: Temitayo Abayomi Ewemoje, Oluwamayowa Oluwafemi Oluwaniyi

Abstract:

Agriculture and food processing, industry are among the largest industrial sectors that uses large amount of energy. Thus, a larger amount of gases from their fuel combustion technologies is being released into the environment. The choice of input energy supply not only directly having affects the environment, but also poses a threat to human health. The study was therefore designed to assess each unit production processes in order to identify hotspots using life cycle assessments (LCA) approach in South-western Nigeria. Data such as machine power rating, operation duration, inputs and outputs of shea butter materials for unit processes obtained at site were used to modelled Life Cycle Impact Analysis on GaBi6 (Holistic Balancing) software. Four scenarios were drawn for the impact assessments. Material sourcing from Kaiama, Scenarios 1, 3 and Minna Scenarios 2, 4 but different heat supply sources (Liquefied Petroleum Gas ‘LPG’ Scenarios 1, 2 and 10.8 kW Diesel Heater, scenarios 3, 4). Modelling of shea butter production on GaBi6 was for 1kg functional unit of shea butter produced and the Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) midpoint assessment was tool used to was analyse the life cycle inventories of the four scenarios. Eight categories in all four Scenarios were observed out of which three impact categories; Global Warming Potential (GWP) (0.613, 0.751, 0.661, 0.799) kg CO2¬-Equiv., Acidification Potential (AP) (0.112, 0.132, 0.129, 0.149) kg H+ moles-Equiv., and Smog (0.044, 0.059, 0.049, 0.063) kg O3-Equiv., categories had the greater impacts on the environment in Scenarios 1-4 respectively. Impacts from transportation activities was also seen to contribute more to these environmental impact categories due to large volume of petrol combusted leading to releases of gases such as CO2, CH4, N2O, SO2, and NOx into the environment during the transportation of raw shea kernel purchased. The ratio of transportation distance from Minna and Kaiama to production site was approximately 3.5. Shea butter unit processes with greater impacts in all categories was the packaging, milling and with the churning processes in ascending order of magnitude was identified as hotspots that may require attention. From the 1kg shea butter functional unit, it was inferred that locating production site at the shortest travelling distance to raw material sourcing and combustion of LPG for heating would reduce all the impact categories assessed on the environment.

Keywords: GaBi6, Life cycle assessment, shea butter production, TRACI

Procedia PDF Downloads 324
10265 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines

Authors: Kamyar Tolouei, Ehsan Moosavi

Abstract:

In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.

Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization

Procedia PDF Downloads 105
10264 Sustainability Assessment of Municipal Wastewater Treatment

Authors: Yousra Zakaria Ahmed, Ahmed El Gendy, Salah El Haggar

Abstract:

In this paper, our methodology to assess sustainability of wastewater treatment technologies in Egypt is presented. The preliminary list of factors to be considered, as well as their ranking listed. The factors include, but are not limited to pollutants removal efficiency and energy consumption under the environmental dimension, construction cost, operation and maintenance costs and required land area cost under the economic dimension and public acceptance, noise and generating job opportunities for local residents. This methodology is intended to be a user-friendly screening tool to support the decision making process when investigating different wastewater treatment technologies in Egypt. Based on the research work results presented in this paper, it can be generally concluded that the categorization of some of the social and environmental aspects of sustainability is subjective and highly dependent on the local conditions and researchers’ background.

Keywords: sustainability, wastewater treatment, sustainability assessment, Egypt

Procedia PDF Downloads 509
10263 A Model Suggestion on Competitiveness and Sustainability of SMEs in Developing Countries

Authors: Ahmet Diken, Tahsin Karabulut

Abstract:

The factor which developing countries are in need is capital. Such countries make an effort to increase their income in order to meet their expenses for employment, infrastructure, superstructure investments, education, health and defense. The sole income of the countries is taxes collected from businesses. The businesses should drive profit and return in order to be able to toll. In a world where competition exists, different strategies may be followed by business in developing countries and they must specify their target markets. İn order to minimize cost and maximize profit, SMEs have to concentrate on target markets and select cost oriented strategy. In this study, a theoretical model is suggested that SME firms have to act as cluster between each other, and also must be optimal provider for large scale firms. SMEs’ policy must be supported by public. This relationship can benefit large scale firms to have brand over the world, and this organization increases value added for developing countries.

Keywords: competitiveness, countries, SMEs developing, sustainability

Procedia PDF Downloads 315
10262 Targeting and Developing the Remaining Pay in an Ageing Field: The Ovhor Field Experience

Authors: Christian Ihwiwhu, Nnamdi Obioha, Udeme John, Edward Bobade, Oghenerunor Bekibele, Adedeji Awujoola, Ibi-Ada Itotoi

Abstract:

Understanding the complexity in the distribution of hydrocarbon in a simple structure with flow baffles and connectivity issues is critical in targeting and developing the remaining pay in a mature asset. Subtle facies changes (heterogeneity) can have a drastic impact on reservoir fluids movement, and this can be crucial to identifying sweet spots in mature fields. This study aims to evaluate selected reservoirs in Ovhor Field, Niger Delta, Nigeria, with the objective of optimising production from the field by targeting undeveloped oil reserves, bypassed pay, and gaining an improved understanding of the selected reservoirs to increase the company’s reservoir limits. The task at the Ovhor field is complicated by poor stratigraphic seismic resolution over the field. 3-D geological (sedimentology and stratigraphy) interpretation, use of results from quantitative interpretation, and proper understanding of production data have been used in recognizing flow baffles and undeveloped compartments in the field. The full field 3-D model has been constructed in such a way as to capture heterogeneities and the various compartments in the field to aid the proper simulation of fluid flow in the field for future production prediction, proper history matching and design of good trajectories to adequately target undeveloped oil in the field. Reservoir property models (porosity, permeability, and net-to-gross) have been constructed by biasing log interpreted properties to a defined environment of deposition model whose interpretation captures the heterogeneities expected in the studied reservoirs. At least, two scenarios have been modelled for most of the studied reservoirs to capture the range of uncertainties we are dealing with. The total original oil in-place volume for the four reservoirs studied is 157 MMstb. The cumulative oil and gas production from the selected reservoirs are 67.64 MMstb and 9.76 Bscf respectively, with current production rate of about 7035 bopd and 4.38 MMscf/d (as at 31/08/2019). Dynamic simulation and production forecast on the 4 reservoirs gave an undeveloped reserve of about 3.82 MMstb from two (2) identified oil restoration activities. These activities include side-tracking and re-perforation of existing wells. This integrated approach led to the identification of bypassed oil in some areas of the selected reservoirs and an improved understanding of the studied reservoirs. New wells have/are being drilled now to test the results of our studies, and the results are very confirmatory and satisfying.

Keywords: facies, flow baffle, bypassed pay, heterogeneities, history matching, reservoir limit

Procedia PDF Downloads 129
10261 Film, Globalization, Resistance: Emirati Film Production as a Medium of Localization

Authors: Chrysavgi Papagianni

Abstract:

The tension between global and local has been a usual topic in discussions regarding globalization. Instead of reproducing the usual ‘gloom and doom’ arguments surrounding many of these discussions, the present paper will focus on Emirati film production and more particularly on the work of the acclaimed director Nojoom Alghanem, in order to highlight how local culture can, in fact, become a force of resistance, or else a medium of localization. As a matter of fact, Alghanem’s films, especially Sounds of the Sea, Hamama and Nearby Sky are apt examples of a localizing force in action as they tap into the audience’s dormant memories of the pre-oil past, in a country that has been swept by unprecedented development and globalization in the last 60 years. What becomes evident is that the remediation of memories in Alghanem’s films makes them more ‘mobile’ and thus allows them to circulate better in today’s network society.

Keywords: culture, film, globalization, identity

Procedia PDF Downloads 291
10260 Considering Effect of Wind Turbines in the Distribution System

Authors: Majed Ahmadi

Abstract:

In recent years, the high penetration of different types of renewable energy sources (RESs) has affected most of the available strategies. The main motivations behind the high penetration of RESs are clean energy, modular system and easy installation. Among different types of RESs, wind turbine (WT) is an interesting choice referring to the availability of wind in almost any area. The new technologies of WT can provide energy from residential applications to wide grid connected applications. Regarding the WT, advantages such as reducing the dependence on fossil fuels and enhancing the independence and flexibility of large power grid are the most prominent. Nevertheless, the high volatile nature of wind speed injects much uncertainty in the grid that if not managed optimally can put the analyses far from the reality.the aim of this project is scrutiny and to offer proper ways for renewing distribution networks with envisage the effects of wind power plants and uncertainties related to distribution systems including wind power generating plants output rate and consumers consuming rate and also decrease the incidents of the whole network losses, amount of pollution, voltage refraction and cost extent.to solve this problem we use dual point estimate method.And algorithm used in this paper is reformed bat algorithm, which will be under exact research furthermore the results.

Keywords: order renewal, wind turbines, bat algorithm, outspread production, uncertainty

Procedia PDF Downloads 285
10259 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite

Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala

Abstract:

The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.

Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂

Procedia PDF Downloads 131
10258 Environmental Benefits of Corn Cob Ash in Lateritic Soil Cement Stabilization for Road Works in a Sub-Tropical Region

Authors: Ahmed O. Apampa, Yinusa A. Jimoh

Abstract:

The potential economic viability and environmental benefits of using a biomass waste, such as corn cob ash (CCA) as pozzolan in stabilizing soils for road pavement construction in a sub-tropical region was investigated. Corn cob was obtained from Maya in South West Nigeria and processed to ash of characteristics similar to Class C Fly Ash pozzolan as specified in ASTM C618-12. This was then blended with ordinary Portland cement in the CCA:OPC ratios of 1:1, 1:2 and 2:1. Each of these blends was then mixed with lateritic soil of ASHTO classification A-2-6(3) in varying percentages from 0 – 7.5% at 1.5% intervals. The soil-CCA-Cement mixtures were thereafter tested for geotechnical index properties including the BS Proctor Compaction, California Bearing Ratio (CBR) and the Unconfined Compression Strength Test. The tests were repeated for soil-cement mix without any CCA blending. The cost of the binder inputs and optimal blends of CCA:OPC in the stabilized soil were thereafter analyzed by developing algorithms that relate the experimental data on strength parameters (Unconfined Compression Strength, UCS and California Bearing Ratio, CBR) with the bivariate independent variables CCA and OPC content, using Matlab R2011b. An optimization problem was then set up minimizing the cost of chemical stabilization of laterite with CCA and OPC, subject to the constraints of minimum strength specifications. The Evolutionary Engine as well as the Generalized Reduced Gradient option of the Solver of MS Excel 2010 were used separately on the cells to obtain the optimal blend of CCA:OPC. The optimal blend attaining the required strength of 1800 kN/m2 was determined for the 1:2 CCA:OPC as 5.4% mix (OPC content 3.6%) compared with 4.2% for the OPC only option; and as 6.2% mix for the 1:1 blend (OPC content 3%). The 2:1 blend did not attain the required strength, though over a 100% gain in UCS value was obtained over the control sample with 0% binder. Upon the fact that 0.97 tonne of CO2 is released for every tonne of cement used (OEE, 2001), the reduced OPC requirement to attain the same result indicates the possibility of reducing the net CO2 contribution of the construction industry to the environment ranging from 14 – 28.5% if CCA:OPC blends are widely used in soil stabilization, going by the results of this study. The paper concludes by recommending that Nigeria and other developing countries in the sub-tropics with abundant stock of biomass waste should look in the direction of intensifying the use of biomass waste as fuel and the derived ash for the production of pozzolans for road-works, thereby reducing overall green house gas emissions and in compliance with the objectives of the United Nations Framework on Climate Change.

Keywords: corn cob ash, biomass waste, lateritic soil, unconfined compression strength, CO2 emission

Procedia PDF Downloads 373
10257 Illegal, Unreported and Unregulated (IUU) Fishing in ASEAN Countries

Authors: Wen Chiat Lee, K. Kuperan Viswanathan

Abstract:

Illegal, Unreported and unregulated (IUU) fishing brings great losses to the economies of the fishing nations. Understanding the reasons contributing to IUU fishing is crucial in reducing it. Economic, institutional and social factors are key drivers of IIU fishing. The economic factor is the main contributor to IUU fishing. The two possible ways to curb the IUU fishing is highlighted. One way is to reduce the revenue from IUU fishing and another way is to increase the cost of IUU fishing. There are three costs of IUU fishing that can be increased namely the operating, capital and risk costs. Approaches for reducing the economic rent or profit from IUU fishing are developed and directions for reducing IUU fishing are also suggested. Improved registration of fishing vessels, preventing entry of illegal fish products and most importantly, developing co-management of fisheries are the ways forward for reducing IUU fishing. All governments in ASEAN must work in tandem with the stakeholders involved such as fishers, fishermen agencies or associations to exchange information for reducing the transaction cost of IUU fishing.

Keywords: Illegal, unreported and unregulated (IUU) fishing, co-management, fisheries management, economic rent framework

Procedia PDF Downloads 232
10256 Differences in Vitamin D Status in Caucasian and Asian Women Following Ultraviolet Radiation (UVR) Exposure

Authors: O. Hakim, K. Hart, P. McCabe, J. Berry, L. E. Rhodes, N. Spyrou, A. Alfuraih, S. Lanham-New

Abstract:

It is known that skin pigmentation reduces the penetration of ultraviolet radiation (UVR) and thus photosynthesis of 25(OH)D. However, the ethnic differences in 25(OH)D production remain to be fully elucidated. This study aimed to investigate the differences in vitamin D production between Asian and Caucasian postmenopausal women, in response to a defined, controlled UVB exposure. Seventeen women; nine white Caucasian (skin phototype II and III), eight South Asian women (skin phototype IV and V) participated in the study, acting as their controls. Three blood samples were taken for measurement of 25(OH)D during the run-in period (nine days, no sunbed exposure) after which all subjects underwent an identical UVR exposure protocol irrespective of skin colour (nine days, three sunbed sessions: 6, 8 and 8 minutes respectively with approximately 80% of body surface exposed). Skin tone was measured four times during the study. Both groups showed a gradual increase in 25(OH)D with final levels significantly higher than baseline (p<0.01). 25(OH)D concentration mean from a baseline of 43.58±19.65 to 57.80±17.11 nmol/l among Caucasian and from 27.03±23.92 to 44.73±17.74 nmol/l among Asian women. The baseline status of vitamin D was classified as deficient among the Asian women and insufficient among the Caucasian women. The percentage increase in vitamin D3 among Caucasians was 39.86% (21.02) and 207.78% (286.02) in Asian subjects respectively. This greater response to UVR exposure reflects the lower baseline levels of the Asian subjects. The mixed linear model analysis identified a significant effect of duration of UVR exposure on the production of 25(OH)D. However, the model shows no significant effect of ethnicity and skin tone on the production of 25(OH)D. These novel findings indicate that people of Asian ethnicity have the full capability to produce a similar amount of vitamin D compared to the Caucasian group; initial vitamin D concentration influences the amount of UVB needed to reach equal serum concentrations.

Keywords: ethnicity, Caucasian, South Asian, vitamin D, ultraviolet radiation, UVR

Procedia PDF Downloads 534
10255 The Role of Robotization in Reshoring: An Overview of the Implications on International Trade

Authors: Thinh Huu Nguyen, Shahab Sharfaei, Jindřich Soukup

Abstract:

In the pursuit of reducing production costs, offshoring has been a major trend throughout global value chains for many decades. However, with the rise of advanced technologies, new opportunities to automate their production are changing the motivation of multinational firms to go offshore. Instead, many firms are working to relocate their offshored activities from developing economies back to their home countries. This phenomenon, known as reshoring, has recently garnered much attention as it becomes clear that automation in advanced countries might have major implications not only on their own economies but also through international trade on the economy of low-income countries, including their labor market outcomes and their comparative advantages. Thus, while using robots to substitute human labor may lower the relative costs of producing at home, it has the potential to decrease employment and demand for exports from developing economies through reshoring. In this paper, we investigate the recent literature to provide a further understanding of the relationships between robotization and the reshoring of production. Moreover, we analyze the impact of robot adoption on international trade in both developed and emerging markets. Finally, we identify the research gaps and provide avenues for future research in international economics. This study is a part of the project funded by the Internal Grant Agency (IGA) of the Faculty of Business Administration, Prague University of Economics and Business.

Keywords: automation, robotization, reshoring, international trade

Procedia PDF Downloads 109
10254 Potential of Enhancing Oil Recovery in Omani Oil Fields via Biopolymer Injection

Authors: Yahya Al-Wahaibi, Saif Al-Bahry, Abdulkadir Elshafie, Ali Al-Bemani, Sanket Joshi

Abstract:

Microbial enhanced oil recovery is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. There are a variety of metabolites produced by microorganisms that can be useful for oil recovery, like biopolymers-polysaccharides secreted by microbes, biodegradable thus environmentally friendly. Some fungi like Schizophyllum commune (a type of mushroom), and Aureobasidium pullulans are reported to produce biopolymers-schizophyllan and pullulan. Hence, we have procured a microbial strain (Schizophyllum commune) from American Type Culture Collection, which is reported for producing a biopolymer and also isolated several Omani strains of Aureobasidium pullulans from different samples. Studies were carried out for maintenance of the strains and primary screening of production media and environmental conditions for growth of S. commune and Omani A. pullulans isolates, for 30 days. The observed optimum growth and production temperature was ≤35 °C for S. commune and Omani A. pullulans isolates. Better growth was observed for both types of fungi under shaking conditions. The initial yield of lyophilized schizophyllan was ≥3.0 g/L, and the yield of pullulan was ≥0.5g/L. Both schizophyllan and pullulan were extracted in crude form and were partially identified by Fourier transform infrared spectroscopy (FTIR), which showed partial similarity in chemical structure with published biopolymers. The produced pullulan and schizophyllan increased the viscosity from 9-20 cp of the control media (without biopolymer) to 20 - 121.4 cp of the cell free broth at 0.1 s-1 shear rate at range of temperatures from 25–45 °C. Enhanced biopolymer production and its physicochemical and rheological properties under different environmental conditions (different temperatures, salt concentrations and wide range of pH), complete characterization and effects on oil recovery enhancement were also investigated in this study.

Keywords: Aureobasidium pullulans, biopolymer, oil recovery enhancement, Schizophyllum commune

Procedia PDF Downloads 390
10253 Integration of FMEA and Human Factor in the Food Chain Risk Assessment

Authors: Mohsen Shirani, Micaela Demichela

Abstract:

During the last decades, a number of food crises such as Bovine Spongiform Encephalopathy (BSE), Mad-Cow disease, Dioxin in chicken food, Food-and-Mouth Disease (FMD), have certainly inflicted the reliability of the food industry. Consequently, the trend in applying different scientific methods of risk assessment in food safety has obtained more attentions in the academic and practice. However, lack of practical approach considering entire food supply chain is tangible in the academic literature. In this regard, this paper aims to apply risk assessment tool (FMEA) with integration of Human Factor along the entire supply chain of food production and test the method in a case study of Diary production, and analyze its results.

Keywords: FMEA, food supply chain, risk assessment, human factor

Procedia PDF Downloads 447
10252 Utilizing IoT for Waste Collection: A Review of Technologies for Eco-Friendly Waste Management

Authors: Fatemehsadat Mousaviabarbekouh

Abstract:

Population growth and changing consumption patterns have led to waste management becoming a significant global challenge. With projections indicating that nearly 67% of the Earth's population will live in megacities by 2050, there is a pressing need for smart solutions to address citizens' demands. Waste collection, facilitated by the Internet of Things (IoT), offers an efficient and cost-effective approach. This study aims to review the utilization of IoT for waste collection and explore technologies that promote eco-friendly waste management. The research focuses on information and communication technologies (ICTs), including spatial, identification, acquisition, and data communication technologies. Additionally, the study examines various energy harvesting technologies to further reduce costs. The findings indicate that the application of these technologies can lead to significant cost savings, energy efficiency, and ultimately reshape the future of waste management.

Keywords: waste collection, IoT, smart cities, eco-friendly, information and communication technologies, energy harvesting

Procedia PDF Downloads 112
10251 An Investigation on Smartphone-Based Machine Vision System for Inspection

Authors: They Shao Peng

Abstract:

Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.

Keywords: automated visual inspection, deep learning, machine vision, mobile application

Procedia PDF Downloads 124
10250 Methodological Aspect of Emergy Accounting in Co-Production Branching Systems

Authors: Keshab Shrestha, Hung-Suck Park

Abstract:

Emergy accounting of the systems networks is guided by a definite rule called ‘emergy algebra’. The systems networks consist of two types of branching. These are the co-product branching and split branching. The emergy accounting procedure for both the branching types is different. According to the emergy algebra, each branch in the co-product branching has different transformity values whereas the split branching has the same transformity value. After the transformity value of each branch is determined, the emergy is calculated by multiplying this with the energy. The aim of this research is to solve the problems in determining the transformity values in the co-product branching through the introduction of a new methodology, the modified physical quantity method. Initially, the existing methodologies for emergy accounting in the co-product branching is discussed and later, the modified physical quantity method is introduced with a case study of the Eucalyptus pulp production. The existing emergy accounting methodologies in the co-product branching has wrong interpretations with incorrect emergy calculations. The modified physical quantity method solves those problems of emergy accounting in the co-product branching systems. The transformity value calculated for each branch is different and also applicable in the emergy calculations. The methodology also strictly follows the emergy algebra rules. This new modified physical quantity methodology is a valid approach in emergy accounting particularly in the multi-production systems networks.

Keywords: co-product branching, emergy accounting, emergy algebra, modified physical quantity method, transformity value

Procedia PDF Downloads 292
10249 Distributed Cost-Based Scheduling in Cloud Computing Environment

Authors: Rupali, Anil Kumar Jaiswal

Abstract:

Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc.  Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively.  Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.

Keywords: physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model

Procedia PDF Downloads 168
10248 Mapping of Renovation Potential in Rudersdal Municipality Based on a Sustainability Indicator Framework

Authors: Barbara Eschen Danielsen, Morten Niels Baxter, Per Sieverts Nielsen

Abstract:

Europe is currently in an energy and climate crisis, which requires more sustainable solutions than what has been used to before. Europe uses 40% of its energy in buildings so there has come a significant focus on trying to find and commit to new initiatives to reduce energy consumption in buildings. The European Union has introduced a building standard in 2021 to be upheld by 2030. This new building standard requires a significant reduction of CO2 emissions from both privately and publicly owned buildings. The overall aim is to achieve a zero-emission building stock by 2050. EU is revising the Energy Performance of Buildings Directive (EPBD) as part of the “Fit for 55” package. It was adopted on March 14, 2023. The new directive’s main goal is to renovate the least energy-efficient homes in Europe. There will be a cost for the home owner with a renovation project, but there will also be an improvement in energy efficiency and, therefore, a cost reduction. After the implementation of the EU directive, many homeowners will have to focus their attention on how to make the most effective energy renovations of their homes. The new EU directive will affect almost one million Danish homes (30%), as they do not meet the newly implemented requirements for energy efficiency. The problem for this one mio homeowners is that it is not easy to decide which renovation project they should consider. The houses are build differently and there are many possible solutions. The main focus of this paper is to identify the most impactful solutions and evaluate their impact and evaluating them with a criteria based sustainability indicator framework. The result of the analysis give each homeowner an insight in the various renovation options, including both advantages and disadvantages with the aim of avoiding unnecessary costs and errors while minimizing their CO2 footprint. Given that the new EU directive impacts a significant number of home owners and their homes both in Denmark and the rest of the European Union it is crucial to clarify which renovations have the most environmental impact and most cost effective. We have evaluated the 10 most impactful solutions and evaluated their impact in an indicator framework which includes 9 indicators and covers economic, environmental as well as social factors. We have packaged the result of the analysis in three packages, the most cost effective (short term), the most cost effective (long-term) and the most sustainable. The results of the study secure transparency and thereby provides homeowners with a tool to help their decision-making. The analysis is based on mostly qualitative indicators, but it will be possible to evaluate most of the indicators quantitively in a future study.

Keywords: energy efficiency, building renovation, renovation solutions, building energy performance criteria

Procedia PDF Downloads 89
10247 A Comparative Study on Supercritical C02 and Water as Working Fluids in a Heterogeneous Geothermal Reservoir

Authors: Musa D. Aliyu, Ouahid Harireche, Colin D. Hills

Abstract:

The incapability of supercritical C02 to transport and dissolve mineral species from the geothermal reservoir to the fracture apertures and other important parameters in heat mining makes it an attractive substance for Heat extraction from hot dry rock. In other words, the thermodynamic efficiency of hot dry rock (HDR) reservoirs also increases if supercritical C02 is circulated at excess temperatures of 3740C without the drawbacks connected with silica dissolution. Studies have shown that circulation of supercritical C02 in homogenous geothermal reservoirs is quite encouraging; in comparison to that of the water. This paper aims at investigating the aforementioned processes in the case of the heterogeneous geothermal reservoir located at the Soultz site (France). The MultiPhysics finite element package COMSOL with an interface of coupling different processes encountered in the geothermal reservoir stimulation is used. A fully coupled numerical model is developed to study the thermal and hydraulic processes in order to predict the long-term operation of the basic reservoir parameters that give optimum energy production. The results reveal that the temperature of the SCC02 at the production outlet is higher than that of water in long-term stimulation; as the temperature is an essential ingredient in rating the energy production. It is also observed that the mass flow rate of the SCC02 is far more favourable compared to that of water.

Keywords: FEM, HDR, heterogeneous reservoir, stimulation, supercritical C02

Procedia PDF Downloads 385
10246 Investigating the Effectiveness of a 3D Printed Composite Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design.

Keywords: additive manufacturing, carbon fiber, composite tooling, molds

Procedia PDF Downloads 114
10245 The Impact of Large-Scale Wind Energy Development on Islands’ Interconnection to the Mainland System

Authors: Marina Kapsali, John S. Anagnostopoulos

Abstract:

Greek islands’ interconnection (IC) with larger power systems, such as the mainland grid, is a crucial issue that has attracted a lot of interest; however, the recent economic recession that the country undergoes together with the highly capital intensive nature of this kind of projects have stalled or sifted the development of many of those on a more long-term basis. On the other hand, most of Greek islands are still heavily dependent on the lengthy and costly supply chain of oil imports whilst the majority of them exhibit excellent potential for wind energy (WE) applications. In this respect, the main purpose of the present work is to investigate −through a parametric study which varies both in wind farm (WF) and submarine IC capacities− the impact of large-scale WE development on the IC of the third in size island of Greece (Lesbos) with the mainland system. The energy and economic performance of the system is simulated over a 25-year evaluation period assuming two possible scenarios, i.e. S(a): without the contribution of the local Thermal Power Plant (TPP) and S(b): the TPP is maintained to ensure electrification of the island. The economic feasibility of the two options is investigated in terms of determining their Levelized Cost of Energy (LCOE) including also a sensitivity analysis on the worst/reference/best Cases. According to the results, Lesbos island IC presents considerable economic interest for covering part of island’s future electrification needs with WE having a vital role in this challenging venture.

Keywords: electricity generation cost, levelized cost of energy, mainland grid, wind energy rejection

Procedia PDF Downloads 215
10244 BI- And Tri-Metallic Catalysts for Hydrogen Production from Hydrogen Iodide Decomposition

Authors: Sony, Ashok N. Bhaskarwar

Abstract:

Production of hydrogen from a renewable raw material without any co-synthesis of harmful greenhouse gases is the current need for sustainable energy solutions. The sulfur-iodine (SI) thermochemical cycle, using intermediate chemicals, is an efficient process for producing hydrogen at a much lower temperature than that required for the direct splitting of water. No net byproduct forms in the cycle. Hydrogen iodide (HI) decomposition is a crucial reaction in this cycle, as the product, hydrogen, forms only in this step. It is an endothermic, reversible, and equilibrium-limited reaction. The theoretical equilibrium conversion at 550°C is just a meagre of 24%. There is a growing interest, therefore, in enhancing the HI conversion to near-equilibrium values at lower reaction temperatures and by possibly improving the rate. The reaction is relatively slow without a catalyst, and hence catalytic decomposition of HI has gained much significance. Bi-metallic Ni-Co, Ni-Mn, Co-Mn, and tri-metallic Ni-Co-Mn catalysts over zirconia support were tested for HI decomposition reaction. The catalysts were synthesized via a sol-gel process wherein Ni was 3wt% in all the samples, and Co and Mn had equal weight ratios in the Co-Mn catalyst. Powdered X-ray diffraction and Brunauer-Emmett-Teller surface area characterizations indicated the polycrystalline nature and well-developed mesoporous structure of all the samples. The experiments were performed in a vertical laboratory-scale packed bed reactor made of quartz, and HI (55 wt%) was fed along with nitrogen at a WHSV of 12.9 hr⁻¹. Blank experiments at 500°C for HI decomposition suggested conversion of less than 5%. The activities of all the different catalysts were checked at 550°C, and the highest conversion of 23.9% was obtained with the tri-metallic 3Ni-Co-Mn-ZrO₂ catalyst. The decreasing order of the performance of catalysts could be expressed as: 3Ni-Co-Mn-ZrO₂ > 3Ni-2Co-ZrO₂ > 3Ni-2Mn-ZrO₂ > 2.5Co-2.5Mn-ZrO₂. The tri-metallic catalyst remained active till 360 mins at 550°C without any observable drop in its activity/stability. Among the explored catalyst compositions, the tri-metallic catalyst certainly has a better performance for HI conversion when compared to the bi-metallic ones. Owing to their low costs and ease of preparation, these trimetallic catalysts could be used for large-scale hydrogen production.

Keywords: sulfur-iodine cycle, hydrogen production, hydrogen iodide decomposition, bi-, and tri-metallic catalysts

Procedia PDF Downloads 187
10243 Retrofitting Cement Plants with Oxyfuel Technology for Carbon Capture

Authors: Peloriadi Konstantina, Fakis Dimitris, Grammelis Panagiotis

Abstract:

Methods for carbon capture and storage (CCS) can play a key role in the reduction of industrial CO₂ emissions, especially in the cement industry, which accounts for 7% of global emissions. Cement industries around the world have committed to address this problem by reaching carbon neutrality by the year 2050. The aim of the work to be presented was to contribute to the decarbonization strategy by integrating the 1st generation oxyfuel technology in cement production plants. This technology has been shown to improve fuel efficiency while providing one of the most cost-effective solutions when compared to other capture methods. A validated simulation of the cement plant was thus used as a basis to develop an oxyfuel retrofitted cement process. The process model for the oxyfuel technology is developed on the ASPEN (Advanced System for Process Engineering) PLUSTM simulation software. This process consists of an Air Separation Unit (ASU), an oxyfuel cement plant with coal and alternative solid fuel (ASF) as feedstock, and a carbon dioxide processing unit (CPU). A detailed description and analysis of the CPU will be presented, including the findings of a literature review and simulation results, regarding the effects of flue gas impurities during operation. Acknowledgment: This research has been conducted in the framework of the EU funded AC2OCEM project, which investigates first and the second generation oxyfuel concepts.

Keywords: oxyfuel technology, carbon capture and storage, CO₂ processing unit, cement, aspen plus

Procedia PDF Downloads 193
10242 Comparing Russian and American Students’ Metaphorical Competence

Authors: Svetlana L. Mishlanova, Evgeniia V. Ermakova, Mariia E. Timirkina

Abstract:

The paper is concerned with the study of metaphor production in essays written by Russian and English native speakers in the framework of cognitive metaphor theory. It considers metaphorical competence as individual’s ability to recognize, understand and use metaphors in speech. The work analyzes the influence of visual metaphor on production and density of conventional and novel verbal metaphors. The main methods of research include experiment connected with image interpretation, metaphor identification procedure (MIPVU) and visual conventional metaphors identification procedure proposed by VisMet group. The research findings will be used in the project aimed at comparing metaphorical competence of native and non-native English speakers.

Keywords: metaphor, metaphorical competence, conventional, novel

Procedia PDF Downloads 286