Search results for: computational neural networks
3409 Topology Enhancement of a Straight Fin Using a Porous Media Computational Fluid Dynamics Simulation Approach
Authors: S. Wakim, M. Nemer, B. Zeghondy, B. Ghannam, C. Bouallou
Abstract:
Designing the optimal heat exchanger is still an essential objective to be achieved. Parametrical optimization involves the evaluation of the heat exchanger dimensions to find those that best satisfy certain objectives. This method contributes to an enhanced design rather than an optimized one. On the contrary, topology optimization finds the optimal structure that satisfies the design objectives. The huge development in metal additive manufacturing allowed topology optimization to find its way into engineering applications especially in the aerospace field to optimize metal structures. Using topology optimization in 3d heat and mass transfer problems requires huge computational time, therefore coupling it with CFD simulations can reduce this it. However, existed CFD models cannot be coupled with topology optimization. The CFD model must allow creating a uniform mesh despite the initial geometry complexity and also to swap the cells from fluid to solid and vice versa. In this paper, a porous media approach compatible with topology optimization criteria is developed. It consists of modeling the fluid region of the heat exchanger as porous media having high porosity and similarly the solid region is modeled as porous media having low porosity. The switching from fluid to solid cells required by topology optimization is simply done by changing each cell porosity using a user defined function. This model is tested on a plate and fin heat exchanger and validated by comparing its results to experimental data and simulations results. Furthermore, this model is used to perform a material reallocation based on local criteria to optimize a plate and fin heat exchanger under a constant heat duty constraint. The optimized fin uses 20% fewer materials than the first while the pressure drop is reduced by about 13%.Keywords: computational methods, finite element method, heat exchanger, porous media, topology optimization
Procedia PDF Downloads 1533408 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles
Procedia PDF Downloads 1433407 The Potential Threat of Cyberterrorism to the National Security: Theoretical Framework
Authors: Abdulrahman S. Alqahtani
Abstract:
The revolution of computing and networks could revolutionise terrorism in the same way that it has brought about changes in other aspects of life. The modern technological era has faced countries with a new set of security challenges. There are many states and potential adversaries who have the potential and capacity in cyberspace, which makes them able to carry out cyber-attacks in the future. Some of them are currently conducting surveillance, gathering and analysis of technical information, and mapping of networks and nodes and infrastructure of opponents, which may be exploited in future conflicts. This poster presents the results of the quantitative study (survey) to test the validity of the proposed theoretical framework for the cyber terrorist threats. This theoretical framework will help to in-depth understand these new digital terrorist threats. It may also be a practical guide for managers and technicians in critical infrastructure, to understand and assess the threats they face. It might also be the foundation for building a national strategy to counter cyberterrorism. In the beginning, it provides basic information about the data. To purify the data, reliability and exploratory factor analysis, as well as confirmatory factor analysis (CFA) were performed. Then, Structural Equation Modelling (SEM) was utilised to test the final model of the theory and to assess the overall goodness-of-fit between the proposed model and the collected data set.Keywords: cyberterrorism, critical infrastructure, , national security, theoretical framework, terrorism
Procedia PDF Downloads 4023406 Design of a Backlight Hyperspectral Imaging System for Enhancing Image Quality in Artificial Vision Food Packaging Online Inspections
Authors: Ferran Paulí Pla, Pere Palacín Farré, Albert Fornells Herrera, Pol Toldrà Fernández
Abstract:
Poor image acquisition is limiting the promising growth of industrial vision in food control. In recent years, the food industry has witnessed a significant increase in the implementation of automation in quality control through artificial vision, a trend that continues to grow. During the packaging process, some defects may appear, compromising the proper sealing of the products and diminishing their shelf life, sanitary conditions and overall properties. While failure to detect a defective product leads to major losses, food producers also aim to minimize over-rejection to avoid unnecessary waste. Thus, accuracy in the evaluation of the products is crucial, and, given the large production volumes, even small improvements have a significant impact. Recently, efforts have been focused on maximizing the performance of classification neural networks; nevertheless, their performance is limited by the quality of the input data. Monochrome linear backlight systems are most commonly used for online inspections of food packaging thermo-sealing zones. These simple acquisition systems fit the high cadence of the production lines imposed by the market demand. Nevertheless, they provide a limited amount of data, which negatively impacts classification algorithm training. A desired situation would be one where data quality is maximized in terms of obtaining the key information to detect defects while maintaining a fast working pace. This work presents a backlight hyperspectral imaging system designed and implemented replicating an industrial environment to better understand the relationship between visual data quality and spectral illumination range for a variety of packed food products. Furthermore, results led to the identification of advantageous spectral bands that significantly enhance image quality, providing clearer detection of defects.Keywords: artificial vision, food packaging, hyperspectral imaging, image acquisition, quality control
Procedia PDF Downloads 203405 Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration
Authors: Wei-Chia Huang, Jane Wang
Abstract:
Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation.Keywords: biodegradable polymer, 3d printing, neural regeneration, electrical stimulation
Procedia PDF Downloads 1033404 Computational Fluid Dynamics Modeling of Physical Mass Transfer of CO₂ by N₂O Analogy Using One Fluid Formulation in OpenFOAM
Authors: Phanindra Prasad Thummala, Umran Tezcan Un, Ahmet Ozan Celik
Abstract:
Removal of CO₂ by MEA (monoethanolamine) in structured packing columns depends highly on the gas-liquid interfacial area and film thickness (liquid load). CFD (computational fluid dynamics) is used to find the interfacial area, film thickness and their impact on mass transfer in gas-liquid flow effectively in any column geometry. In general modeling approaches used in CFD derive mass transfer parameters from standard correlations based on penetration or surface renewal theories. In order to avoid the effect of assumptions involved in deriving the correlations and model the mass transfer based solely on fluid properties, state of art approaches like one fluid formulation is useful. In this work, the one fluid formulation was implemented and evaluated for modeling the physical mass transfer of CO₂ by N₂O analogy in OpenFOAM CFD software. N₂O analogy avoids the effect of chemical reactions on absorption and allows studying the amount of CO₂ physical mass transfer possible in a given geometry. The computational domain in the current study was a flat plate with gas and liquid flowing in the countercurrent direction. The effect of operating parameters such as flow rate, the concentration of MEA and angle of inclination on the physical mass transfer is studied in detail. Liquid side mass transfer coefficients obtained by simulations are compared to the correlations available in the literature and it was found that the one fluid formulation was effectively capturing the effects of interface surface instabilities on mass transfer coefficient with higher accuracy. The high mesh refinement near the interface region was found as a limiting reason for utilizing this approach on large-scale simulations. Overall, the one fluid formulation is found more promising for CFD studies involving the CO₂ mass transfer.Keywords: one fluid formulation, CO₂ absorption, liquid mass transfer coefficient, OpenFOAM, N₂O analogy
Procedia PDF Downloads 2193403 General Purpose Graphic Processing Units Based Real Time Video Tracking System
Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai
Abstract:
Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.Keywords: connected components, embrace threads, local weighted kernel, structuring elements
Procedia PDF Downloads 4373402 Numerical Investigations on Dynamic Stall of a Pitching-Plunging Helicopter Blade Airfoil
Authors: Xie Kai, Laith K. Abbas, Chen Dongyang, Yang Fufeng, Rui Xiaoting
Abstract:
Effect of plunging motion on the pitch oscillating NACA0012 airfoil is investigated using computational fluid dynamics (CFD). A simulation model based on overset grid technology and k - ω shear stress transport (SST) turbulence model is established, and the numerical simulation results are compared with available experimental data and other simulations. Two cases of phase angle φ = 0, μ which represents the phase difference between the pitching and plunging motions of an airfoil are performed. Airfoil vortex generation, moving, and shedding are discussed in detail. Good agreements have been achieved with the available literature. The upward plunging motion made the equivalent angle of attack less than the actual one during pitching analysis. It is observed that the formation of the stall vortex is suppressed, resulting in a decrease in the lift coefficient and a delay of the stall angle. However, the downward plunging motion made the equivalent angle of attack higher the actual one.Keywords: dynamic stall, pitching-plunging, computational fluid dynamics, helicopter blade rotor, airfoil
Procedia PDF Downloads 2233401 Analyzing Industry-University Collaboration Using Complex Networks and Game Theory
Authors: Elnaz Kanani-Kuchesfehani, Andrea Schiffauerova
Abstract:
Due to the novelty of the nanotechnology science, its highly knowledge intensive content, and its invaluable application in almost all technological fields, the close interaction between university and industry is essential. A possible gap between academic strengths to generate good nanotechnology ideas and industrial capacity to receive them can thus have far-reaching consequences. In order to be able to enhance the collaboration between the two parties, a better understanding of knowledge transfer within the university-industry relationship is needed. The objective of this research is to investigate the research collaboration between academia and industry in Canadian nanotechnology and to propose the best cooperative strategy to maximize the quality of the produced knowledge. First, a network of all Canadian academic and industrial nanotechnology inventors is constructed using the patent data from the USPTO (United States Patent and Trademark Office), and it is analyzed with social network analysis software. The actual level of university-industry collaboration in Canadian nanotechnology is determined and the significance of each group of actors in the network (academic vs. industrial inventors) is assessed. Second, a novel methodology is proposed, in which the network of nanotechnology inventors is assessed from a game theoretic perspective. It involves studying a cooperative game with n players each having at most n-1 decisions to choose from. The equilibrium leads to a strategy for all the players to choose their co-worker in the next period in order to maximize the correlated payoff of the game. The payoffs of the game represent the quality of the produced knowledge based on the citations of the patents. The best suggestion for the next collaborative relationship is provided for each actor from a game theoretic point of view in order to maximize the quality of the produced knowledge. One of the major contributions of this work is the novel approach which combines game theory and social network analysis for the case of large networks. This approach can serve as a powerful tool in the analysis of the strategic interactions of the network actors within the innovation systems and other large scale networks.Keywords: cooperative strategy, game theory, industry-university collaboration, knowledge production, social network analysis
Procedia PDF Downloads 2583400 Development of Technologies for the Treatment of Nutritional Problems in Primary Care
Authors: Marta Fernández Batalla, José María Santamaría García, Maria Lourdes Jiménez Rodríguez, Roberto Barchino Plata, Adriana Cercas Duque, Enrique Monsalvo San Macario
Abstract:
Background: Primary Care Nursing is taking more autonomy in clinical decisions. One of the most frequent therapies to solve is related to the problems of maintaining a sufficient supply of food. Nursing diagnoses related to food are addressed by the nurse-family and community as the first responsible. Objectives and interventions are set according to each patient. To improve the goal setting and the treatment of these care problems, a technological tool is developed to help nurses. Objective: To evaluate the computational tool developed to support the clinical decision in feeding problems. Material and methods: A cross-sectional descriptive study was carried out at the Meco Health Center, Madrid, Spain. The study population consisted of four specialist nurses in primary care. These nurses tested the tool on 30 people with ‘need for nutritional therapy’. Subsequently, the usability of the tool and the satisfaction of the professional were sought. Results: A simple and convenient computational tool is designed for use. It has 3 main entrance fields: age, size, sex. The tool returns the following information: BMI (Body Mass Index) and caloric consumed by the person. The next step is the caloric calculation depending on the activity. It is possible to propose a goal of BMI or weight to achieve. With this, the amount of calories to be consumed is proposed. After using the tool, it was determined that the tool calculated the BMI and calories correctly (in 100% of clinical cases). satisfaction on nutritional assessment was ‘satisfactory’ or ‘very satisfactory’, linked to the speed of operations. As a point of improvement, the options of ‘stress factor’ linked to weekly physical activity. Conclusion: Based on the results, it is clear that the computational tools of decision support are useful in the clinic. Nurses are not only consumers of computational tools, but can develop their own tools. These technological solutions improve the effectiveness of nutrition assessment and intervention. We are currently working on improvements such as the calculation of protein percentages as a function of protein percentages as a function of stress parameters.Keywords: feeding behavior health, nutrition therapy, primary care nursing, technology assessment
Procedia PDF Downloads 2263399 A Numerical Hybrid Finite Element Model for Lattice Structures Using 3D/Beam Elements
Authors: Ahmadali Tahmasebimoradi, Chetra Mang, Xavier Lorang
Abstract:
Thanks to the additive manufacturing process, lattice structures are replacing the traditional structures in aeronautical and automobile industries. In order to evaluate the mechanical response of the lattice structures, one has to resort to numerical techniques. Ansys is a globally well-known and trusted commercial software that allows us to model the lattice structures and analyze their mechanical responses using either solid or beam elements. In this software, a script may be used to systematically generate the lattice structures for any size. On the one hand, solid elements allow us to correctly model the contact between the substrates (the supports of the lattice structure) and the lattice structure, the local plasticity, and the junctions of the microbeams. However, their computational cost increases rapidly with the size of the lattice structure. On the other hand, although beam elements reduce the computational cost drastically, it doesn’t correctly model the contact between the lattice structures and the substrates nor the junctions of the microbeams. Also, the notion of local plasticity is not valid anymore. Moreover, the deformed shape of the lattice structure doesn’t correspond to the deformed shape of the lattice structure using 3D solid elements. In this work, motivated by the pros and cons of the 3D and beam models, a numerically hybrid model is presented for the lattice structures to reduce the computational cost of the simulations while avoiding the aforementioned drawbacks of the beam elements. This approach consists of the utilization of solid elements for the junctions and beam elements for the microbeams connecting the corresponding junctions to each other. When the global response of the structure is linear, the results from the hybrid models are in good agreement with the ones from the 3D models for body-centered cubic with z-struts (BCCZ) and body-centered cubic without z-struts (BCC) lattice structures. However, the hybrid models have difficulty to converge when the effect of large deformation and local plasticity are considerable in the BCCZ structures. Furthermore, the effect of the junction’s size of the hybrid models on the results is investigated. For BCCZ lattice structures, the results are not affected by the junction’s size. This is also valid for BCC lattice structures as long as the ratio of the junction’s size to the diameter of the microbeams is greater than 2. The hybrid model can take into account the geometric defects. As a demonstration, the point clouds of two lattice structures are parametrized in a platform called LATANA (LATtice ANAlysis) developed by IRT-SystemX. In this process, for each microbeam of the lattice structures, an ellipse is fitted to capture the effect of shape variation and roughness. Each ellipse is represented by three parameters; semi-major axis, semi-minor axis, and angle of rotation. Having the parameters of the ellipses, the lattice structures are constructed in Spaceclaim (ANSYS) using the geometrical hybrid approach. The results show a negligible discrepancy between the hybrid and 3D models, while the computational cost of the hybrid model is lower than the computational cost of the 3D model.Keywords: additive manufacturing, Ansys, geometric defects, hybrid finite element model, lattice structure
Procedia PDF Downloads 1113398 Crime Prevention with Artificial Intelligence
Authors: Mehrnoosh Abouzari, Shahrokh Sahraei
Abstract:
Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.Keywords: artificial intelligence, criminology, crime, prevention, prediction
Procedia PDF Downloads 753397 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach
Authors: Gong Zhilin, Jing Yang, Jian Yin
Abstract:
The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).Keywords: credit card, data mining, fraud detection, money transactions
Procedia PDF Downloads 1283396 Reducing the Computational Cost of a Two-way Coupling CFD-FEA Model via a Multi-scale Approach for Fire Determination
Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Kevin Tinkham, Ella Quigley
Abstract:
Structural integrity for cladding products is a key performance parameter, especially concerning fire performance. Cladding products such as PIR-based sandwich panels are tested rigorously, in line with industrial standards. Physical fire tests are necessary to ensure the customer's safety but can give little information about critical behaviours that can help develop new materials. Numerical modelling is a tool that can help investigate a fire's behaviour further by replicating the fire test. However, fire is an interdisciplinary problem as it is a chemical reaction that behaves fluidly and impacts structural integrity. An analysis using Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) is needed to capture all aspects of a fire performance test. One method is a two-way coupling analysis that imports the updated changes in thermal data, due to the fire's behaviour, to the FEA solver in a series of iterations. In light of our recent work with Tata Steel U.K using a two-way coupling methodology to determine the fire performance, it has been shown that a program called FDS-2-Abaqus can make predictions of a BS 476 -22 furnace test with a degree of accuracy. The test demonstrated the fire performance of Tata Steel U.K Trisomet product, a Polyisocyanurate (PIR) based sandwich panel used for cladding. Previous works demonstrated the limitations of the current version of the program, the main limitation being the computational cost of modelling three Trisomet panels, totalling an area of 9 . The computational cost increases substantially, with the intention to scale up to an LPS 1181-1 test, which includes a total panel surface area of 200 .The FDS-2-Abaqus program is developed further within this paper to overcome this obstacle and better accommodate Tata Steel U.K PIR sandwich panels. The new developments aim to reduce the computational cost and error margin compared to experimental data. One avenue explored is a multi-scale approach in the form of Reduced Order Modeling (ROM). The approach allows the user to include refined details of the sandwich panels, such as the overlapping joints, without a computationally costly mesh size.Comparative studies will be made between the new implementations and the previous study completed using the original FDS-2-ABAQUS program. Validation of the study will come from physical experiments in line with governing body standards such as BS 476 -22 and LPS 1181-1. The physical experimental data includes the panels' gas and surface temperatures and mechanical deformation. Conclusions are drawn, noting the new implementations' impact factors and discussing the reasonability for scaling up further to a whole warehouse.Keywords: fire testing, numerical coupling, sandwich panels, thermo fluids
Procedia PDF Downloads 773395 Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite
Authors: Tingkai Zhao, Jingtian Hu, Xiarong Peng, Wenbo Yang, Tiehu Li
Abstract:
Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance.Keywords: amorphous carbon nanotubes, graphene aerogel, barium ferrite nanorod, electromagnetic wave absorption
Procedia PDF Downloads 2793394 On the Limits of Board Diversity: Impact of Network Effect on Director Appointments
Authors: Vijay Marisetty, Poonam Singh
Abstract:
Research on the effect of director's network connections on investor welfare is inconclusive. Some studies suggest that directors' connections are beneficial, in terms of, improving earnings information, firms valuation for new investors. On the other hand, adverse effects of directorial networks are also reported, in terms of higher earnings management, options back dating fraud, reduction in firm performance, lower board monitoring. From regulatory perspective, the role of directorial networks on corporate welfare is crucial. Cognizant of the possible ill effects associated with directorial networks, large investors, for better representation on the boards, are building their own database of prospective directors who are highly qualified, however, sourced from outside the highly connected directorial labor market. For instance, following Dodd-Frank Reform Act, California Public Employees' Retirement Systems (CalPERs) has initiated a database for registering aspiring and highly qualified directors to nominate them for board seats (proxy access). Our paper stems from this background and tries to explore the chances of outside directors getting directorships who lack established network connections. The paper is able to identify such aspiring directors' information by accessing a unique Indian data sourced from an online portal that aims to match the supply of registered aspirants with the growing demand for outside directors in India. The online portal's tie-up with stock exchanges ensures firms to access the new pool of directors. Such direct access to the background details of aspiring directors over a period of 10 years, allows us to examine the chances of aspiring directors without corporate network, to enter directorial network. Using this resume data of 16105 aspiring corporate directors in India, who have no prior board experience in the directorial labor market, the paper analyses the entry dynamics in corporate directors' labor market. The database also allows us to investigate the value of corporate network by comparing non-network new entrants with incumbent networked directors. The study develops measures of network centrality and network degree based on merit, i.e. network of individuals belonging to elite educational institutions, like Indian Institute of Management (IIM) or Indian Institute of Technology (IIT) and based on job or company, i.e. network of individuals serving in the same company. The paper then measures the impact of these networks on the appointment of first time directors and subsequent appointment of directors. The paper reports the following main results: 1. The likelihood of becoming a corporate director, without corporate network strength, is only 1 out 100 aspirants. This is inspite of comparable educational background and similar duration of corporate experience; 2. Aspiring non-network directors' elite educational ties help them to secure directorships. However, for post-board appointments, their newly acquired corporate network strength overtakes as their main determinant for subsequent board appointments and compensation. The results thus highlight the limitations in increasing board diversity.Keywords: aspiring corporate directors, board diversity, director labor market, director networks
Procedia PDF Downloads 3123393 Family Cohesion, Social Networks, and Cultural Differences in Latino and Asian American Help Seeking Behaviors
Authors: Eileen Y. Wong, Katherine Jin, Anat Talmon
Abstract:
Background: Help seeking behaviors are highly contingent on socio-cultural factors such as ethnicity. Both Latino and Asian Americans underutilize mental health services compared to their White American counterparts. This difference may be related to the composite of one’s social support system, which includes family cohesion and social networks. Previous studies have found that Latino families are characterized by higher levels of family cohesion and social support, and Asian American families with greater family cohesion exhibit lower levels of help seeking behaviors. While both are broadly considered collectivist communities, within-culture variability is also significant. Therefore, this study aims to investigate the relationship between help seeking behaviors in the two cultures with levels of family cohesion and strength of social network. We also consider such relationships in light of previous traumatic events and diagnoses, particularly post-traumatic stress disorder (PTSD), to understand whether clinically diagnosed individuals differ in their strength of network and help seeking behaviors. Method: An adult sample (N = 2,990) from the National Latino and Asian American Study (NLAAS) provided data on participants’ social network, family cohesion, likelihood of seeking professional help, and DSM-IV diagnoses. T-tests compared Latino American (n = 1,576) and Asian American respondents (n = 1,414) in strength of social network, level of family cohesion, and likelihood of seeking professional help. Linear regression models were used to identify the probability of help-seeking behavior based on ethnicity, PTSD diagnosis, and strength of social network. Results: Help-seeking behavior was significantly associated with family cohesion and strength of social network. It was found that higher frequency of expressing one’s feelings with family significantly predicted lower levels of help-seeking behaviors (β = [-.072], p = .017), while higher frequency of spending free time with family significantly predicted higher levels of help-seeking behaviors (β = [.129], p = .002) in the Asian American sample. Subjective importance of family relations compared to that of one’s peers also significantly predict higher levels of help-seeking behaviors (β = [.095], p = .011) in the Asian American sample. Frequency of sharing one’s problems with relatives significantly predicted higher levels of help-seeking behaviors (β = [.113], p < .01) in the Latino American sample. A PTSD diagnosis did not have any significant moderating effect. Conclusion: Considering the underutilization of mental health services in Latino and Asian American minority groups, it is crucial to understand ways in which help seeking behavior can be encouraged. Our findings suggest that different dimensions within family cohesion and social networks have differential impacts on help-seeking behavior. Given the multifaceted nature of family cohesion and cultural relevance, the implications of our findings for theory and practice will be discussed.Keywords: family cohesion, social networks, Asian American, Latino American, help-seeking behavior
Procedia PDF Downloads 673392 Computational Fluid Dynamics Based Analysis of Heat Exchanging Performance of Rotary Thermal Wheels
Authors: H. M. D. Prabhashana Herath, M. D. Anuradha Wickramasinghe, A. M. C. Kalpani Polgolla, R. A. C. Prasad Ranasinghe, M. Anusha Wijewardane
Abstract:
The demand for thermal comfort in buildings in hot and humid climates increases progressively. In general, buildings in hot and humid climates spend more than 60% of the total energy cost for the functionality of the air conditioning (AC) system. Hence, it is required to install energy efficient AC systems or integrate energy recovery systems for both new and/or existing AC systems whenever possible, to reduce the energy consumption by the AC system. Integrate a Rotary Thermal Wheel as the energy recovery device of an existing AC system has shown very promising with attractive payback periods of less than 5 years. A rotary thermal wheel can be located in the Air Handling Unit (AHU) of a central AC system to recover the energy available in the return air stream. During this study, a sensitivity analysis was performed using a CFD (Computational Fluid Dynamics) software to determine the optimum design parameters (i.e., rotary speed and parameters of the matrix profile) of a rotary thermal wheel for hot and humid climates. The simulations were performed for a sinusoidal matrix geometry. Variation of sinusoidal matrix parameters, i.e., span length and height, were also analyzed to understand the heat exchanging performance and the induced pressure drop due to the air flow. The results show that the heat exchanging performance increases when increasing the wheel rpm. However, the performance increment rate decreases when increasing the rpm. As a result, it is more advisable to operate the wheel at 10-20 rpm. For the geometry, it was found that the sinusoidal geometries with lesser spans and higher heights have higher heat exchanging capabilities. Considering the sinusoidal profiles analyzed during the study, the geometry with 4mm height and 3mm width shows better performance than the other combinations.Keywords: air conditioning, computational fluid dynamics, CFD, energy recovery, heat exchangers
Procedia PDF Downloads 1273391 A Computational Study on Solvent Effects on the Keto-Enol Tautomeric Equilibrium of Dimedone and Acetylacetone 1,3- Dicabonyls
Authors: Imad Eddine Charif, Sidi Mohamed Mekelleche, Didier Villemin
Abstract:
The solvent effects on the keto-enol tautomeric equilibriums of acetylacetone and dimedone are theoretically investigated at the correlated Becke-3-parameter-Lee-Yang-Parr (B3LYP) and second-order Møller-Plesset (MP2) computational levels. The present study shows that the most stable keto tautomer of acetylacetone corresponds to the trans-diketo, E,Z form; while the most stable enol tautomer corresponds to the closed cis-enol,Z,Z form. The keto tautomer of dimedone prefers the trans diketo, E, E form; while the most stable enol tautomer corresponds to trans-enol form. The calculated free Gibbs enthalpies indicate that, in polar solvents, the keto-enol equilibrium of acetylacetone is shifted toward the keto tautomer; whereas the keto-enol equilibrium of dimedone is shifted towards the enol tautomer. The experimental trends of the change of equilibrium constants with respect to the change of solvent polarity are well reproduced by both B3LYP and MP2 calculations.Keywords: acetylacetone, dimedone, solvent effects, keto-enol equilibrium, theoretical calculations
Procedia PDF Downloads 4473390 Short Life Cycle Time Series Forecasting
Authors: Shalaka Kadam, Dinesh Apte, Sagar Mainkar
Abstract:
The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy.Keywords: forecast, short life cycle product, structured judgement, time series
Procedia PDF Downloads 3583389 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks
Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith
Abstract:
Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN
Procedia PDF Downloads 1313388 Application of Monitoring of Power Generation through GPRS Network in Rural Residênias Cabo Frio/Rj
Authors: Robson C. Santos, David D. Oliveira, Matheus M. Reis, Gerson G. Cunha, Marcos A. C. Moreira
Abstract:
The project demonstrates the construction of a solar power generation, integrated inverter equipment to a "Grid-Tie" by converting direct current generated by solar panels, into alternating current, the same parameters of frequency and voltage concessionaire distribution network. The energy generated is quantified by smart metering module that transmits the information in specified periods of time to a microcontroller via GSM modem. The modem provides the measured data on the internet, using networks and cellular antennas. The monitoring, fault detection and maintenance are performed by a supervisory station. Employed board types, best inverter selection and studies about control equipment and devices have been described. The article covers and explores the global trend of implementing smart distribution electrical energy networks and the incentive to use solar renewable energy. There is the possibility of the excess energy produced by the system be purchased by the local power utility. This project was implemented in residences in the rural community of the municipality of Cabo Frio/RJ. Data could be seen through daily measurements during the month of November 2013.Keywords: rural residence, supervisory, smart grid, solar energy
Procedia PDF Downloads 5923387 Evaluating the Total Costs of a Ransomware-Resilient Architecture for Healthcare Systems
Authors: Sreejith Gopinath, Aspen Olmsted
Abstract:
This paper is based on our previous work that proposed a risk-transference-based architecture for healthcare systems to store sensitive data outside the system boundary, rendering the system unattractive to would-be bad actors. This architecture also allows a compromised system to be abandoned and a new system instance spun up in place to ensure business continuity without paying a ransom or engaging with a bad actor. This paper delves into the details of various attacks we simulated against the prototype system. In the paper, we discuss at length the time and computational costs associated with storing and retrieving data in the prototype system, abandoning a compromised system, and setting up a new instance with existing data. Lastly, we simulate some analytical workloads over the data stored in our specialized data storage system and discuss the time and computational costs associated with running analytics over data in a specialized storage system outside the system boundary. In summary, this paper discusses the total costs of data storage, access, and analytics incurred with the proposed architecture.Keywords: cybersecurity, healthcare, ransomware, resilience, risk transference
Procedia PDF Downloads 1303386 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed
Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam
Abstract:
Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established. In order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.Keywords: computational fluid dynamics (CFD) model, waste incineration, municipal solid waste (MSW), fixed bed, primary air
Procedia PDF Downloads 4003385 An Optimized Method for 3D Magnetic Navigation of Nanoparticles inside Human Arteries
Authors: Evangelos G. Karvelas, Christos Liosis, Andreas Theodorakakos, Theodoros E. Karakasidis
Abstract:
In the present work, a numerical method for the estimation of the appropriate gradient magnetic fields for optimum driving of the particles into the desired area inside the human body is presented. The proposed method combines Computational Fluid Dynamics (CFD), Discrete Element Method (DEM) and Covariance Matrix Adaptation (CMA) evolution strategy for the magnetic navigation of nanoparticles. It is based on an iteration procedure that intents to eliminate the deviation of the nanoparticles from a desired path. Hence, the gradient magnetic field is constantly adjusted in a suitable way so that the particles’ follow as close as possible to a desired trajectory. Using the proposed method, it is obvious that the diameter of particles is crucial parameter for an efficient navigation. In addition, increase of particles' diameter decreases their deviation from the desired path. Moreover, the navigation method can navigate nanoparticles into the desired areas with efficiency approximately 99%.Keywords: computational fluid dynamics, CFD, covariance matrix adaptation evolution strategy, discrete element method, DEM, magnetic navigation, spherical particles
Procedia PDF Downloads 1393384 Generation of High-Quality Synthetic CT Images from Cone Beam CT Images Using A.I. Based Generative Networks
Authors: Heeba A. Gurku
Abstract:
Introduction: Cone Beam CT(CBCT) images play an integral part in proper patient positioning in cancer patients undergoing radiation therapy treatment. But these images are low in quality. The purpose of this study is to generate high-quality synthetic CT images from CBCT using generative models. Material and Methods: This study utilized two datasets from The Cancer Imaging Archive (TCIA) 1) Lung cancer dataset of 20 patients (with full view CBCT images) and 2) Pancreatic cancer dataset of 40 patients (only 27 patients having limited view images were included in the study). Cycle Generative Adversarial Networks (GAN) and its variant Attention Guided Generative Adversarial Networks (AGGAN) models were used to generate the synthetic CTs. Models were evaluated by visual evaluation and on four metrics, Structural Similarity Index Measure (SSIM), Peak Signal Noise Ratio (PSNR) Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), to compare the synthetic CT and original CT images. Results: For pancreatic dataset with limited view CBCT images, our study showed that in Cycle GAN model, MAE, RMSE, PSNR improved from 12.57to 8.49, 20.94 to 15.29 and 21.85 to 24.63, respectively but structural similarity only marginally increased from 0.78 to 0.79. Similar, results were achieved with AGGAN with no improvement over Cycle GAN. However, for lung dataset with full view CBCT images Cycle GAN was able to reduce MAE significantly from 89.44 to 15.11 and AGGAN was able to reduce it to 19.77. Similarly, RMSE was also decreased from 92.68 to 23.50 in Cycle GAN and to 29.02 in AGGAN. SSIM and PSNR also improved significantly from 0.17 to 0.59 and from 8.81 to 21.06 in Cycle GAN respectively while in AGGAN SSIM increased to 0.52 and PSNR increased to 19.31. In both datasets, GAN models were able to reduce artifacts, reduce noise, have better resolution, and better contrast enhancement. Conclusion and Recommendation: Both Cycle GAN and AGGAN were significantly able to reduce MAE, RMSE and PSNR in both datasets. However, full view lung dataset showed more improvement in SSIM and image quality than limited view pancreatic dataset.Keywords: CT images, CBCT images, cycle GAN, AGGAN
Procedia PDF Downloads 833383 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 313382 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.Keywords: cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple output systems, orthogonal frequency division multiplexing
Procedia PDF Downloads 3103381 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves
Authors: Kamal Upadhyay, Zhou Hua, Yu Rui
Abstract:
This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.Keywords: streamline, cavitation, optimization, computational fluid dynamics
Procedia PDF Downloads 1443380 Development of Lodging Business Management Standards of Bang Khonthi Community in Samut Songkram Province
Authors: Poramet Saeng-On
Abstract:
This research aims to develop ways of lodging business management of Bang Khonthi community in Samut Songkram province that are appropriate with the cultural context of the Bang Khonthi community. Eight lodging business owners were interviewed. It was found that lodging business that are family business must be done with passion, correct understanding of self, culture, nature, Thai way of life, thorough, professional development, environmentally concerned, building partnerships with various networks both community level, and public sector and business cohorts. Public relations should be done through media both traditional and modern outlets, such as websites and social networks to provide customers convenience, security, happiness, knowledge, love and value when travel to Bang Khonthi. This will also help them achieve sustainability in business, in line with the 10 Home Stay Standard Thailand. Suggestions for operators are as follows: Operators need to improve their public relations work. They need to use technology in public relations such as the internet. Management standards must be improved. Souvenir and local products shops should be arranged in the compound. Product pricing must be set accordingly. They need to join hands to help each other. Quality of the business operation should be raised to meet the standards. Educational measures to reduce the impact caused by tourism on the community such as efforts to reduce energy consumption.Keywords: homestay, lodging business, management, standard
Procedia PDF Downloads 446