Search results for: SURF detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3482

Search results for: SURF detection

1322 Optical-Based Lane-Assist System for Rowing Boats

Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park

Abstract:

Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.

Keywords: auto-pilot, lane-assist, marine, optical, rowing

Procedia PDF Downloads 133
1321 Remote Sensing of Urban Land Cover Change: Trends, Driving Forces, and Indicators

Authors: Wei Ji

Abstract:

This study was conducted in the Kansas City metropolitan area of the United States, which has experienced significant urban sprawling in recent decades. The remote sensing of land cover changes in this area spanned over four decades from 1972 through 2010. The project was implemented in two stages: the first stage focused on detection of long-term trends of urban land cover change, while the second one examined how to detect the coupled effects of human impact and climate change on urban landscapes. For the first-stage study, six Landsat images were used with a time interval of about five years for the period from 1972 through 2001. Four major land cover types, built-up land, forestland, non-forest vegetation land, and surface water, were mapped using supervised image classification techniques. The study found that over the three decades the built-up lands in the study area were more than doubled, which was mainly at the expense of non-forest vegetation lands. Surprisingly and interestingly, the area also saw a significant gain in surface water coverage. This observation raised questions: How have human activities and precipitation variation jointly impacted surface water cover during recent decades? How can we detect such coupled impacts through remote sensing analysis? These questions led to the second stage of the study, in which we designed and developed approaches to detecting fine-scale surface waters and analyzing coupled effects of human impact and precipitation variation on the waters. To effectively detect urban landscape changes that might be jointly shaped by precipitation variation, our study proposed “urban wetscapes” (loosely-defined urban wetlands) as a new indicator for remote sensing detection. The study examined whether urban wetscape dynamics was a sensitive indicator of the coupled effects of the two driving forces. To better detect this indicator, a rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. Three SPOT images for years 1992, 2008, and 2010, respectively were classified with this technique to generate the four types of land cover as described above. The spatial analyses of remotely-sensed wetscape changes were implemented at the scales of metropolitan, watershed, and sub-watershed, as well as based on the size of surface water bodies in order to accurately reveal urban wetscape change trends in relation to the driving forces. The study identified that urban wetscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds in response to human impacts at different scales. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while generally smaller wetlands decreased mainly due to human development activities. These results confirm that wetscape dynamics can effectively reveal the coupled effects of human impact and climate change on urban landscapes. As such, remote sensing of this indicator provides new insights into the relationships between urban land cover changes and driving forces.

Keywords: urban land cover, human impact, climate change, rule-based classification, across-scale analysis

Procedia PDF Downloads 310
1320 The Modeling and Effectiveness Evaluation for Vessel Evasion to Acoustic Homing Torpedo

Authors: Li Minghui, Min Shaorong, Zhang Jun

Abstract:

This paper aims for studying the operational efficiency of surface warship’s motorized evasion to acoustic homing torpedo. It orderly developed trajectory model, self-guide detection model, vessel evasion model, as well as anti-torpedo error model in three-dimensional space to make up for the deficiency of precious researches analyzing two-dimensionally confrontational models. Then, making use of the Monte Carlo method, it carried out the simulation for the confrontation process of evasion in the environment of MATLAB. At last, it quantitatively analyzed the main factors which determine vessel’s survival probability. The results show that evasion relative bearing and speed will affect vessel’s survival probability significantly. Thus, choosing appropriate evasion relative bearing and speed according to alarming range and alarming relative bearing for torpedo, improving alarming range and positioning accuracy and reducing the response time against torpedo will improve the vessel’s survival probability significantly.

Keywords: acoustic homing torpedo, vessel evasion, monte carlo method, torpedo defense, vessel's survival probability

Procedia PDF Downloads 457
1319 Hybrid Approximate Structural-Semantic Frequent Subgraph Mining

Authors: Montaceur Zaghdoud, Mohamed Moussaoui, Jalel Akaichi

Abstract:

Frequent subgraph mining refers usually to graph matching and it is widely used in when analyzing big data with large graphs. A lot of research works dealt with structural exact or inexact graph matching but a little attention is paid to semantic matching when graph vertices and/or edges are attributed and typed. Therefore, it seems very interesting to integrate background knowledge into the analysis and that extracted frequent subgraphs should become more pruned by applying a new semantic filter instead of using only structural similarity in graph matching process. Consequently, this paper focuses on developing a new hybrid approximate structuralsemantic graph matching to discover a set of frequent subgraphs. It uses simultaneously an approximate structural similarity function based on graph edit distance function and a possibilistic vertices similarity function based on affinity function. Both structural and semantic filters contribute together to prune extracted frequent set. Indeed, new hybrid structural-semantic frequent subgraph mining approach searches will be suitable to be applied to several application such as community detection in social networks.

Keywords: approximate graph matching, hybrid frequent subgraph mining, graph mining, possibility theory

Procedia PDF Downloads 407
1318 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 176
1317 miCoRe: Colorectal Cancer miRNAs Database

Authors: Rahul Agarwal, Ashutosh Singh

Abstract:

Colorectal cancer (CRC) also refers as bowel cancer or colon cancer. It involves the development of abnormal growth of cells in colon or rectum part of the body. This work leads to the development of a miRNA database in colorectal cancer. We named this database- miCoRe. This database comprises of all validated colon-rectal cancer miRNAs information from various published literature with an effectual knowledge based information retrieval system. miRNAs have been collected from various published literature reports. MySQL is used for main-framework of miCoRe while the front-end was developed in PHP script. The aim of developing miCoRe is to create a comprehensive central repository of colorectal carcinoma miRNAs with all germane information of miRNAs and their target genes. The current version of miCoRe consists of 238 miRNAs which are known to be implicated in malignancy of CRC. Alongside with miRNA information, miCoRe also contains the information related to the target genes of these miRNA. miCoRe furnishes the information about the mechanism of incidence and progression of the disease, which would further help the researchers to look for colorectal specific miRNAs therapies and CRC specific targeted drug designing. Moreover, it will also help in development of biomarkers for the better and early detection of CRC and will help in better clinical management of the disease.

Keywords: colorectal cancer, database, miCoRe, miRNAs

Procedia PDF Downloads 280
1316 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 117
1315 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data

Authors: Muthukumarasamy Govindarajan

Abstract:

Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.

Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine

Procedia PDF Downloads 144
1314 Computer-Aided Exudate Diagnosis for the Screening of Diabetic Retinopathy

Authors: Shu-Min Tsao, Chung-Ming Lo, Shao-Chun Chen

Abstract:

Most diabetes patients tend to suffer from its complication of retina diseases. Therefore, early detection and early treatment are important. In clinical examinations, using color fundus image was the most convenient and available examination method. According to the exudates appeared in the retinal image, the status of retina can be confirmed. However, the routine screening of diabetic retinopathy by color fundus images would bring time-consuming tasks to physicians. This study thus proposed a computer-aided exudate diagnosis for the screening of diabetic retinopathy. After removing vessels and optic disc in the retinal image, six quantitative features including region number, region area, and gray-scale values etc… were extracted from the remaining regions for classification. As results, all six features were evaluated to be statistically significant (p-value < 0.001). The accuracy of classifying the retinal images into normal and diabetic retinopathy achieved 82%. Based on this system, the clinical workload could be reduced. The examination procedure may also be improved to be more efficient.

Keywords: computer-aided diagnosis, diabetic retinopathy, exudate, image processing

Procedia PDF Downloads 274
1313 Design of Self-Balancing Bicycle Using Object State Detection in Co-Ordinate System

Authors: Mamta M. Barapatre, V. N. Sahare

Abstract:

Since from long time two wheeled vehicle self-balancing has always been a back-breaking task for both human and robots. Leaning a bicycle driving is long time process and goes through building knowledge base for parameter decision making while balancing robots. In order to create this machine learning phase with embedded system the proposed system is designed. The system proposed aims to construct a bicycle automaton, power-driven by an electric motor, which could balance by itself and move along a specific path. This path could be wavy with bumps and varying widths. The key aim was to construct a cycle which self-balances itself by controlling its handle. In order to take a turn, the mass was transferred to the center. In order to maintain the stability, the bicycle bot automatically turned the handle and a turn. Some problems were faced by the team which were Speed, Steering mechanism through mass- distribution (leaning), Center of mass location and gyroscopic effect of its wheel. The idea proposed have potential applications in automation of transportation system and is most efficient.

Keywords: gyroscope-flywheel, accelerometer, servomotor-controller, self stability concept

Procedia PDF Downloads 279
1312 High-Throughput, Purification-Free, Multiplexed Profiling of Circulating miRNA for Discovery, Validation, and Diagnostics

Authors: J. Hidalgo de Quintana, I. Stoner, M. Tackett, G. Doran, C. Rafferty, A. Windemuth, J. Tytell, D. Pregibon

Abstract:

We have developed the Multiplexed Circulating microRNA assay that allows the detection of up to 68 microRNA targets per sample. The assay combines particle­based multiplexing, using patented Firefly hydrogel particles, with single­ step RT-PCR signal. Thus, the Circulating microRNA assay leverages PCR sensitivity while eliminating the need for separate reverse transcription reactions and mitigating amplification biases introduced by target­-specific qPCR. Furthermore, the ability to multiplex targets in each well eliminates the need to split valuable samples into multiple reactions. Results from the Circulating microRNA assay are interpreted using Firefly Analysis Workbench, which allows visualization, normalization, and export of experimental data. To aid discovery and validation of biomarkers, we have generated fixed panels for Oncology, Cardiology, Neurology, Immunology, and Liver Toxicology. Here we present the data from several studies investigating circulating and tumor microRNA, showcasing the ability of the technology to sensitively and specifically detect microRNA biomarker signatures from fluid specimens.

Keywords: biomarkers, biofluids, miRNA, photolithography, flowcytometry

Procedia PDF Downloads 371
1311 Efficiency and Factors Affecting Inefficiency in the Previous Enclaves of Northern Region of Bangladesh: An Analysis of SFA and DEA Approach

Authors: Md. Mazharul Anwar, Md. Samim Hossain Molla, Md. Akkas Ali, Mian Sayeed Hassan

Abstract:

After 68 years, the agreement between Bangladesh and India was ratified on 6 June 2015 and Bangladesh received 111 Indian enclaves. Millions of farm household lived in these previous enclaves, being detached from the mainland of the country, they were socially, economically and educationally deprived people in the world. This study was undertaken to compare of the Stochastic Frontier Analysis (SFA) and the constant returns to scale (CRS) and variable returns to scale (VRS) output-oriented DEA models, based on a sample of 300 farms from the three largest enclaves of Bangladesh in 2017. However, the aim of the study was not only to compare estimates of technical efficiency obtained from the two approaches, but also to examine the determinants of inefficiency. The results from both the approaches indicated that there is a potential for increasing farm production through efficiency improvement and that farmers' age, educational level, new technology dissemination and training on crop production technology have a significant effect on efficiency. The detection and measurement of technical inefficiency and its determinants can be used as a basis of policy recommendations.

Keywords: DEA approach, previous enclaves, SFA approach, technical inefficiency

Procedia PDF Downloads 130
1310 Accumulation of Phlorotannins in Abalone Haliotis discus Hannai after Feeding with Eisenia bicyclis

Authors: Bangoura Issa, Ji-Young Kang, M. T. H. Chowdhury, Ji-Eun Lee, Yong-Ki Hong

Abstract:

Investigation was carried out for the production of value-added abalone Haliotis discus hannai containing bioactive phlorotannin by feeding phlorotannin-rich seaweed Eisenia bicyclis 2 weeks prior to harvesting. Accumulation of phlorotannins was proceded by feeding with E. bicyclis after 4 days of starvation. HPLC purification afforded two major phlorotannins. Mass spectrometry and 1H-nuclear magnetic resonance analysis clarified their structures to be as 7-phloroeckol and eckol. Throughout the feeding period of 20 days, 7-phloroeckolol was accumulated in the muscle (foot muscle tissue) up to 0.18±0.12 mg g-1 dry weight of tissue after 12 days. Eckol reached 0.21±0.03 mg g-1 dry weight of tissue after 18 days. By feeding Laminaria japonica as reference, abalone showed no detection of phlorotannins in the muscle tissue. Seaweed consumption and growth rate of abalone revealed almost similar when feed with E. bicyclis or L. japonicain 20 days. Phlorotannins reduction to half-maximal accumulation values took 1.0 day and 2.7 days for 7-phloroeckol and eckol respectively, after replacing the feed to L. japonica.

Keywords: abalone, accumulation, eisenia bicyclis, phlorotannins

Procedia PDF Downloads 385
1309 Design Study for the Rehabilitation of a Retaining Structure and Water Intake on Site

Authors: Yu-Lin Shen, Ming-Kuen Chang

Abstract:

In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.

Keywords: EMAT, artificial defect, NDT, ultrasonic testing

Procedia PDF Downloads 351
1308 A Rapid and Greener Analysis Approach Based on Carbonfiber Column System and MS Detection for Urine Metabolomic Study After Oral Administration of Food Supplements 

Authors: Zakia Fatima, Liu Lu, Donghao Li

Abstract:

The analysis of biological fluid metabolites holds significant importance in various areas, such as medical research, food science, and public health. Investigating the levels and distribution of nutrients and their metabolites in biological samples allows researchers and healthcare professionals to determine nutritional status, find hypovitaminosis or hypervitaminosis, and monitor the effectiveness of interventions such as dietary supplementation. Moreover, analysis of nutrient metabolites provides insight into their metabolism, bioavailability, and physiological processes, aiding in the clarification of their health roles. Hence, the exploration of a distinct, efficient, eco-friendly, and simpler methodology is of great importance to evaluate the metabolic content of complex biological samples. In this work, a green and rapid analytical method based on an automated online two-dimensional microscale carbon fiber/activated carbon fiber fractionation system and time-of-flight mass spectrometry (2DμCFs-TOF-MS) was used to evaluate metabolites of urine samples after oral administration of food supplements. The automated 2DμCFs instrument consisted of a microcolumn system with bare carbon fibers and modified carbon fiber coatings. Carbon fibers and modified carbon fibers exhibit different surface characteristics and retain different compounds accordingly. Three kinds of mobile-phase solvents were used to elute the compounds of varied chemical heterogeneities. The 2DμCFs separation system has the ability to effectively separate different compounds based on their polarity and solubility characteristics. No complicated sample preparation method was used prior to analysis, which makes the strategy more eco-friendly, practical, and faster than traditional analysis methods. For optimum analysis results, mobile phase composition, flow rate, and sample diluent were optimized. Water-soluble vitamins, fat-soluble vitamins, and amino acids, as well as 22 vitamin metabolites and 11 vitamin metabolic pathway-related metabolites, were found in urine samples. All water-soluble vitamins except vitamin B12 and vitamin B9 were detected in urine samples. However, no fat-soluble vitamin was detected, and only one metabolite of Vitamin A was found. The comparison with a blank urine sample showed a considerable difference in metabolite content. For example, vitamin metabolites and three related metabolites were not detected in blank urine. The complete single-run screening was carried out in 5.5 minutes with the minimum consumption of toxic organic solvent (0.5 ml). The analytical method was evaluated in terms of greenness, with an analytical greenness (AGREE) score of 0.72. The method’s practicality has been investigated using the Blue Applicability Grade Index (BAGI) tool, obtaining a score of 77. The findings in this work illustrated that the 2DµCFs-TOF-MS approach could emerge as a fast, sustainable, practical, high-throughput, and promising analytical tool for screening and accurate detection of various metabolites, pharmaceuticals, and ingredients in dietary supplements as well as biological fluids.

Keywords: metabolite analysis, sustainability, carbon fibers, urine.

Procedia PDF Downloads 30
1307 Advancing Horizons: Standardized Future Trends in LiDAR and Remote Sensing Technologies

Authors: Spoorthi Sripad

Abstract:

Rapid advancements in LiDAR (Light Detection and Ranging) technology, coupled with the synergy of remote sensing, have revolutionized Earth observation methodologies. This paper delves into the transformative impact of integrated LiDAR and remote sensing systems. Focusing on miniaturization, cost reduction, and improved resolution, the study explores the evolving landscape of terrestrial and aquatic environmental monitoring. The integration of multi-wavelength and dual-mode LiDAR systems, alongside collaborative efforts with other remote sensing technologies, presents a comprehensive approach. The paper highlights the pivotal role of LiDAR in environmental assessment, urban planning, and infrastructure development. As the amalgamation of LiDAR and remote sensing reshapes Earth observation, this research anticipates a paradigm shift in our understanding of dynamic planetary processes.

Keywords: LiDAR, remote sensing, earth observation, advancements, integration, environmental monitoring, multi-wavelength, dual-mode, technology, urban planning, infrastructure, resolution, miniaturization

Procedia PDF Downloads 86
1306 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks

Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin

Abstract:

This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.

Keywords: hybrid fault diagnosis, dynamic neural networks, nonlinear systems, fault tolerant observer

Procedia PDF Downloads 403
1305 Implementation of CNV-CH Algorithm Using Map-Reduce Approach

Authors: Aishik Deb, Rituparna Sinha

Abstract:

We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values.

Keywords: cancer detection, convex hull segmentation, map reduce, next generation sequencing

Procedia PDF Downloads 138
1304 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications

Authors: Yasith Mindula Saipath Wickramasinghe

Abstract:

Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.

Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating

Procedia PDF Downloads 120
1303 Development of Surface-Enhanced Raman Spectroscopy-Active Gelatin Based Hydrogels for Label Free Detection of Bio-Analytes

Authors: Zahra Khan

Abstract:

Hydrogels are a macromolecular network of hydrophilic copolymers with physical or chemical cross-linking structures with significant water uptake capabilities. They are a promising substrate for surface-enhanced Raman spectroscopy (SERS) as they are both flexible and biocompatible materials. Conventional SERS-active substrates suffer from limitations such as instability and inflexibility, which restricts their use in broader applications. Gelatin-based hydrogels have been synthesised in a facile and relatively quick method without the use of any toxic cross-linking agents. Composite gel material was formed by combining the gelatin with simple polymers to enhance the functional properties of the gel. Gold nanoparticles prepared by a reproducible seed-mediated growth method were combined into the bulk material during gel synthesis. After gel formation, the gel was submerged in the analyte solution overnight. SERS spectra were then collected from the gel using a standard Raman spectrometer. A wide range of analytes was successfully detected on these hydrogels showing potential for further optimization and use as SERS substrates for biomedical applications.

Keywords: gelatin, hydrogels, flexible materials, SERS

Procedia PDF Downloads 117
1302 Molecular Characterization and Determination of Bioremediation Potentials of Some Bacteria Isolated from Spent Oil Contaminated Soil Mechanic Workshops in Kaduna Metropolis

Authors: David D. Adams, Ibrahim B. Bello

Abstract:

Spent oil contaminated Soil from ten selected mechanic workshops were investigated for their bacteria and bioremediation potentials. The bacterial isolates were morphologically and molecularly identified as Enterobacter hormaechei, Escherichia coli, Klebsiella pneumoniae, Shigella flexneri , Wesiella cibaria, Lactobacillus planetarium. The singles and a consortium of these bacteria incubated in the minimal salt medium incorporated with 1% engine oil exhibited various biodegradation rates, with the mixed consortium exhibiting the highest for this oil. The gene for the hydrocarbon enzyme Catechol 2, 3 dioxygenase (C2,30) was detected and amplified in Enterobacter hormaechei, Escherichia coli and Shigella flexneri using PCR and Agarose gel electrophoresis. The detection of the (C2,30) enzyme gene in, and the spent oil biodegradation activity exhibited by these bacteria suggest their possible possession of bioremediating potentials for the spent engine oil. It is therefore suggested that a pilot study on the field application of these bacteria for bioremediation and restoration of spent oil polluted environment should be done in mechanic workshops.

Keywords: spent engine oil, pollution, bacteria, enzyme, bioremediation, mechanic workshop

Procedia PDF Downloads 222
1301 Based on MR Spectroscopy, Metabolite Ratio Analysis of MRI Images for Metastatic Lesion

Authors: Hossain A, Hossain S.

Abstract:

Introduction: In a small cohort, we sought to assess the magnetic resonance spectroscopy's (MRS) ability to predict the presence of metastatic lesions. Method: A Popular Diagnostic Centre Limited enrolled patients with neuroepithelial tumors. The 1H CSI MRS of the brain allows us to detect changes in the concentration of specific metabolites caused by metastatic lesions. Among these metabolites are N-acetyl-aspartate (NNA), creatine (Cr), and choline (Cho). For Cho, NAA, Cr, and Cr₂, the metabolic ratio was calculated using the division method. Results: The NAA values were 0.63 and 5.65 for tumor cells, 1.86 and 5.66 for normal cells, and 1.86 and 5.66 for normal cells 2. NAA values for normal cells 1 were 1.84, 10.6, and 1.86 for normal cells 2, respectively. Cho levels were as low as 0.8 and 10.53 in the tumor cell, compared to 1.12 and 2.7 in the normal cell 1 and 1.24 and 6.36 in the normal cell 2. Cho/Cr₂ barely distinguished itself from the other ratios in terms of significance. For tumor cells, the ratios of Cho/NAA, Cho/Cr₂, NAA/Cho, and NAA/Cr₂ were significant. Normal cell 1 had significant Cho/NAA, Cho/Cr, NAA/Cho, and NAA/Cr ratios. Conclusion: The clinical result can be improved by using 1H-MRSI to guide the size of resection for metastatic lesions. Even though it is non-invasive and doesn't present any difficulties during the procedure, MRS has been shown to predict the detection of metastatic lesions.

Keywords: metabolite ratio, MRI images, metastatic lesion, MR spectroscopy, N-acetyl-aspartate

Procedia PDF Downloads 99
1300 Medical Experience: Usability Testing of Displaying Computed Tomography Scans and Magnetic Resonance Imaging in Virtual and Augmented Reality for Accurate Diagnosis

Authors: Alyona Gencheva

Abstract:

The most common way to study diagnostic results is using specialized programs at a stationary workplace. Magnetic Resonance Imaging is presented in a two-dimensional (2D) format, and Computed Tomography sometimes looks like a three-dimensional (3D) model that can be interacted with. The main idea of the research is to compare ways of displaying diagnostic results in virtual reality that can help a surgeon during or before an operation in augmented reality. During the experiment, the medical staff examined liver vessels in the abdominal area and heart boundaries. The search time and detection accuracy were measured on black-and-white and coloured scans. Usability testing in virtual reality shows convenient ways of interaction like hand input, voice activation, displaying risk to the patient, and the required number of scans. The results of the experiment will be used in the new C# program based on Magic Leap technology.

Keywords: augmented reality, computed tomography, magic leap, magnetic resonance imaging, usability testing, VTE risk

Procedia PDF Downloads 113
1299 Partial Discharge Characteristics of Free- Moving Particles in HVDC-GIS

Authors: Philipp Wenger, Michael Beltle, Stefan Tenbohlen, Uwe Riechert

Abstract:

The integration of renewable energy introduces new challenges to the transmission grid, as the power generation is located far from load centers. The associated necessary long-range power transmission increases the demand for high voltage direct current (HVDC) transmission lines and DC distribution grids. HVDC gas-insulated switchgears (GIS) are considered being a key technology, due to the combination of the DC technology and the long operation experiences of AC-GIS. To ensure long-term reliability of such systems, insulation defects must be detected in an early stage. Operational experience with AC systems has proven evidence, that most failures, which can be attributed to breakdowns of the insulation system, can be detected and identified via partial discharge (PD) measurements beforehand. In AC systems the identification of defects relies on the phase resolved partial discharge pattern (PRPD). Since there is no phase information within DC systems this method cannot be transferred to DC PD diagnostic. Furthermore, the behaviour of e.g. free-moving particles differs significantly at DC: Under the influence of a constant direct electric field, charge carriers can accumulate on particles’ surfaces. As a result, a particle can lift-off, oscillate between the inner conductor and the enclosure or rapidly bounces at just one electrode, which is known as firefly motion. Depending on the motion and the relative position of the particle to the electrodes, broadband electromagnetic PD pulses are emitted, which can be recorded by ultra-high frequency (UHF) measuring methods. PDs are often accompanied by light emissions at the particle’s tip which enables optical detection. This contribution investigates PD characteristics of free moving metallic particles in a commercially available 300 kV SF6-insulated HVDC-GIS. The influences of various defect parameters on the particle motion and the PD characteristic are evaluated experimentally. Several particle geometries, such as cylinder, lamella, spiral and sphere with different length, diameter and weight are determined. The applied DC voltage is increased stepwise from inception voltage up to UDC = ± 400 kV. Different physical detection methods are used simultaneously in a time-synchronized setup. Firstly, the electromagnetic waves emitted by the particle are recorded by an UHF measuring system. Secondly, a photomultiplier tube (PMT) detects light emission with a wavelength in the range of λ = 185…870 nm. Thirdly, a high-speed camera (HSC) tracks the particle’s motion trajectory with high accuracy. Furthermore, an electrically insulated electrode is attached to the grounded enclosure and connected to a current shunt in order to detect low frequency ion currents: The shunt measuring system’s sensitivity is in the range of 10 nA at a measuring bandwidth of bw = DC…1 MHz. Currents of charge carriers, which are generated at the particle’s tip migrate through the gas gap to the electrode and can be recorded by the current shunt. All recorded PD signals are analyzed in order to identify characteristic properties of different particles. This includes e.g. repetition rates and amplitudes of successive pulses, characteristic frequency ranges and detected signal energy of single PD pulses. Concluding, an advanced understanding of underlying physical phenomena particle motion in direct electric field can be derived.

Keywords: current shunt, free moving particles, high-speed imaging, HVDC-GIS, UHF

Procedia PDF Downloads 164
1298 Negative Sequence-Based Protection Techniques for Microgrid Connected Power Systems

Authors: Isabelle Snyder, Travis Smith

Abstract:

Microgrid protection presents challenges to conventional protection techniques due to the low-induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected modes. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid-connected or microgrid-connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are labeled as follows: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR).

Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection

Procedia PDF Downloads 101
1297 Automated Tracking and Statistics of Vehicles at the Signalized Intersection

Authors: Qiang Zhang, Xiaojian Hu1

Abstract:

Intersection is the place where vehicles and pedestrians must pass through, turn and evacuate. Obtaining the motion data of vehicles near the intersection is of great significance for transportation research. Since there are usually many targets and there are more conflicts between targets, this makes it difficult to obtain vehicle motion parameters in traffic videos of intersections. According to the characteristics of traffic videos, this paper applies video technology to realize the automated track, count and trajectory extraction of vehicles to collect traffic data by roadside surveillance cameras installed near the intersections. Based on the video recognition method, the vehicles in each lane near the intersection are tracked with extracting trajectory and counted respectively in various degrees of occlusion and visibility. The performances are compared with current recognized CPU-based algorithms of real-time tracking-by-detection. The speed of the presented system is higher than the others and the system has a better real-time performance. The accuracy of direction has reached about 94.99% on average, and the accuracy of classification and statistics has reached about 75.12% on average.

Keywords: tracking and statistics, vehicle, signalized intersection, motion parameter, trajectory

Procedia PDF Downloads 222
1296 Microarrays: Wide Clinical Utilities and Advances in Healthcare

Authors: Salma M. Wakil

Abstract:

Advances in the field of genetics overwhelmed detecting large number of inherited disorders at the molecular level and directed to the development of innovative technologies. These innovations have led to gene sequencing, prenatal mutation detection, pre-implantation genetic diagnosis; population based carrier screening and genome wide analyses using microarrays. Microarrays are widely used in establishing clinical and diagnostic setup for genetic anomalies at a massive level, with the advent of cytoscan molecular karyotyping as a clinical utility card for detecting chromosomal aberrations with high coverage across the entire human genome. Unlike a regular karyotype that relies on the microscopic inspection of chromosomes, molecular karyotyping with cytoscan constructs virtual chromosomes based on the copy number analysis of DNA which improves its resolution by 100-fold. We have been investigating a large number of patients with Developmental Delay and Intellectual disability with this platform for establishing micro syndrome deletions and have detected number of novel CNV’s in the Arabian population with the clinical relevance.

Keywords: microarrays, molecular karyotyping, developmental delay, genetics

Procedia PDF Downloads 458
1295 Outcome of Obstetric Admission to General Intensive Care over a Period of 3 Years

Authors: Kamel Abdelaziz Mohamed

Abstract:

Intoduction:Inadequate knowledge about obstetric admission and infrequent dealing with the obstetric patients in ICU results in high mortality and morbidity. Aim of the work:To evaluate the indications, course, severity of illness, and outcome of obstetric patients admitted to the intensive care unit (ICU). Patients and Methods: We collected baseline data and acute physiology and chronic health evaluation II (APACHE II) scores. ICU mortality was the primary outcome. Results: Seventy obstetric patients were admitted to the ICU over 3 years, 36 of these patients (51.4 %) were admitted during the antepartum period. The primary obstetric indication for ICU admission was pregnancy-induced hypertension (22 patients, 31.4%), followed by sepsis (8 patients, 11.4%) as the leading non-obstetric admission. The mean APACHE II score was 19.6. The predicted mortality rate based on the APACHE II score was 22%, however, only 4 maternal deaths (5.7%) were among the obstetric patients admitted to the ICU. Conclusion: Evaluation of obstetric patients by (APACHE II) scores showed higher predicted mortality rate, however the overall mortality was lower. Regular follow up, together with early detection of complications and prompt ICU admission necessitating proper management by specialized team can improve mortality.

Keywords: obstetric, complication, postpartum, sepsis

Procedia PDF Downloads 309
1294 MindFlow: A Collective Intelligence-Based System for Helping Stress Pattern Diagnosis

Authors: Andres Frederic

Abstract:

We present the MindFlow system supporting the detection and the diagnosis of stresses. The heart of the system is a knowledge synthesis engine allowing occupational health stakeholders (psychologists, occupational therapists and human resource managers) to formulate queries related to stress and responding to users requests by recommending a pattern of stress if one exists. The stress pattern diagnosis is based on expert knowledge stored in the MindFlow stress ontology including stress feature vector. The query processing may involve direct access to the MindFlow system by occupational health stakeholders, online communication between the MindFlow system and the MindFlow domain experts, or direct dialog between a occupational health stakeholder and a MindFlow domain expert. The MindFlow knowledge model is generic in the sense that it supports the needs of psychologists, occupational therapists and human resource managers. The system presented in this paper is currently under development as part of a Dutch-Japanese project and aims to assist organisation in the quick diagnosis of stress patterns.

Keywords: occupational stress, stress management, physiological measurement, accident prevention

Procedia PDF Downloads 435
1293 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management

Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix

Abstract:

A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.

Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings

Procedia PDF Downloads 372