Search results for: organismic integration theory of well-being and learning
11674 The Relevance of the U-Shaped Learning Model to the Acquisition of the Difference between C'est and Il Est in the English Learners of French Context
Authors: Pooja Booluck
Abstract:
A U-shaped learning curve entails a three-step process: a good performance followed by a bad performance followed by a good performance again. U-shaped curves have been observed not only in language acquisition but also in various fields such as temperature face recognition object permanence to name a few. Building on previous studies of the curve child language acquisition and Second Language Acquisition this empirical study seeks to investigate the relevance of the U-shaped learning model to the acquisition of the difference between cest and il est in the English Learners of French context. The present study was developed to assess whether older learners of French in the ELF context follow the same acquisition pattern. The empirical study was conducted on 15 English learners of French which lasted six weeks. Compositions and questionnaires were collected from each subject at three time intervals (after one week after three weeks after six weeks) after which students work were graded as being either correct or incorrect. The data indicates that there is evidence of a U-shaped learning curve in the acquisition of cest and il est and students did follow the same acquisition pattern as children in regards to rote-learned terms and subject clitics. This paper also discusses the need to introduce modules on U-shaped learning curve in teaching curriculum as many teachers are unaware of the trajectory learners undertake while acquiring core components in grammar. In addition this study also addresses the need to conduct more research on the acquisition of rote-learned terms and subject clitics in SLA.Keywords: child language acquisition, rote-learning, subject clitics, u-shaped learning model
Procedia PDF Downloads 29811673 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 7811672 Integrated Livestock and Cropping System and Sustainable Rural Development in India: A Case Study
Authors: Nizamuddin Khan
Abstract:
Integrated livestock and cropping system is very old agricultural practice since antiquity. It is an eco-friendly and sustainable farming system in which both the resources are optimally and rationally utilized through the recycling and re-utilization of their by-products. Indian farmers follow in- farm integrated farming system unlike in developed countries where both farm and off-farm system prevailed. The data on different components of the integrated farming system is very limited and that too is not widely available in published form. The primary source is the only option for understanding the mechanism, process, evaluation and performance of integrated livestock cropping system. Researcher generated data through the field survey of sampled respondents from sampled villages from Bulandshahr district of Uttar Pradesh. The present paper aims to understand the component group of system, degree, and level of integration, level of generation of employment, income, improvement in farm ecology, the economic viability of farmers and check in rural-urban migration. The study revealed that area witnessed intra farm integration in which both livestock and cultivation of crops take place on the same farm. Buffalo, goat, and poultry are common components of integration. Wheat, paddy, sugarcane and horticulture are among the crops. The farmers are getting 25% benefit more than those who do not follow the integrated system. Livestock husbandry provides employment and income through the year, especially during agriculture offseason. 80% of farmers viewed that approximately 35% of the total expenditure incurred is met from the livestock sector. Landless, marginal and small farmers are highly benefited from agricultural integration. About 70% of farmers acknowledged that using wastes of animals and crops the soil ecology is significantly maintained. Further, the integrated farming system is helpful in reducing rural to urban migration. An incentive with credit facilities, assured marketing, technological aid and government support is urgently needed for sustainable development of agriculture and farmers.Keywords: integrated, recycle, employment, soil ecology, sustainability
Procedia PDF Downloads 17611671 Enhanced Analysis of Spatial Morphological Cognitive Traits in Lidukou Village through the Application of Space Syntax
Authors: Man Guo
Abstract:
This paper delves into the intricate interplay between spatial morphology and spatial cognition in Lidukou Village, utilizing a combined approach of spatial syntax and field data. Through a comparative analysis of the gathered data, it emerges that the spatial integration level of Lidukou Village exhibits a direct positive correlation with the spatial cognitive preferences of its inhabitants. Specifically, the areas within the village that exhibit a higher degree of spatial cognition are predominantly distributed along the axis primarily defined by Shuxiang Road. However, the accessibility to historical relics remains limited, lacking a coherent systemic relationship. To address the morphological challenges faced by Lidukou Village, this study proposes optimization strategies that encompass diverse perspectives, including the refinement of spatial mechanisms and the shaping of strategic spatial nodes.Keywords: traditional villages, spatial syntax, spatial integration degree, morphological problem
Procedia PDF Downloads 4811670 Classification of Sequential Sports Using Automata Theory
Authors: Aniket Alam, Sravya Gurram
Abstract:
This paper proposes a categorization of sport that is based on the system of rules that a sport must adhere to. We focus on these systems of rules to examine how a winner is produced in different sports. The rules of a sport dictate the game play and the direction it takes. We propose to break down the game play into events. At this junction, we observe two kinds of events that constitute the game play of a sport –ones that follow sequential logic and ones that do not. Our focus is pertained to sports that are comprised of sequential events. To examine these events further, to understand how a winner emerges, we take the help of finite-state automaton from the theory of computation (Automata theory). We showcase how sequential sports are eligible to be represented as finite state machines. We depict these finite state machines as state diagrams. We examine these state diagrams to observe how a team/player reaches the final states of the sport, with a special focus on one final state –the final state which determines the winner. This exercise has been carried out for the following sports: Hurdles, Track, Shot Put, Long Jump, Bowling, Badminton, Pacman and Weightlifting (Snatch). Based on our observations of how this final state of winning is achieved, we propose a categorization of sports.Keywords: sport classification, sport modelling, ontology, automata theory
Procedia PDF Downloads 12211669 Knowledge Transfer and the Translation of Technical Texts
Authors: Ahmed Alaoui
Abstract:
This paper contributes to the ongoing debate as to the relevance of translation studies to professional practitioners. It exposes the various misconceptions permeating the links between theory and practice in the translation landscape in the Arab World. It is a thesis of this paper that specialization in translation should be redefined; taking account of the fact, that specialized knowledge alone is neither crucial nor sufficient in technical translation. It should be tested against the readability of the translated text, the appropriateness of its style and the usability of its content by end-users to carry out their intended tasks. The paper also proposes a preliminary model to establish a working link between theory and practice from the perspective of professional trainers and practitioners, calling for the latter to participate in the production of knowledge in a systematic fashion. While this proposal is driven by a rather intuitive conviction, a research line is needed to specify the methodological moves to establish the mediation strategies that would relate the components in the model of knowledge transfer proposed in this paper.Keywords: knowledge transfer, misconceptions, specialized texts, translation theory, translation practice
Procedia PDF Downloads 39911668 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining
Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri
Abstract:
In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.Keywords: educational data mining, Facebook, learning styles, personality traits
Procedia PDF Downloads 23211667 Ultra-Wideband Antennas for Ultra-Wideband Communication and Sensing Systems
Authors: Meng Miao, Jeongwoo Han, Cam Nguyen
Abstract:
Ultra-wideband (UWB) time-domain impulse communication and radar systems use ultra-short duration pulses in the sub-nanosecond regime, instead of continuous sinusoidal waves, to transmit information. The pulse directly generates a very wide-band instantaneous signal with various duty cycles depending on specific usages. In UWB systems, the total transmitted power is spread over an extremely wide range of frequencies; the power spectral density is extremely low. This effectively results in extremely small interference to other radio signals while maintains excellent immunity to interference from these signals. UWB devices can therefore work within frequencies already allocated for other radio services, thus helping to maximize this dwindling resource. Therefore, impulse UWB technique is attractive for realizing high-data-rate, short-range communications, ground penetrating radar (GPR), and military radar with relatively low emission power levels. UWB antennas are the key element dictating the transmitted and received pulse shape and amplitude in both time and frequency domain. They should have good impulse response with minimal distortion. To facilitate integration with transmitters and receivers employing microwave integrated circuits, UWB antennas enabling direct integration are preferred. We present the development of two UWB antennas operating from 3.1 to 10.6 GHz and 0.3-6 GHz for UWB systems that provide direct integration with microwave integrated circuits. The operation of these antennas is based on the principle of wave propagation on a non-uniform transmission line. Time-domain EM simulation is conducted to optimize the antenna structures to minimize reflections occurring at the open-end transition. Calculated and measured results of these UWB antennas are presented in both frequency and time domains. The antennas have good time-domain responses. They can transmit and receive pulses effectively with minimum distortion, little ringing, and small reflection, clearly demonstrating the signal fidelity of the antennas in reproducing the waveform of UWB signals which is critical for UWB sensors and communication systems. Good performance together with seamless microwave integrated-circuit integration makes these antennas good candidates not only for UWB applications but also for integration with printed-circuit UWB transmitters and receivers.Keywords: antennas, ultra-wideband, UWB, UWB communication systems, UWB radar systems
Procedia PDF Downloads 24211666 Exploration into Bio Inspired Computing Based on Spintronic Energy Efficiency Principles and Neuromorphic Speed Pathways
Authors: Anirudh Lahiri
Abstract:
Neuromorphic computing, inspired by the intricate operations of biological neural networks, offers a revolutionary approach to overcoming the limitations of traditional computing architectures. This research proposes the integration of spintronics with neuromorphic systems, aiming to enhance computational performance, scalability, and energy efficiency. Traditional computing systems, based on the Von Neumann architecture, struggle with scalability and efficiency due to the segregation of memory and processing functions. In contrast, the human brain exemplifies high efficiency and adaptability, processing vast amounts of information with minimal energy consumption. This project explores the use of spintronics, which utilizes the electron's spin rather than its charge, to create more energy-efficient computing systems. Spintronic devices, such as magnetic tunnel junctions (MTJs) manipulated through spin-transfer torque (STT) and spin-orbit torque (SOT), offer a promising pathway to reducing power consumption and enhancing the speed of data processing. The integration of these devices within a neuromorphic framework aims to replicate the efficiency and adaptability of biological systems. The research is structured into three phases: an exhaustive literature review to build a theoretical foundation, laboratory experiments to test and optimize the theoretical models, and iterative refinements based on experimental results to finalize the system. The initial phase focuses on understanding the current state of neuromorphic and spintronic technologies. The second phase involves practical experimentation with spintronic devices and the development of neuromorphic systems that mimic synaptic plasticity and other biological processes. The final phase focuses on refining the systems based on feedback from the testing phase and preparing the findings for publication. The expected contributions of this research are twofold. Firstly, it aims to significantly reduce the energy consumption of computational systems while maintaining or increasing processing speed, addressing a critical need in the field of computing. Secondly, it seeks to enhance the learning capabilities of neuromorphic systems, allowing them to adapt more dynamically to changing environmental inputs, thus better mimicking the human brain's functionality. The integration of spintronics with neuromorphic computing could revolutionize how computational systems are designed, making them more efficient, faster, and more adaptable. This research aligns with the ongoing pursuit of energy-efficient and scalable computing solutions, marking a significant step forward in the field of computational technology.Keywords: material science, biological engineering, mechanical engineering, neuromorphic computing, spintronics, energy efficiency, computational scalability, synaptic plasticity.
Procedia PDF Downloads 5411665 Sensitivity Analysis in Fuzzy Linear Programming Problems
Authors: S. H. Nasseri, A. Ebrahimnejad
Abstract:
Fuzzy set theory has been applied to many fields, such as operations research, control theory, and management sciences. In this paper, we consider two classes of fuzzy linear programming (FLP) problems: Fuzzy number linear programming and linear programming with trapezoidal fuzzy variables problems. We state our recently established results and develop fuzzy primal simplex algorithms for solving these problems. Finally, we give illustrative examples.Keywords: fuzzy linear programming, fuzzy numbers, duality, sensitivity analysis
Procedia PDF Downloads 57011664 Networked Implementation of Milling Stability Optimization with Bayesian Learning
Authors: Christoph Ramsauer, Jaydeep Karandikar, Tony Schmitz, Friedrich Bleicher
Abstract:
Machining stability is an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the Vienna University of Technology, Vienna, Austria. The recorded data from a milling test cut is used to classify the cut as stable or unstable based on the frequency analysis. The test cut result is fed to a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculates the probability of stability as a function of axial depth of cut and spindle speed and recommends the parameters for the next test cut. The iterative process between two transatlantic locations repeats until convergence to a stable optimal process parameter set is achieved.Keywords: machining stability, machine learning, sensor, optimization
Procedia PDF Downloads 21111663 Integration of Knowledge and Metadata for Complex Data Warehouses and Big Data
Authors: Jean Christian Ralaivao, Fabrice Razafindraibe, Hasina Rakotonirainy
Abstract:
This document constitutes a resumption of work carried out in the field of complex data warehouses (DW) relating to the management and formalization of knowledge and metadata. It offers a methodological approach for integrating two concepts, knowledge and metadata, within the framework of a complex DW architecture. The objective of the work considers the use of the technique of knowledge representation by description logics and the extension of Common Warehouse Metamodel (CWM) specifications. This will lead to a fallout in terms of the performance of a complex DW. Three essential aspects of this work are expected, including the representation of knowledge in description logics and the declination of this knowledge into consistent UML diagrams while respecting or extending the CWM specifications and using XML as pivot. The field of application is large but will be adapted to systems with heteroge-neous, complex and unstructured content and moreover requiring a great (re)use of knowledge such as medical data warehouses.Keywords: data warehouse, description logics, integration, knowledge, metadata
Procedia PDF Downloads 14411662 Deep Learning for Image Correction in Sparse-View Computed Tomography
Authors: Shubham Gogri, Lucia Florescu
Abstract:
Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net
Procedia PDF Downloads 17011661 Collaborative Governance and Quality Assurance of Higher Education Institutions for Association of Southeast Asian Nations (ASEAN) Integration: The Philippine Experience
Authors: Rowena R. De Guzman
Abstract:
Association of Southeast Asian Nations (ASEAN) integration requires that higher education institutions (HEIs) must adjust the quality of their educational services and develop a global mindset, through various quality assurance (QA) activities to a level producing global graduates and encouraging human resource mobility. For Philippine HEIs, QA involves enormous tasks and responsibilities, whereby the implementation of which involves various parties, agencies and stakeholders; and in that case innovations have to be installed to engage the whole system in the QA process. In this study, collaborative governance (CG), a concept from the field of public administration, is introduced in educational management, particularly in the area of QA management. The paper suggests that the exercise of and attitude toward CG in QA is relevant to the practice of activities across QA indicators in higher educational services among stakeholders from participating HEIs. Participants representing different interests are collectively empowered, and this compelled them to participate and support the QA activities of the HEIs. It is recommended to embed CG model in the system for HEIs undergoing or intending to undergo QA achieve their desired QA outcomes. The study supports the commitment of the Philippine government to the evolving policy and efforts to achieve comparable qualifications across the Asia-Pacific region under the auspices of the UNESCO.Keywords: ASEAN integration, collaborative governance, global education, government policy, higher education, international demands, quality assurance
Procedia PDF Downloads 27811660 Examining Relationship between Resource-Curse and Under-Five Mortality in Resource-Rich Countries
Authors: Aytakin Huseynli
Abstract:
The paper reports findings of the study which examined under-five mortality rate among resource-rich countries. Typically when countries obtain wealth citizens gain increased wellbeing. Societies with new wealth create equal opportunities for everyone including vulnerable groups. But scholars claim that this is not the case for developing resource-rich countries and natural resources become the curse for them rather than the blessing. Spillovers from natural resource curse affect the social wellbeing of vulnerable people negatively. They get excluded from the mainstream society, and their situation becomes tangible. In order to test this hypothesis, the study compared under-5 mortality rate among resource-rich countries by using independent sample one-way ANOVA. The data on under-five mortality rate came from the World Bank. The natural resources for this study are oil, gas and minerals. The list of 67 resource-rich countries was taken from Natural Resource Governance Institute. The sample size was categorized and 4 groups were created such as low, low-middle, upper middle and high-income countries based on income classification of the World Bank. Results revealed that there was a significant difference in the scores for low, middle, upper-middle and high-income countries in under-five mortality rate (F(3(29.01)=33.70, p=.000). To find out the difference among income groups, the Games-Howell test was performed and it was found that infant mortality was an issue for low, middle and upper middle countries but not for high-income countries. Results of this study are in agreement with previous research on resource curse and negative effects of resource-based development. Policy implications of the study for social workers, policy makers, academicians and social development specialists are to raise and discuss issues of marginalization and exclusion of vulnerable groups in developing resource-rich countries and suggest interventions for avoiding them.Keywords: children, natural resource, extractive industries, resource-based development, vulnerable groups
Procedia PDF Downloads 25611659 The Correspondence between Self-regulated Learning, Learning Efficiency and Frequency of ICT Use
Authors: Maria David, Tunde A. Tasko, Katalin Hejja-Nagy, Laszlo Dorner
Abstract:
The authors have been concerned with research on learning since 1998. Recently, the focus of our interest is how prevalent use of information and communication technology (ICT) influences students' learning abilities, skills of self-regulated learning and learning efficiency. Nowadays, there are three dominant theories about the psychic effects of ICT use: According to social optimists, modern ICT devices have a positive effect on thinking. As to social pessimists, this effect is rather negative. And, regarding the views of biological optimists, the change is obvious, but these changes can fit into the mankind's evolved neurological system as did writing long ago. Mentality of 'digital natives' differ from that of elder people. They process information coming from the outside world in an other way, and different experiences result in different cerebral conformation. In this regard, researchers report about both positive and negative effects of ICT use. According to several studies, it has a positive effect on cognitive skills, intelligence, school efficiency, development of self-regulated learning, and self-esteem regarding learning. It is also proven, that computers improve skills of visual intelligence such as spacial orientation, iconic skills and visual attention. Among negative effects of frequent ICT use, researchers mention the decrease of critical thinking, as permanent flow of information does not give scope for deeper cognitive processing. Aims of our present study were to uncover developmental characteristics of self-regulated learning in different age groups and to study correlations of learning efficiency, the level of self-regulated learning and frequency of use of computers. Our subjects (N=1600) were primary and secondary school students and university students. We studied four age groups (age 10, 14, 18, 22), 400 subjects of each. We used the following methods: the research team developed a questionnaire for measuring level of self-regulated learning and a questionnaire for measuring ICT use, and we used documentary analysis to gain information about grade point average (GPA) and results of competence-measures. Finally, we used computer tasks to measure cognitive abilities. Data is currently under analysis, but as to our preliminary results, frequent use of computers results in shorter response time regarding every age groups. Our results show that an ordinary extent of ICT use tend to increase reading competence, and had a positive effect on students' abilities, though it didn't show relationship with school marks (GPA). As time passes, GPA gets worse along with the learning material getting more and more difficult. This phenomenon draws attention to the fact that students are unable to switch from guided to independent learning, so it is important to consciously develop skills of self-regulated learning.Keywords: digital natives, ICT, learning efficiency, reading competence, self-regulated learning
Procedia PDF Downloads 36311658 Optimized Integration Of Bidirectional Charging Capacities As Mobile Energy Storages
Authors: Luzie Krings, Sven Liebehentze, Maximilian Gehring, Uwe Rüppel
Abstract:
The integration of renewable energy into the energy grid is essential for decarbonization, and leveraging electrified vehicles (EVs) as mobile storage units offers a pathway to address grid challenges. The decentralized nature of EVs and the intermittency of renewable energy sources, such as photovoltaic (PV) and wind power, complicate grid stability. Vehicle-to-Grid (V2G) technology presents a promising solution, enabling EVs to support grid stability through services like redispatch, congestion mitigation, and enhanced renewable energy utilization. Freight transport, contributing 38% of transport emissions, holds significant potential as its aggregated energy storage capacity can stabilize the grid and optimize renewable energy integration. This study introduces a risk-averse optimization model for marketing EV flexibilities in Germany’s energy markets, with a strong focus on improving grid stability and maximizing renewable energy potential. Using a linear optimization framework, the model incorporates technical, regulatory, and operational constraints to simulate EV fleets as scalable energy storage solutions. The integration of proprietary PV and wind energy systems is also modeled to evaluate benefits. Benchmarks compare bidirectional charging with unidirectional charging under dynamic tariffs. The methodology employs the Python-based energypilot tool to optimize participation in Day-Ahead, Intraday, and Redispatch markets, accounting for trading conditions and temporal offsets. Results demonstrate that redispatch utilization substantially supports grid stability, while bidirectional charging increased renewable energy integration by 15% and economic benefits by 20%. Longer charging cycles offered greater financial returns compared to fragmented cycles, emphasizing the potential of fleets with extended idle periods for storing renewable energy. This research highlights the critical role of EVs in stabilizing the grid and utilizing renewable energy effectively by expanding storage capacity. The optimization framework addresses key challenges in energy trading, offering a transferable methodology for broader energy storage applications. This supports the transition to a sustainable energy system by improving environmental outcomes and economic incentives.Keywords: Electric Vehicles, Energy Grid, Energy Storages, Redispatch
Procedia PDF Downloads 1411657 Influence of Instrumental Playing on Attachment Type of Musicians and Music Students Using Adult Attachment Scale-R
Authors: Sofia Serra-Dawa
Abstract:
Adult relationships accrue on a variety of past social experiences, intentions, and emotions that might predispose and influence the approach to and construction of subsequent relationships. The Adult Attachment Theory (AAT) proposes four types of adult attachment, where attachment is built over two dimensions of anxiety and avoidance: secure, anxious-preoccupied, dismissive-avoidant, and fearful-avoidant. The AAT has been studied in multiple settings such as personal and therapeutic relationships, educational settings, sexual orientation, health, and religion. In music scholarship, the AAT has been used to frame class learning of student singers and study the relational behavior between voice teachers and students. Building on this study, the present inquiry studies how attachment types might characterize learning relationships of music students (in the Western Conservatory tradition), and whether particular instrumental experiences might correlate to given attachment styles. Given certain behavioral cohesive features of established traditions of instrumental playing and performance modes, it is hypothesized that student musicians will display specific characteristics correlated to instrumental traditions, demonstrating clear tendency of attachment style, which in turn has implications on subsequent professional interactions. This study is informed by the methodological framework of Adult Attachment Scale-R (Collins and Read, 1990), which was particularly chosen given its non-invasive questions and classificatory validation. It is further hypothesized that the analytical comparison of musicians’ profiles has the potential to serve as the baseline for other comparative behavioral observation studies [this component is expected to be verified and completed well before the conference meeting]. This research may have implications for practitioners concerned with matching and improving musical teaching and learning relationships and in (professional and amateur) long-term musical settings.Keywords: adult attachment, music education, musicians attachment profile, musicians relationships
Procedia PDF Downloads 16011656 Design and Development of an Autonomous Beach Cleaning Vehicle
Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk
Abstract:
In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics
Procedia PDF Downloads 3511655 Assignment of Legal Personality to Robots: A Premature Meditation
Authors: Solomon Okorley
Abstract:
With the emergence of artificial intelligence, a proposition that has been made with increasing conviction is the need to assign legal personhood to robots. A major problem that arises when dealing with robots is the issue of liability: who do it hold liable when a robot causes harm? The suggestion to assign legal personality to robots has been made to aid in the assignment of liability. This paper contends that it is premature to assign legal personhood to robots. The paper employed the doctrinal and comparative research methodology. The paper first discusses the various theories that underpin the granting of legal personhood to juridical personalities to ascertain whether these theories can aid in the proposition to assign legal personhood to robots. These theories include fiction theory, aggregate theory, realist theory, and organism theory. Except for the aggregate theory, the fiction theory, the realist theory and the organism theory provide a good foundation to the proposal for legal personhood to be assigned to robots. The paper considers whether robots should be assigned legal personhood from a jurisprudential approach. The legal positivists assert that no metaphysical presuppositions are needed to determine who could be a legal person: the sole deciding factor is the engagement in legal relations and this prerequisite could be fulfilled by robots. However, rationalists, religionists and naturalists assert that the satisfaction of the metaphysical criteria is the basis of legal personality and since robots do not possess this feature, they cannot be assigned legal personhood. This differing perspective shows that the jurisprudential school of thought to which one belongs influences the decision whether to assign legal personhood to robots. The paper makes arguments for and against the assigning of legal personhood to robots. Assigning legal personhood to robots is necessary for the assigning of liability; and since robots are independent in their operation, they should be assigned legal personhood. However, it is argued that the degree of autonomy is insufficient. Robots do not understand legal obligations; they do not have a will of their own and the purported autonomy that they possess is an ‘imputed autonomy’. A crucial question to be asked is ‘whether it is desirable to confer legal personhood on robots’ and not ‘whether legal personhood should be assigned to robots’. This is due to the subjective nature of the responses to such a question as well as the peculiarities of countries in response to this question. The main argument in support of assigning legal personhood to robots is to aid in assigning liability. However, it is argued conferring legal personhood on robots is not the only way to deal with liability issues. Since any of the stakeholders involved with the robot system can be held liable for an accident, it is not desirable to assign legal personhood to robot. It is forecasted that in the epoch of strong artificial intelligence, granting robots legal personhood is plausible; however, in the current era, it is premature.Keywords: autonomy, legal personhood, premature, jurisprudential
Procedia PDF Downloads 7511654 Static and Dynamic Analysis of Timoshenko Microcantilever Using the Finite Element Method
Authors: Mohammad Tahmasebipour, Hosein Salarpour
Abstract:
Micro cantilevers are one of the components used in the manufacture of micro-electromechanical systems. Epoxy microcantilevers have a variety of applications in the manufacture of micro-sensors and micro-actuators. In this paper, the Timoshenko Micro cantilever was statically and dynamically analyzed using the finite element method. First, all boundary conditions and initial conditions governing micro cantilevers were considered. The effect of size on the deflection, angle of rotation, natural frequencies, and mode shapes were then analyzed and evaluated under different frequencies. It was observed that an increased micro cantilever thickness reduces the deflection, rotation, and resonant frequency. A good agreement was observed between our results and those obtained by the couple stress theory, the classical theory, and the strain gradient elasticity theory.Keywords: microcantilever, microsensor; epoxy, dynamic behavior, static behavior, finite element method
Procedia PDF Downloads 41911653 Envisioning The Future of Language Learning: Virtual Reality, Mobile Learning and Computer-Assisted Language Learning
Authors: Jasmin Cowin, Amany Alkhayat
Abstract:
This paper will concentrate on a comparative analysis of both the advantages and limitations of using digital learning resources (DLRs). DLRs covered will be Virtual Reality (VR), Mobile Learning (M-learning) and Computer-Assisted Language Learning (CALL) together with their subset, Mobile Assisted Language Learning (MALL) in language education. In addition, best practices for language teaching and the application of established language teaching methodologies such as Communicative Language Teaching (CLT), the audio-lingual method, or community language learning will be explored. Education has changed dramatically since the eruption of the pandemic. Traditional face-to-face education was disrupted on a global scale. The rise of distance learning brought new digital tools to the forefront, especially web conferencing tools, digital storytelling apps, test authoring tools, and VR platforms. Language educators raced to vet, learn, and implement multiple technology resources suited for language acquisition. Yet, questions remain on how to harness new technologies, digital tools, and their ubiquitous availability while using established methods and methodologies in language learning paired with best teaching practices. In M-learning language, learners employ portable computing devices such as smartphones or tablets. CALL is a language teaching approach using computers and other technologies through presenting, reinforcing, and assessing language materials to be learned or to create environments where teachers and learners can meaningfully interact. In VR, a computer-generated simulation enables learner interaction with a 3D environment via screen, smartphone, or a head mounted display. Research supports that VR for language learning is effective in terms of exploration, communication, engagement, and motivation. Students are able to relate through role play activities, interact with 3D objects and activities such as field trips. VR lends itself to group language exercises in the classroom with target language practice in an immersive, virtual environment. Students, teachers, schools, language institutes, and institutions benefit from specialized support to help them acquire second language proficiency and content knowledge that builds on their cultural and linguistic assets. Through the purposeful application of different language methodologies and teaching approaches, language learners can not only make cultural and linguistic connections in DLRs but also practice grammar drills, play memory games or flourish in authentic settings.Keywords: language teaching methodologies, computer-assisted language learning, mobile learning, virtual reality
Procedia PDF Downloads 24711652 Reinforcement Learning for Self Driving Racing Car Games
Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh
Abstract:
This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming
Procedia PDF Downloads 5411651 Towards a Measuring Tool to Encourage Knowledge Sharing in Emerging Knowledge Organizations: The Who, the What and the How
Authors: Rachel Barker
Abstract:
The exponential velocity in the truly knowledge-intensive world today has increasingly bombarded organizations with unfathomable challenges. Hence organizations are introduced to strange lexicons of descriptors belonging to a new paradigm of who, what and how knowledge at individual and organizational levels should be managed. Although organizational knowledge has been recognized as a valuable intangible resource that holds the key to competitive advantage, little progress has been made in understanding how knowledge sharing at individual level could benefit knowledge use at collective level to ensure added value. The research problem is that a lack of research exists to measure knowledge sharing through a multi-layered structure of ideas with at its foundation, philosophical assumptions to support presuppositions and commitment which requires actual findings from measured variables to confirm observed and expected events. The purpose of this paper is to address this problem by presenting a theoretical approach to measure knowledge sharing in emerging knowledge organizations. The research question is that despite the competitive necessity of becoming a knowledge-based organization, leaders have found it difficult to transform their organizations due to a lack of knowledge on who, what and how it should be done. The main premise of this research is based on the challenge for knowledge leaders to develop an organizational culture conducive to the sharing of knowledge and where learning becomes the norm. The theoretical constructs were derived and based on the three components of the knowledge management theory, namely technical, communication and human components where it is suggested that this knowledge infrastructure could ensure effective management. While it is realised that it might be a little problematic to implement and measure all relevant concepts, this paper presents effect of eight critical success factors (CSFs) namely: organizational strategy, organizational culture, systems and infrastructure, intellectual capital, knowledge integration, organizational learning, motivation/performance measures and innovation. These CSFs have been identified based on a comprehensive literature review of existing research and tested in a new framework adapted from four perspectives of the balanced score card (BSC). Based on these CSFs and their items, an instrument was designed and tested among managers and employees of a purposefully selected engineering company in South Africa who relies on knowledge sharing to ensure their competitive advantage. Rigorous pretesting through personal interviews with executives and a number of academics took place to validate the instrument and to improve the quality of items and correct wording of issues. Through analysis of surveys collected, this research empirically models and uncovers key aspects of these dimensions based on the CSFs. Reliability of the instrument was calculated by Cronbach’s a for the two sections of the instrument on organizational and individual levels.The construct validity was confirmed by using factor analysis. The impact of the results was tested using structural equation modelling and proved to be a basis for implementing and understanding the competitive predisposition of the organization as it enters the process of knowledge management. In addition, they realised the importance to consolidate their knowledge assets to create value that is sustainable over time.Keywords: innovation, intellectual capital, knowledge sharing, performance measures
Procedia PDF Downloads 20011650 Learning Vocabulary with SkELL: Developing a Methodology with University Students in Japan Using Action Research
Authors: Henry R. Troy
Abstract:
Corpora are becoming more prevalent in the language classroom, especially in the development of dictionaries and course materials. Nevertheless, corpora are still perceived by many educators as difficult to use directly in the classroom, a process which is also known as “data-driven learning” (DDL). Action research has been identified as a method by which DDL’s efficiency can be increased, but it is also an approach few studies on DDL have employed. Studies into the effectiveness of DDL in language education in Japan are also rare, and investigations focused more on student and teacher reactions rather than pre and post-test scores are rarer still. This study investigates the student and teacher reactions to the use of SkELL, a free online corpus designed to be user-friendly, for vocabulary learning at a university in Japan. Action research is utilized to refine the teaching methodology, with changes to the method based on student and teacher feedback received via surveys submitted after each of the four implementations of DDL. After some training, the students used tablets to study the target vocabulary autonomously in pairs and groups, with the teacher acting as facilitator. The results show that the students enjoyed using SkELL and felt it was effective for vocabulary learning, while the teaching methodology grew in efficiency throughout the course. These findings suggest that action research can be a successful method for increasing the efficacy of DDL in the language classroom, especially with teachers and students who are new to the practice.Keywords: action research, corpus linguistics, data-driven learning, vocabulary learning
Procedia PDF Downloads 25811649 Using Immersive Study Abroad Experiences to Strengthen Preservice Teachers’ Critical Reflection Skills on Future Classroom Practices
Authors: Meredith Jones, Susan Catapano, Carol McNulty
Abstract:
Study abroad experiences create unique learning opportunities for preservice teachers to strengthen their reflective thinking practices through applied learning experiences. Not only do study abroad experiences provide opportunities for students to expand their cultural sensitivity, but incorporating applied learning experiences in study abroad trips creates unique opportunities for preservice teachers to engage in critical reflection on their teaching skills. Applied learning experiences are designed to nurture learning and growth through a reflective, experiential process outside the traditional classroom setting. As students participate in applied learning experiences, they engage in critical reflection independently, with their peers, and with university faculty. Critical reflection within applied learning contexts generates, deepens, and documents learning but must be intentionally designed to be effective. Grounded in Dewey’s model of reflection, this qualitative study examines longitudinal data from various study abroad cohorts from a particular university. Reflective data was collected during the study abroad trip, and follow up data on critical reflection of teaching practices were collected six months and a year after the trip. Dewey’s model of reflection requires preservice teachers to make sense of their experiences by reflecting on theoretical knowledge, experiences, and pedagogical knowledge. Guided reflection provides preservice teachers with a framework to respond to questions and ideas critical to the applied learning outcomes. Prompts are used to engage preservice teachers in reflecting on situations they have experienced and how they can be transferred to their teaching. Findings from this study noted that students with previous field experiences, or work in the field, engaged in more critical reflection on pedagogical knowledge throughout their applied learning experience. Preservice teachers with limited experiences in the field benefited from engaging in critical reflection prompted by university faculty during the applied learning experience. However, they were able to independently engage in critical reflection once they began work in the field through university field placements, internships, or student teaching. Finally, students who participated in study abroad applied learning experiences reported their critical reflection on their teaching practices, and cultural sensitivity enhanced their teaching and relationships with children once they formally entered the teaching profession.Keywords: applied learning experiences, critical reflection, cultural sensitivity, preservice teachers, teacher education
Procedia PDF Downloads 14211648 Lifelong Education for Teachers: A Tool for Achieving Effective Teaching and Learning in Secondary Schools in Benue State, Nigeria
Authors: Adzongo Philomena Ibuh, Aloga O. Austin
Abstract:
The purpose of the study was to examine lifelong education for teachers as a tool for achieving effective teaching and learning. Lifelong education enhances social inclusion, personal development, citizenship, employability, teaching and learning, community and the nation, and the challenges of lifelong education were also discussed. Descriptive survey design was adopted for the study. A simple random sampling technique was used to select 80 teachers as sample from a population of 105 senior secondary school teachers in Makurdi local government area of Benue state. A 20-item self designed questionnaire subjected to expert validation and reliability was used to collect data. The reliability Alpha coefficient of 0.87 was established using Crombach Alpha technique, mean scores and standard deviation were used to answer the 2 research questions while chi-square was used to analyze data for the 2 hypotheses. The findings of the study revealed that, lifelong education for teachers can be used to achieve as a tool for achieving effective teaching and learning, and the study recommended among others that government, organizations and individuals should in collaboration put lifelong education programmes for teachers on the priority list. The paper concluded that the strategic position of lifelong education for teachers towards enhanced teaching and learning makes it imperative for all hands to be on deck to support the programme financially and otherwise.Keywords: effective teaching and learning, lifelong education, teachers, tool
Procedia PDF Downloads 47811647 Walking the Talk? Thinking and Acting – Teachers' and Practitioners' Perceptions about Physical Activity, Health and Well-Being, Do They 'Walk the Talk' ?
Authors: Kristy Howells, Catherine Meehan
Abstract:
This position paper presents current research findings into the proposed gap between teachers’ and practitioners’ thinking and acting about physical activity health and well-being in childhood. Within the new Primary curriculum, there is a focus on sustained physical activity within a Physical Education and healthy lifestyles in Personal, Health, Social and Emotional lessons, but there is no curriculum guidance about what sustained physical activity is and how it is defined. The current health guidance on birth to five suggests that children should not be inactive for long periods and specify light and energetic activities, however there is the a suggested period of time per day for young children to achieve, but the guidance does not specify how this should be measured. The challenge therefore for teachers and practitioners is their own confidence and understanding of what “good / moderate intensity” physical activity and healthy living looks like for children and the children understanding what they are doing. There is limited research about children from birth to eight years and also the perceptions and attitudes of those who work with this age group of children, however it was found that children at times can identify different levels of activity and it has been found that children can identify healthy foods and good choices for healthy living at a basic level. Authors have also explored teachers’ beliefs about teaching and learning and found that teachers could act in accordance to their beliefs about their subject area only when their subject knowledge, understanding and confidence of that area is high. It has been proposed that confidence and competence of practitioners and teachers to integrate ‘well-being’ within the learning settings has been reported as being low. This may be due to them not having high subject knowledge. It has been suggested that children’s life chances are improved by focusing on well-being in their earliest years. This includes working with parents and families, and being aware of the environmental contexts that may impact on children’s wellbeing. The key is for practitioners and teachers to know how to implement these ideas effectively as these key workers have a profound effect on young children as role models and due to the time of waking hours spent with them. The position paper is part of a longitudinal study at Canterbury Christ Church University and currently we will share the research findings from the initial questionnaire (online, postal, and in person) that explored and evaluated the knowledge, competence and confidence levels of practitioners and teachers as to the structure and planning of sustained physical activity and healthy lifestyles and how this progresses with the children’s age.Keywords: health, perceptions, physical activity, well-being
Procedia PDF Downloads 40611646 Conceptual Synthesis as a Platform for Psychotherapy Integration: The Case of Transference and Overgeneralization
Authors: Merav Rabinovich
Abstract:
Background: Psychoanalytic and cognitive therapy attend problems from a different point of view. At the recent decade the integrating movement gaining momentum. However only little has been studied regarding the theoretical interrelationship among these therapy approaches. Method: 33 transference case-studies that were published in peer-reviewed academic journals were coded by Luborsky's Core Conflictual Relationship Theme (CCRT) method (components of wish, response from other – real or imaginal - and the response of self). CCRT analysis was conducted through tailor-made method, a valid tool to identify transference patterns. Rabinovich and Kacen's (2010, 2013) Relationship Between Categories (RBC) method was used to analyze the relationship among these transference patterns with cognitive and behavior components appearing at those psychoanalytic case-studies. Result: 30 of 33 cases (90%) were found to connect the transference themes with cognitive overgeneralization. In these cases, overgeneralizations were organized around Luborsky's transference themes of response from other and response of self. Additionally, overgeneralization was found to be an antithesis of the wish component, and the tension between them found to be linked with powerful behavioral and emotional reactions. Conclusion: The findings indicate that thinking distortions of overgeneralization (cognitive therapy) are the actual expressions of transference patterns. These findings point to a theoretical junction, a platform for clinical integration. Awareness to this junction can help therapists to promote well psychotherapy outcomes relying on the accumulative wisdom of the different therapies.Keywords: transference, overgeneralization, theoretical integration, case-study metasynthesis, CCRT method, RBC method
Procedia PDF Downloads 14711645 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 162