Search results for: open circuit voltage
2566 A Review of Ultralightweight Mutual Authentication Protocols
Authors: Umar Mujahid, Greatzel Unabia, Hongsik Choi, Binh Tran
Abstract:
Radio Frequency Identification (RFID) is one of the most commonly used technologies in IoTs and Wireless Sensor Networks which makes the devices identification and tracking extremely easy to manage. Since RFID uses wireless channel for communication, which is open for all types of adversaries, researchers have proposed many Ultralightweight Mutual Authentication Protocols (UMAPs) to ensure security and privacy in a cost-effective manner. These UMAPs involve simple bitwise logical operators such as XOR, AND, OR & Rot, etc., to design the protocol messages. However, most of these UMAPs were later reported to be vulnerable against many malicious attacks. In this paper, we have presented a detailed overview of some eminent UMAPs and also discussed the many security attacks on them. Finally, some recommendations and suggestions have been discussed, which can improve the design of the UMAPs.Keywords: RFID, Ultralightweight, UMAP, SASI
Procedia PDF Downloads 1532565 Implication of E-Robot Kit in Kuwait’s Robotics Technology Learning and Innovation
Authors: Murtaza Hassan Sheikh, Ahmed A. A. AlSaleh, Naser H. N. Jasem
Abstract:
Kuwait has not yet made its mark in the world of technology and research. Therefore, advancements have been made to fill in this gap. Since Robotics covers a wide variety of fields and helps innovation, efforts have been made to promote its education. Despite of the efforts made in Kuwait, robotics education is still on hold. The paper discusses the issues and obstacles in the implementation of robotics education in Kuwait and how a robotics kit “E-Robot” is making an impact in the Kuwait’s future education and innovation. Problems such as robotics competitions rather than education, complexity of robot programming and lack of organized open source platform are being addressed by the introduction of the E-Robot Kit in Kuwait. Due to its success since 2012 a total of 15 schools have accepted the Kit as a core subject, with 200 teaching it as an extracurricular activity.Keywords: robotics education, Kuwait's education, e-robot kit, research and development, innovation and creativity
Procedia PDF Downloads 4172564 Synthesis of Iron-Modified Montmorillonite as Filler for Electrospun Nanocomposite Fibers
Authors: Khryslyn Araño, Dela Cruz, Michael Leo, Dela Pena, Eden May, Leslie Joy Diaz
Abstract:
Montmorillonite (MMT) is a very abundant clay mineral and is versatile such that it can be chemically or physically altered by changing the ions between the sheets of its layered structure. This clay mineral can be prepared into functional nanoparticles that can be used as fillers in other nanomaterials such as nanofibers to achieve special properties. In this study, two types of iron-modified MMT, Iron-MMT (FeMMT) and Zero Valent Iron-MMT (ZVIMMT) were synthesized via ion exchange technique. The modified clay was incorporated in polymer nanofibers which were produced using a process called electrospinning. ICP analysis confirmed that clay modification was successful where there is an observed decrease in the concentration of Na and an increase in the concentration of Fe after ion exchange. XRD analysis also confirmed that modification took place because of the changes in the d-spacing of Na-MMT from 11.5 Å to 13.6 Å and 12.6 Å after synthesis of FeMMT and ZVIMMT, respectively. SEM images of the electrospun nanofibers revealed that the ZVIMMT-filled fibers have a smaller average diameter than the FeMMT-filled fibers because of the lower resistance of the suspensions of the former to the elongation force from the applied electric field. The resistance to the electric field was measured by getting the bulk voltage of the suspensions.Keywords: electrospinning, nanofibers, montmorillonite, materials science
Procedia PDF Downloads 3452563 Optimism, Skepticism, and Uncertainty: A Qualitative Study on the Knowledge and Perceived Impact of the Affordable Care Act among Adult Patients Seeking Care in a Free Clinic
Authors: Mike Wei, Mario Cedillo, Jiahui Lin, Carol Lorraine Storey-Johnson, Carla Boutin-Foster
Abstract:
Purpose: The extent to which health insurance enrollment succeeds under the Affordable Care Act (ACA) rests heavily on the ability to reach the uninsured and motivate them to enroll. We sought to identify perceptions about the ACA among uninsured patients at a free clinic in New York City. Background: The ACA holds tremendous promise for reducing the number of uninsured Americans. As of April 2014, nearly 8 million people had signed up for health insurance through the Health Insurance Marketplace. Despite this early success, future and continued enrollment rests heavily on the degree of public awareness. Reaching eligible individuals and increasing their awareness and understanding remains a fundamental challenge to realizing the full potential of the ACA. Reaching out to uninsured patients who are seeking care through safety net facilities such as free clinics may provide important avenues for reaching potential enrollees. This project focuses on the experience at the free clinic at Weill Cornell Medical College, the Weill Cornell Community Clinic (WCCC), and seeks to understand perceptions about the ACA among its patient population. Methods: This was a cross-sectional study of all patients who visited the free clinic at Weill Cornell Medical College, the Weill Cornell Community Clinic, from July 2013 to May 2014. Patients who provided informed consent at their visit and completed a semi-structured questionnaire were included (N=62). The questionnaire comprised of questions about demographic characteristics and open-ended questions about their knowledge and perception of the impact of the ACA. Descriptive statistics were used to characterize the population demographics. Qualitative coding techniques were used for open-ended items. Results: Approximately one third of patients surveyed never had health insurance. Of the remaining 65%, 20% lost their insurance within the past year. Only 55% had heard about the ACA, and only 10% knew about the Health Benefits Exchange. Of those who had heard about the ACA, sentiments were tinged with optimistic misperceptions, such as “it will be free health care for all.” While optimistic, most of the responses focused on the economic implications of the ACA. Conclusions: These findings reveal the immense amount of misconception and lack of understanding with regards to the ACA. As such, the study highlights the need to educate and address the concerns of those who remain skeptical or uncertain about the implications of the ACA.Keywords: Affordable Care Act, demographics, free clinics, underserved.
Procedia PDF Downloads 3882562 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems
Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber
Abstract:
Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement
Procedia PDF Downloads 1502561 Using of Cavitational Disperser for Porous Ceramic and Concrete Material Preparation
Authors: Andrei Shishkin, Aleksandrs Korjakins, Viktors Mironovs
Abstract:
Present paper describes method of obtaining clay ceramic foam (CCF) and foam concrete (FC), by direct foaming with high speed mixer-disperser (HSMD). Three foaming agents (FA) are compared for the FC and CCF production: SCHÄUMUNGSMITTEL W 53 FLÜSSIG (Zschimmer & Schwarz Gmbh, Germany), SCF-1245 (Sika, test sample, Latvia) and FAB-12 (Elade, Latvija). CCF were obtained at 950, 1000°C, 1150°C and 1150°C firing temperature and have mechanical compressive strength 1.2, 2.55, and 4.3 MPa and porosity 79.4, 75.1, 71.6%, respectively. Obtained FC has 6-14 MPa compressive strength and porosity 44-55%. The goal of this work was the development of a sustainable and durable ceramic cellular structures using HSMD.Keywords: ceramic foam, foam concrete, clay foam, open cell, close cell, direct foaming
Procedia PDF Downloads 8082560 Quality and Coverage Assessment in Software Integration Based On Mutation Testing
Authors: Iyad Alazzam, Kenneth Magel, Izzat Alsmadi
Abstract:
The different activities and approaches in software testing try to find the most possible number of errors or failures with the least amount of possible effort. Mutation is a testing approach that is used to discover possible errors in tested applications. This is accomplished through changing one aspect of the software from its original and writes test cases to detect such change or mutation. In this paper, we present a mutation approach for testing software components integration aspects. Several mutation operations related to components integration are described and evaluated. A test case study of several open source code projects is collected. Proposed mutation operators are applied and evaluated. Results showed some insights and information that can help testing activities in detecting errors and improving coverage.Keywords: software testing, integration testing, mutation, coverage, software design
Procedia PDF Downloads 4272559 Amyloid-β Fibrils Remodeling by an Organic Molecule: Insight from All-Atomic Molecular Dynamics Simulations
Authors: Nikhil Agrawal, Adam A. Skelton
Abstract:
Alzheimer’s disease (AD) is one of the most common forms of dementia, which is caused by misfolding and aggregation of amyloid beta (Aβ) peptides into amyloid-β fibrils (Aβ fibrils). To disrupt the remodeling of Aβ fibrils, a number of candidate molecules have been proposed. To study the molecular mechanisms of Aβ fibrils remodeling we performed a series of all-atom molecular dynamics simulations, a total time of 3µs, in explicit solvent. Several previously undiscovered candidate molecule-Aβ fibrils binding modes are unraveled; one of which shows the direct conformational change of the Aβ fibril by understanding the physicochemical factors responsible for binding and subsequent remodeling of Aβ fibrils by the candidate molecule, open avenues into structure-based drug design for AD can be opened.Keywords: alzheimer’s disease, amyloid, MD simulations, misfolded protein
Procedia PDF Downloads 3472558 Using Electrical Impedance Tomography to Control a Robot
Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi
Abstract:
Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.Keywords: electrical impedance tomography, EIT, surgeon robot, image processing of electrical impedance tomography
Procedia PDF Downloads 2722557 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 572556 Control of Grid Connected PMSG-Based Wind Turbine System with Back-To-Back Converter Topology Using Resonant Controller
Authors: Fekkak Bouazza, Menaa Mohamed, Loukriz Abdelhamid, Krim Mohamed L.
Abstract:
This paper presents modeling and control strategy for the grid connected wind turbine system based on Permanent Magnet Synchronous Generator (PMSG). The considered system is based on back-to-back converter topology. The Grid Side Converter (GSC) achieves the DC bus voltage control and unity power factor. The Machine Side Converter (MSC) assures the PMSG speed control. The PMSG is used as a variable speed generator and connected directly to the turbine without gearbox. The pitch angle control is not either considered in this study. Further, Optimal Tip Speed Ratio (OTSR) based MPPT control strategy is used to ensure the most energy efficiency whatever the wind speed variations. A filter (L) is put between the GSC and the grid to reduce current ripple and to improve the injected power quality. The proposed grid connected wind system is built under MATLAB/Simulink environment. The simulation results show the feasibility of the proposed topology and performance of its control strategies.Keywords: wind, grid, PMSG, MPPT, OTSR
Procedia PDF Downloads 3622555 Effect of Gel Concentration on Physical Properties of an Electrochromic Device
Authors: Sharan K. Indrakar, Aakash B. Prasad, Arash Takshi, Sesha Srinivasan, Elias K. Stefanakos
Abstract:
In this work, we present an exclusive study on the effect of the feeding ratio of polyaniline-based redox-active gel layer on electrical and optical properties of innovative electrochromic devices (ECs). An electrochromic device consisting of polyaniline (PANI) has a redox-active gel electrolyte placed between two conducting transparent fluorine-doped tin oxide glass substrates. The redox-active composite gel is a mixture of different concentrations of aniline (monomer), a water-soluble polymer poly (vinyl alcohol), hydrochloric acid, and an oxidant. The EC device shows the color change from dark green to transparent for the applied potential between -0.5 V to +2.0 V. The coloration and decoloration of the ECs were tested for electrochemical behavior using techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The optical transparency of the EC devices was examined at two different biasing voltage conditions under UV-visible spectroscopic technique; the result showed 65% transmittance at 564 nm and zero transmittance when the cell was biased at 0.0 V and 2.0 V, the synthesized mol fraction gel was analyzed for surface morphology and structural properties by scanning electron microscopy and Fourier transformer spectroscopy.Keywords: electrochromic, gel electrolyte, polyaniline, conducting polymer
Procedia PDF Downloads 1382554 Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics
Authors: C. R. Danielle, S. Erik, T. Patrick, M. Hugh
Abstract:
In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill.Keywords: bond ball mill, population balance model, product size distribution, vertical stirred mill
Procedia PDF Downloads 2922553 Selection of Variogram Model for Environmental Variables
Authors: Sheikh Samsuzzhan Alam
Abstract:
The present study investigates the selection of variogram model in analyzing spatial variations of environmental variables with the trend. Sometimes, the autofitted theoretical variogram does not really capture the true nature of the empirical semivariogram. So proper exploration and analysis are needed to select the best variogram model. For this study, an open source data collected from California Soil Resource Lab1 is used to explain the problems when fitting a theoretical variogram. Five most commonly used variogram models: Linear, Gaussian, Exponential, Matern, and Spherical were fitted to the experimental semivariogram. Ordinary kriging methods were considered to evaluate the accuracy of the selected variograms through cross-validation. This study is beneficial for selecting an appropriate theoretical variogram model for environmental variables.Keywords: anisotropy, cross-validation, environmental variables, kriging, variogram models
Procedia PDF Downloads 3342552 Biaxial Fatigue Specimen Design and Testing Rig Development
Authors: Ahmed H. Elkholy
Abstract:
An elastic analysis is developed to obtain the distribution of stresses, strains, bending moment and deformation for a thin hollow, variable thickness cylindrical specimen when subjected to different biaxial loadings. The specimen was subjected to a combination of internal pressure, axial tensile loading and external pressure. Several axial to circumferential stress ratios were investigated in detail. The analytical model was then validated using experimental results obtained from a test rig using several biaxial loadings. Based on the preliminary results obtained, the specimen was then modified geometrically to ensure uniform strain distribution through its wall thickness and along its gauge length. The new design of the specimen has a higher buckling strength and a maximum value of equivalent stress according to the maximum distortion energy theory. A cyclic function generator of the standard servo-controlled, electro-hydraulic testing machine is used to generate a specific signal shape (sine, square,…) at a certain frequency. The two independent controllers of the electronic circuit cause an independent movement to each servo-valve piston. The movement of each piston pressurizes the upper and lower sides of the actuators alternately. So, the specimen will be subjected to axial and diametral loads independent of each other. The hydraulic system has two different pressures: one pressure will be responsible for axial stress produced in the specimen and the other will be responsible for the tangential stress. Changing the two pressure ratios will change the stress ratios accordingly. The only restriction on the maximum stress obtained is the capacity of the testing system and specimen instability due to buckling.Keywords: biaxial, fatigue, stress, testing
Procedia PDF Downloads 1282551 Oscillating Water Column Wave Energy Converter with Deep Water Reactance
Authors: William C. Alexander
Abstract:
The oscillating water column (OSC) wave energy converter (WEC) with deep water reactance (DWR) consists of a large hollow sphere filled with seawater at the base, referred to as the ‘stabilizer’, a hollow cylinder at the top of the device, with a said cylinder having a bottom open to the sea and a sealed top save for an orifice which leads to an air turbine, and a long, narrow rod connecting said stabilizer with said cylinder. A small amount of ballast at the bottom of the stabilizer and a small amount of floatation in the cylinder keeps the device upright in the sea. The floatation is set such that the mean water level is nominally halfway up the cylinder. The entire device is loosely moored to the seabed to keep it from drifting away. In the presence of ocean waves, seawater will move up and down within the cylinder, producing the ‘oscillating water column’. This gives rise to air pressure within the cylinder alternating between positive and negative gauge pressure, which in turn causes air to alternately leave and enter the cylinder through said top-cover situated orifice. An air turbine situated within or immediately adjacent to said orifice converts the oscillating airflow into electric power for transport to shore or elsewhere by electric power cable. Said oscillating air pressure produces large up and down forces on the cylinder. Said large forces are opposed through the rod to the large mass of water retained within the stabilizer, which is located deep enough to be mostly free of any wave influence and which provides the deepwater reactance. The cylinder and stabilizer form a spring-mass system which has a vertical (heave) resonant frequency. The diameter of the cylinder largely determines the power rating of the device, while the size (and water mass within) of the stabilizer determines said resonant frequency. Said frequency is chosen to be on the lower end of the wave frequency spectrum to maximize the average power output of the device over a large span of time (such as a year). The upper portion of the device (the cylinder) moves laterally (surge) with the waves. This motion is accommodated with minimal loading on the said rod by having the stabilizer shaped like a sphere, allowing the entire device to rotate about the center of the stabilizer without rotating the seawater within the stabilizer. A full-scale device of this type may have the following dimensions. The cylinder may be 16 meters in diameter and 30 meters high, the stabilizer 25 meters in diameter, and the rod 55 meters long. Simulations predict that this will produce 1,400 kW in waves of 3.5-meter height and 12 second period, with a relatively flat power curve between 5 and 16 second wave periods, as will be suitable for an open-ocean location. This is nominally 10 times higher power than similar-sized WEC spar buoys as reported in the literature, and the device is projected to have only 5% of the mass per unit power of other OWC converters.Keywords: oscillating water column, wave energy converter, spar bouy, stabilizer
Procedia PDF Downloads 1072550 Wind Diesel Hybrid System without Battery Energy Storage Using Imperialist Competitive Algorithm
Authors: H. Rezvani, H. Monsef, A. Hekmati
Abstract:
Nowadays, the use of renewable energy sources has been increasingly great because of the cost increase and public demand for clean energy sources. One of the fastest growing sources is wind energy. In this paper, Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the Consumer Load, a Battery-based Energy Storage System (BESS), and a Dump Load (DL) is used. Voltage is controlled by Diesel Generator; the frequency is controlled by BESS and DL. The BESS elimination is an efficient way to reduce maintenance cost and increase the dynamic response. Simulation results with graphs for the frequency of Power System, active power, and the battery power are presented for load changes. The controlling parameters are optimized by using Imperialist Competitive Algorithm (ICA). The simulation results for the BESS/no BESS cases are compared. Results show that in no BESS case, the frequency control is more optimal than the BESS case by using ICA.Keywords: renewable energy, wind diesel system, induction generator, energy storage, imperialist competitive algorithm
Procedia PDF Downloads 5602549 Parametric Analysis of Syn-gas Fueled SOFC with Internal Reforming
Authors: Sanjay Tushar Choudhary
Abstract:
This paper focuses on the thermodynamic analysis of Solid Oxide Fuel Cell (SOFC). In the present work the SOFC has been modeled to work with internal reforming of fuel which takes place at high temperature and direct energy conversion from chemical energy to electrical energy takes place. The fuel-cell effluent is a high-temperature steam which can be used for co-generation purposes. Syn-gas has been used here as fuel which is essentially produced by steam reforming of methane in the internal reformer of the SOFC. A thermodynamic model of SOFC has been developed for planar cell configuration to evaluate various losses in the energy conversion process within the fuel cell. Cycle parameters like fuel utilization ratio and the air-recirculation ratio have been varied to evaluate the thermodynamic performance of the fuel cell. Output performance parameters like terminal voltage, cell-efficiency and power output have been evaluated for various values of current densities. It has been observed that a combination of a lower value of air-circulation ratio and higher values of fuel utilization efficiency gives a better overall thermodynamic performance.Keywords: current density, SOFC, suel utilization factor, recirculation ratio
Procedia PDF Downloads 5082548 Analysis on Urban Form and Evolution Mechanism of High-Density City: Case Study of Hong Kong
Authors: Yuan Zhang
Abstract:
Along with large population and great demands for urban development, Hong Kong serves as a typical high-density city with multiple altitudes, advanced three-dimensional traffic system, rich city open space, etc. This paper contributes to analyzing its complex urban form and evolution mechanism from three aspects of view, separately as time, space and buildings. Taking both horizontal and vertical dimension into consideration, this paper provides a perspective to explore the fascinating process of growing and space folding in the urban form of high-density city, also as a research reference for related high-density urban design.Keywords: evolution mechanism, high-density city, Hong Kong, urban form
Procedia PDF Downloads 4032547 Comparative Forensic Analysis of Lipsticks Using Thin Layer Chromatography and Gas Chromatography
Authors: M. O. Ezegbogu, H. B. Osadolor
Abstract:
Lipsticks constitute a significant source of transfer evidence, and can, therefore, provide corroborative or inclusionary evidence in criminal investigation. This study aimed to determine the uniqueness and persistence of different lipstick smears using Thin Layer Chromatography (TLC), and Gas Chromatography with a Flame Ionisation Detector (GC-FID). In this study, we analysed lipstick smears retrieved from tea cups exposed to the environment for up to four weeks. The n-alkane content of each sample was determined using GC-FID, while TLC was used to determine the number of bands, and retention factor of each band per smear. This study shows that TLC gives more consistent results over a 4-week period than GC-FID. It also proposes a maximum exposure time of two weeks for the analysis of lipsticks left in the open using GC-FID. Finally, we conclude that neither TLC nor GC-FID can distinguish lipstick evidence recovered from hypothetical crime scenes.Keywords: forensic science, chromatography, identification, lipstick
Procedia PDF Downloads 1872546 Transient Analysis of Central Region Void Fraction in a 3x3 Rod Bundle under Bubbly and Cap/Slug Flows
Authors: Ya-Chi Yu, Pei-Syuan Ruan, Shao-Wen Chen, Yu-Hsien Chang, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih
Abstract:
This study analyzed the transient signals of central region void fraction of air-water two-phase flow in a 3x3 rod bundle. Experimental tests were carried out utilizing a vertical rod bundle test section along with a set of air-water supply/flow control system, and the transient signals of the central region void fraction were collected through the electrical conductivity sensors as well as visualized via high speed photography. By converting the electric signals, transient void fraction can be obtained through the voltage ratios. With a fixed superficial water velocity (Jf=0.094 m/s), two different superficial air velocities (Jg=0.094 m/s and 0.236 m/s) were tested and presented, which were corresponding to the flow conditions of bubbly flows and cap/slug flows, respectively. The time averaged central region void fraction was obtained as 0.109-0.122 with 0.028 standard deviation for the selected bubbly flow and 0.188-0.221with 0.101 standard deviation for the selected cap/slug flow, respectively. Through Fast Fourier Transform (FFT) analysis, no clear frequency peak was found in bubbly flow, while two dominant frequencies were identified around 1.6 Hz and 2.5 Hz in the present cap/slug flow.Keywords: central region, rod bundles, transient void fraction, two-phase flow
Procedia PDF Downloads 1852545 A Wireless Sensor System for Continuous Monitoring of Particulate Air Pollution
Authors: A. Yawootti, P. Intra, P. Sardyoung, P. Phoosomma, R. Puttipattanasak, S. Leeragreephol, N. Tippayawong
Abstract:
The aim of this work is to design, develop and test the low-cost implementation of a particulate air pollution sensor system for continuous monitoring of outdoors and indoors particulate air pollution at a lower cost than existing instruments. In this study, measuring electrostatic charge of particles technique via high efficiency particulate-free air filter was carried out. The developed detector consists of a PM10 impactor, a particle charger, a Faraday cup electrometer, a flow meter and controller, a vacuum pump, a DC high voltage power supply and a data processing and control unit. It was reported that the developed detector was capable of measuring mass concentration of particulate ranging from 0 to 500 µg/m3 corresponding to number concentration of particulate ranging from 106 to 1012 particles/m3 with measurement time less than 1 sec. The measurement data of the sensor connects to the internet through a GSM connection to a public cellular network. In this development, the apparatus was applied the energy by a 12 V, 7 A internal battery for continuous measurement of about 20 hours. Finally, the developed apparatus was found to be close agreement with the import standard instrument, portable and benefit for air pollution and particulate matter measurements.Keywords: particulate, air pollution, wireless communication, sensor
Procedia PDF Downloads 3672544 Micro-Cantilever Tests on Hydride Blister and Zirconium Matrix of Zircaloy-4 Cladding Tube
Authors: Ho-A Kim, Jae-Soo Noh
Abstract:
During reactor operation, hydride blister can occur in spent nuclear fuel (SNF) claddings, and it could worsen the integrity of the claddings locally. Hydride blister can be critical when a pinch-type load is applied in the process of SNF handling and transportation. Micro-cantilever tests were performed to evaluate the risk of local hydride blister by comparing the fracture toughness of local hydride blister and pre-hydrided Zr alloy matrix of SNF cladding on a microscale. Hydride blister was generated by a gaseous charging procedure to simulate an SNF cladding. Micro-cantilevers and pre-cracks were ion-milled with the Ga+ ion beam of FEI Helios 600 at 30kV acceleration voltage. Micro-cantilever tests were conducted using PI 85 pico-indenter (HYSTRON) with for sided conductive diamond flat tip (1 μm x 1 μm) at a speed of 5 nm/sec. The results show that the hydride blister specimen could be fractured in the elastic deformation region, and the fracture toughness of the hydride blister specimen could drop up to 60% of that of the pre-hydrided Zr alloy matrix. Therefore, local hydride blister can degrade the integrity of SNF cladding, and the effect of hydride blister should be taken into account when evaluating failure criteria of claddings during handling, storage, and transportation of SNF.Keywords: fracture toughness, hydride blister, micro-cantilever test, spent nuclear fuel cladding.
Procedia PDF Downloads 1372543 Evaluation of Practicality of On-Demand Bus Using Actual Taxi-Use Data through Exhaustive Simulations
Authors: Jun-ichi Ochiai, Itsuki Noda, Ryo Kanamori, Keiji Hirata, Hitoshi Matsubara, Hideyuki Nakashima
Abstract:
We conducted exhaustive simulations for data assimilation and evaluation of service quality for various setting in a new shared transportation system, called SAVS. Computational social simulation is a key technology to design recent social services like SAVS as new transportation service. One open issue in SAVS was to determine the service scale through the social simulation. Using our exhaustive simulation framework, OACIS, we did data-assimilation and evaluation of effects of SAVS based on actual tax-use data at Tajimi city, Japan. Finally, we get the conditions to realize the new service in a reasonable service quality.Keywords: on-demand bus sytem, social simulation, data assimilation, exhaustive simulation
Procedia PDF Downloads 3212542 Assessment the Implications of Regional Transport and Local Emission Sources for Mitigating Particulate Matter in Thailand
Authors: Ruchirek Ratchaburi, W. Kevin. Hicks, Christopher S. Malley, Lisa D. Emberson
Abstract:
Air pollution problems in Thailand have improved over the last few decades, but in some areas, concentrations of coarse particulate matter (PM₁₀) are above health and regulatory guidelines. It is, therefore, useful to investigate how PM₁₀ varies across Thailand, what conditions cause this variation, and how could PM₁₀ concentrations be reduced. This research uses data collected by the Thailand Pollution Control Department (PCD) from 17 monitoring sites, located across 12 provinces, and obtained between 2011 and 2015 to assess PM₁₀ concentrations and the conditions that lead to different levels of pollution. This is achieved through exploration of air mass pathways using trajectory analysis, used in conjunction with the monitoring data, to understand the contribution of different months, an hour of the day and source regions to annual PM₁₀ concentrations in Thailand. A focus is placed on locations that exceed the national standard for the protection of human health. The analysis shows how this approach can be used to explore the influence of biomass burning on annual average PM₁₀ concentration and the difference in air pollution conditions between Northern and Southern Thailand. The results demonstrate the substantial contribution that open biomass burning from agriculture and forest fires in Thailand and neighboring countries make annual average PM₁₀ concentrations. The analysis of PM₁₀ measurements at monitoring sites in Northern Thailand show that in general, high concentrations tend to occur in March and that these particularly high monthly concentrations make a substantial contribution to the overall annual average concentration. In 2011, a > 75% reduction in the extent of biomass burning in Northern Thailand and in neighboring countries resulted in a substantial reduction not only in the magnitude and frequency of peak PM₁₀ concentrations but also in annual average PM₁₀ concentrations at sites across Northern Thailand. In Southern Thailand, the annual average PM₁₀ concentrations for individual years between 2011 and 2015 did not exceed the human health standard at any site. The highest peak concentrations in Southern Thailand were much lower than for Northern Thailand for all sites. The peak concentrations at sites in Southern Thailand generally occurred between June and October and were associated with air mass back trajectories that spent a substantial proportion of time over the sea, Indonesia, Malaysia, and Thailand prior to arrival at the monitoring sites. The results show that emissions reductions from biomass burning and forest fires require action on national and international scales, in both Thailand and neighboring countries, such action could contribute to ensuring compliance with Thailand air quality standards.Keywords: annual average concentration, long-range transport, open biomass burning, particulate matter
Procedia PDF Downloads 1822541 A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains
Authors: Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser
Abstract:
The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications.Keywords: viscoplastic fluid, magnetic FE analysis, computational fluid dynamics, two-phase flow, dynamic mesh, user-defined functions
Procedia PDF Downloads 1742540 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites
Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan
Abstract:
All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite
Procedia PDF Downloads 1002539 Investigating Teachers’ Confidence and Beliefs in Using Technology in Teaching Mathematics in Rwandan Secondary Schools
Authors: Odette Umugiraneza, Etienne Nzaramyimana
Abstract:
Confidence and beliefs are the main contributors to the improvement of teachers’ mathematical knowledge. The objective of this study was to investigate teachers’ confidence and beliefs towards technology use in teaching mathematics subjects in the Musanze District. The data were collected using closed and open questions. These were distributed to 118 secondary school senior 1 to 6 mathematics teachers in Musanze district. The findings revealed that the teachers’ confidence about the use of technology in teaching mathematics needs improvement. Apart from confidence, almost a third of the teachers convoyed negative beliefs that technology plays great importance in promoting the understanding of mathematics. Teachers as knowledge transmitters are required to join various professional courses towards technology integration in the teaching of mathematics, to improve the effectiveness of teaching and learning.Keywords: knowledge, technology, teachers’ confidence, beliefs, barriers of technology use
Procedia PDF Downloads 1252538 Characteristics of Elastic Tracked-Crawler Based on Worm-Rack Mechanism
Authors: Jun-ya Nagase
Abstract:
There are many pipes such as a water pipe and a gas pipe in a chemical plant and house. It is possible to prevent accidents by these inspections. However, many pipes are very narrow and it is difficult for people to inspect directly. Therefore, development of a robot that can move in narrow pipe is necessary. A wheel movement type robot, a snake-like robot and a multi-leg robot are all described in the relevant literature as pipe inspection robots that are currently studied. Among them, the tracked crawler robot can travel by traversing uneven ground flexibly with a crawler belt attached firmly to the ground surface. Although conventional crawler robots have high efficiency and/or high ground-covering ability, they require a comparatively large space to move. In this study, a cylindrical crawler robot based on worm-rack mechanism, which does not need large space to move and which has high ground-covering ability, is proposed. Experiments have demonstrated smooth operation and a forward movement of the robot by application of voltage to the motor. In addition, performance tests show that it can propel itself in confined spaces. This paper reports the structure, drive mechanism, prototype, and experimental evaluation.Keywords: tracked-crawler, pipe inspection robot, worm-rack mechanism, amoeba locomotion
Procedia PDF Downloads 4312537 Pulse Method for Investigation of Zr-C Phase Diagram at High Carbon Content Domain under High Temperatures
Authors: Arseniy M. Kondratyev, Sergey V. Onufriev, Alexander I. Savvatimskiy
Abstract:
The microsecond electrical pulse heating technique which provides uniform energy input into an investigated specimen is considered. In the present study we investigated ZrC+C carbide specimens in a form of a thin layer (about 5 microns thick) that were produced using a method of magnetron sputtering on insulating substrates. Specimens contained (at. %): Zr–17.88; C–67.69; N–8.13; O–5.98. Current through the specimen, voltage drop across it and radiation at the wavelength of 856 nm were recorded in the experiments. It enabled us to calculate the input energy, specific heat (from 2300 to 4500 K) and resistivity (referred to the initial dimensions of a specimen). To obtain the true temperature a black body specimen was used. Temperature of the beginning and completion of a phase transition (solid–liquid) was measured.Temperature of the onset of melting was 3150 K at the input energy 2.65 kJ/g; temperature of the completion of melting was 3450 K at the input energy 5.2 kJ/g. The specific heat of the solid phase of investigated carbide calculated using our data on temperature and imparted energy, is close to 0.75 J/gК for temperature range 2100–2800 K. Our results are considered together with the equilibrium Zr-C phase diagram.Keywords: pulse heating, zirconium carbide, high temperatures, melting
Procedia PDF Downloads 323