Search results for: deposition behaviour
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2744

Search results for: deposition behaviour

614 Frequency Control of Self-Excited Induction Generator Based Microgrid during Transition from Grid Connected to Island Mode

Authors: Azhar Ulhaq, Zubair Yameen, Almas Anjum

Abstract:

Frequency behaviour of self-excited induction generator (SEIG) wind turbines during control mode transition from grid connected to islanded mode is studied in detail. A robust control scheme for frequency regulation based on combined action of STATCOM, energy storage system (ESS) and pitch angle control for wind powered microgrid (MG) is proposed. Suggested STATCOM controller comprises a 3-phase voltage source converter (VSC) that contains insulated gate bipolar transistors (IGBTs) based pulse width modulation (PWM) inverters along with a capacitor bank. Energy storage system control consists of current controlled voltage source converter and battery bank. Both of them acting simultaneously after detection of island compensates for reactive and active power demands, thus regulating frequency at point of common coupling (PCC) and also improves load stability. STATCOM integrates at point of common coupling and ESS is connected to microgrids main bus. Results reveal that proposed control not only stabilizes frequency during transition duration but also minimizes sudden frequency imbalance caused by load variation or wind intermittencies in islanded operation. System is investigated with and without suggested control scheme. The efficacy of proposed strategy has been verified by simulation in MATLAB/Simulink.

Keywords: energy storage system, island, wind, STATCOM, self-excited induction generator, SEIG, transient

Procedia PDF Downloads 154
613 Vibration Analysis of Stepped Nanoarches with Defects

Authors: Jaan Lellep, Shahid Mubasshar

Abstract:

A numerical solution is developed for simply supported nanoarches based on the non-local theory of elasticity. The nanoarch under consideration has a step-wise variable cross-section and is weakened by crack-like defects. It is assumed that the cracks are stationary and the mechanical behaviour of the nanoarch can be modeled by Eringen’s non-local theory of elasticity. The physical and thermal properties are sensitive with respect to changes of dimensions in the nano level. The classical theory of elasticity is unable to describe such changes in material properties. This is because, during the development of the classical theory of elasticity, the speculation of molecular objects was avoided. Therefore, the non-local theory of elasticity is applied to study the vibration of nanostructures and it has been accepted by many researchers. In the non-local theory of elasticity, it is assumed that the stress state of the body at a given point depends on the stress state of each point of the structure. However, within the classical theory of elasticity, the stress state of the body depends only on the given point. The system of main equations consists of equilibrium equations, geometrical relations and constitutive equations with boundary and intermediate conditions. The system of equations is solved by using the method of separation of variables. Consequently, the governing differential equations are converted into a system of algebraic equations whose solution exists if the determinant of the coefficients of the matrix vanishes. The influence of cracks and steps on the natural vibration of the nanoarches is prescribed with the aid of additional local compliance at the weakened cross-section. An algorithm to determine the eigenfrequencies of the nanoarches is developed with the help of computer software. The effects of various physical and geometrical parameters are recorded and drawn graphically.

Keywords: crack, nanoarches, natural frequency, step

Procedia PDF Downloads 128
612 Assessing Native Plant Presence and Maintenance Resource Allocations in New Zealand Backyards: A Nationwide Online Questionnaire

Authors: Megan Burfoot, Shanta Budha-Magar, Ali Ghaffarianhoseini, Amirhoseini Ghaffarianhoseini

Abstract:

Domestic backyards offer a valuable opportunity to contribute to biodiversity conservation efforts and promote ecological sustainability by cultivating native plant species. This study focuses on assessing the presence and maintenance of native plants in New Zealand's residential gardens through an online questionnaire. The survey was designed to collect data on the presence of native, exotic, and lawn plants in New Zealand backyards, alongside the allocation of maintenance resources for each category. Targeting a diverse range of residents and property sizes from different regions of New Zealand, this study sought to gain essential insights into practices related to native plant cultivation. Results reveal there is a collective inclination to reduce lawn coverage and introduce a higher abundance of native and exotic species. A thorough analysis of maintenance practices reveals a significant portion of respondents embracing environmentally friendly gardening, characterized by low-intensity fertilizer usage. Homeowners, especially those residing in their properties, demonstrate proactive engagement in backyard maintenance. Native plants were found to require more time, money and fertilizer for maintenance than those of exotic and lawn species. The insights gained from this study can guide targeted efforts to enhance urban biodiversity, making a significant contribution to the preservation and enrichment of New Zealand's unique biodiversity and ecological heritage in urban settings.

Keywords: biodiversity, backyards, planting behaviour, backyard maintenance, native planting

Procedia PDF Downloads 69
611 Evaluation of Forming Properties on AA 5052 Aluminium Alloy by Incremental Forming

Authors: A. Anbu Raj, V. Mugendiren

Abstract:

Sheet metal forming is a vital manufacturing process used in automobile, aerospace, agricultural industries, etc. Incremental forming is a promising process providing a short and inexpensive way of forming complex three-dimensional parts without using die. The aim of this research is to study the forming behaviour of AA 5052, Aluminium Alloy, using incremental forming and also to study the FLD of cone shape AA 5052 Aluminium Alloy at room temperature and various annealing temperature. Initially the surface roughness and wall thickness through incremental forming on AA 5052 Aluminium Alloy sheet at room temperature is optimized by controlling the effects of forming parameters. The central composite design (CCD) was utilized to plan the experiment. The step depth, feed rate, and spindle speed were considered as input parameters in this study. The surface roughness and wall thickness were used as output response. The process performances such as average thickness and surface roughness were evaluated. The optimized results are taken for minimum surface roughness and maximum wall thickness. The optimal results are determined based on response surface methodology and the analysis of variance. Formability Limit Diagram is constructed on AA 5052 Aluminium Alloy at room temperature and various annealing temperature by using optimized process parameters from the response surface methodology. The cone has higher formability than the square pyramid and higher wall thickness distribution. Finally the FLD on cone shape and square pyramid shape at room temperature and the various annealing temperature is compared experimentally and simulated with Abaqus software.

Keywords: incremental forming, response surface methodology, optimization, wall thickness, surface roughness

Procedia PDF Downloads 338
610 The Quality of Business Relationships in the Tourism System: An Imaginary Organisation Approach

Authors: Armando Luis Vieira, Carlos Costa, Arthur Araújo

Abstract:

The tourism system is viewable as a network of relationships amongst business partners where the success of each actor will ultimately be determined by the success of the whole network. Especially since the publication of Gümmesson’s (1996) ‘theory of imaginary organisations’, which suggests that organisational effectiveness largely depends on managing relationships and sharing resources and activities, relationship quality (RQ) has been increasingly recognised as a main source of value creation and competitive advantage. However, there is still ambiguity around this topic, and managers and researchers have been recurrently reporting the need to better understand and capitalise on the quality of interactions with business partners. This research aims at testing an RQ model from a relational, imaginary organisation’s approach. Two mail surveys provide the perceptions of 725 hotel representatives about their business relationships with tour operators, and 1,224 corporate client representatives about their business relationships with hotels (21.9 % and 38.8 % response rate, respectively). The analysis contributes to enhance our understanding on the linkages between RQ and its determinants, and identifies the role of their dimensions. Structural equation modelling results highlight trust as the dominant dimension, the crucial role of commitment and satisfaction, and suggest customer orientation as complementary building block. Findings also emphasise problem solving behaviour and selling orientation as the most relevant dimensions of customer orientation. The comparison of the two ‘dyads’ deepens the discussion and enriches the suggested theoretical and managerial guidelines concerning the contribution of quality relationships to business performance.

Keywords: corporate clients, destination competitiveness, hotels, relationship quality, structural equations modelling, tour operators

Procedia PDF Downloads 393
609 Peril´s Environment of Energetic Infrastructure Complex System, Modelling by the Crisis Situation Algorithms

Authors: Jiří F. Urbánek, Alena Oulehlová, Hana Malachová, Jiří J. Urbánek Jr.

Abstract:

Crisis situations investigation and modelling are introduced and made within the complex system of energetic critical infrastructure, operating on peril´s environments. Every crisis situations and perils has an origin in the emergency/ crisis event occurrence and they need critical/ crisis interfaces assessment. Here, the emergency events can be expected - then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping; or it may be unexpected - without pre-prepared scenario of event. But the both need operational coping by means of crisis management as well. The operation, forms, characteristics, behaviour and utilization of crisis management have various qualities, depending on real critical infrastructure organization perils, and prevention training processes. An aim is always - better security and continuity of the organization, which successful obtainment needs to find and investigate critical/ crisis zones and functions in critical infrastructure organization models, operating in pertinent perils environment. Our DYVELOP (Dynamic Vector Logistics of Processes) method is disposables for it. Here, it is necessary to derive and create identification algorithm of critical/ crisis interfaces. The locations of critical/ crisis interfaces are the flags of crisis situation in organization of critical infrastructure models. Then, the model of crisis situation will be displayed at real organization of Czech energetic crisis infrastructure subject in real peril environment. These efficient measures are necessary for the infrastructure protection. They will be derived for peril mitigation, crisis situation coping and for environmentally friendly organization survival, continuity and its sustainable development advanced possibilities.

Keywords: algorithms, energetic infrastructure complex system, modelling, peril´s environment

Procedia PDF Downloads 402
608 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sands

Authors: Salah Brahim Belakhdar, Tari Mohammed Amin, Rafai Abderrahmen, Amalsi Bilal

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic, and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behaviour of granular classes of sands mixed with salt in loose and dense states (Dr=15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200, and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have a significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: mechanical behavior, silty sand, friction angle, cohesion, fines content

Procedia PDF Downloads 373
607 Reactive Learning about Food Waste Reduction in a Food Processing Plant in Gauteng Province, South Africa

Authors: Nesengani Elelwani Clinton

Abstract:

This paper presents reflective learning as an opportunity commonly available and used for food waste learning in a food processing company in the transition to sustainable and just food systems. In addressing how employees learn about food waste during food processing, the opportunities available for food waste learning were investigated. Reflective learning appeared to be the most used approach to learning about food waste. In the case of food waste learning, reflective learning was a response after employees wasted a substantial amount of food, where process controllers and team leaders would highlight the issue to employees who wasted food and explain how food waste could be reduced. This showed that learning about food waste is not proactive, and there continues to be a lack of structured learning around food waste. Several challenges were highlighted around reflective learning about food waste. Some of the challenges included understanding the language, lack of interest from employees, set times to reach production targets, and working pressures. These challenges were reported to be hindering factors in understanding food waste learning, which is not structured. A need was identified for proactive learning through structured methods. This is because it was discovered that in the plant, where food processing activities happen, the signage and posters that are there are directly related to other sustainability issues such as food safety and health. This indicated that there are low levels of awareness about food waste. Therefore, this paper argues that food waste learning should be proactive. The proactive learning approach should include structured learning materials around food waste during food processing. In the structuring of the learning materials, individual trainers should be multilingual. This will make it possible for those who do not understand English to understand in their own language. And lastly, there should be signage and posters in the food processing plant around food waste. This will bring more awareness around food waste, and employees' behaviour can be influenced by the posters and signage in the food processing plant. Thus, will enable a transition to a just and sustainable food system.

Keywords: sustainable and just food systems, food waste, food waste learning, reflective learning approach

Procedia PDF Downloads 129
606 3D Printing of Dual Tablets: Modified Multiple Release Profiles for Personalized Medicine

Authors: Veronika Lesáková, Silvia Slezáková, František Štěpánek

Abstract:

Additive manufacturing technologies producing drug dosage forms aimed at personalized medicine applications are promising strategies with several advantages over the conventional production methods. One of the emerging technologies is 3D printing which reduces manufacturing steps and thus allows a significant drop in expenses. A decrease in material consumption is also a highly impactful benefit as the tested drugs are frequently expensive substances. In addition, 3D printed dosage forms enable increased patient compliance and prevent misdosing as the dosage forms are carefully designed according to the patient’s needs. The incorporation of multiple drugs into a single dosage form further increases the degree of personalization. Our research focuses on the development of 3D printed tablets incorporating multiple drugs (candesartan, losartan) and thermoplastic polymers (e.g., KlucelTM HPC EF). The filaments, an essential feed material for 3D printing,wereproduced via hot-melt extrusion. Subsequently, the extruded filaments of various formulations were 3D printed into tablets using an FDM 3D printer. Then, we have assessed the influence of the internal structure of 3D printed tablets and formulation on dissolution behaviour by obtaining the dissolution profiles of drugs present in the 3D printed tablets. In conclusion, we have developed tablets containing multiple drugs providing modified release profiles. The 3D printing experiments demonstrate the high tunability of 3D printing as each tablet compartment is constructed with a different formulation. Overall, the results suggest that the 3D printing technology is a promising manufacturing approach to dual tablet preparation for personalized medicine.

Keywords: 3D printing, drug delivery, hot-melt extrusion, dissolution kinetics

Procedia PDF Downloads 168
605 Challenging Perceptions of Disability: Exploring the Link between Ableism, Social Stigma, Vision Impairment, and Autism Spectrum Disorder

Authors: Aikaterini Tavoulari

Abstract:

This research aims to address the types of repetitive behaviours (RBs) observed by adults in children with vision impairment (VI) or autism spectrum disorder (ASD), the explanations the adults employ to interpret these behaviours, and the impact RBs have on the child, the caregiver, the professional and society. The underlying reason for this is an attempt to discover any potential differences between two different disabilities in a comparative fashion. The study is based on the interpretivism paradigm and follows a qualitative approach. A comparative case study design based on the ecological systems theory (EST) is adopted. Thirty-five caregivers and accredited professionals were recruited (17 for the VI group, out of whom 8 were caregivers and 9 were professionals, and 18 for the ASD group, out of whom 9 were caregivers and 9 were professionals). Following the completion of a pilot study, all participants were interviewed regarding one specific child – their own child/student – via semi-structured interviews. During the interviews, the researcher used a research diary as a methodological tool and video elicitation as a facilitation tool. A cross-case analysis was conducted, and data were analysed according to the method of thematic analysis. A link has been indicated between VI and ASD, which concerns perceptions about the socially constructed manner in which an RB is perceived. ASD is perceived by the participants as a disability with challenging characteristics, such as an RB. The ASD group perceived RB as linked to ableism, social stigmatisation, and taboo, in contrast to VI, where the existence of RB seems to be a consequence of sensory loss. Bi-directionality of EST seems to have been lost completely, and the macrosystem seems to drive the interactions between the ecological systems.

Keywords: ableism, social stigma, disability, repetitive behaviour, vision impairment, autism spectrum disorder, perceptions

Procedia PDF Downloads 90
604 Functionalized Magnetic Iron Oxide Nanoparticles for Extraction of Protein and Metal Nanoparticles from Complex Fluids

Authors: Meenakshi Verma, Mandeep Singh Bakshi, Kultar Singh

Abstract:

Magnetic nanoparticles have received incredible importance in view of their diverse applications, which arise primarily due to their response to the external magnetic field. The magnetic behaviour of magnetic nanoparticles (NPs) helps them in numerous different ways. The most important amongst them is the ease with which they can be purified and also can be separated from the media in which they are present merely by applying an external magnetic field. This exceptional ease of separation of the magnetic NPs from an aqueous media enables them to use for extracting/removing metal pollutants from complex aqueous medium. Functionalized magnetic NPs can be subjected for the metallic impurities extraction if are favourably adsorbed on the NPs surfaces. We have successfully used the magnetic NPs as vehicles for gold and silver NPs removal from the complex fluids. The NPs loaded with gold and silver NPs pollutant fractions has been easily removed from the aqueous media by using external magnetic field. Similarly, we have used the magnetic NPs for extraction of protein from complex media and then constantly washed with pure water to eliminate the unwanted surface adsorbed components for quantitative estimation. The purified and protein loaded magnetic NPs are best analyzed with SDS Page to not only for characterization but also for separating the protein fractions. A collective review of the results indicates that we have synthesized surfactant coated iron oxide NPs and then functionalized these with selected materials. These surface active magnetic NPs work very well for the extraction of metallic NPs from the aqueous bulk and make the whole process environmentally sustainable. Also, magnetic NPs-Au/Ag/Pd hybrids have excellent protein extracting properties. They are much easier to use in order to extract the magnetic impurities as well as protein fractions under the effect of external magnetic field without any complex conventional purification methods.

Keywords: magnetic nanoparticles, protein, functionalized, extraction

Procedia PDF Downloads 99
603 Assessment of Sediment Control Characteristics of Notches in Different Sediment Transport Regimes

Authors: Chih Ming Tseng

Abstract:

Landslides during typhoons that generate substantial amounts of sediment and subsequent rainfall can trigger various types of sediment transport regimes, such as debris flows, high-concentration sediment-laden flows, and typical river sediment transport. This study aims to investigate the sediment control characteristics of natural notches within different sediment transport regimes. High-resolution digital terrain models were used to establish the relationship between slope gradients and catchment areas, which were then used to delineate distinct sediment transport regimes and analyze the sediment control characteristics of notches within these regimes. The research results indicate that the catchment areas of Aiyuzi Creek, Hossa Creek, and Chushui Creek in the study region can be clearly categorized into three sediment transport regimes based on the slope-area relationship curves: frequent collapse headwater areas, debris flow zones, and high-concentration sediment-laden flow zones. The threshold for transitioning from the collapse zone to the debris flow zone in the Aiyuzi Creek catchment is lower compared to Hossa Creek and Chushui Creek, suggesting that the active collapse processes in the upper reaches of Aiyuzi Creek continuously supply a significant sediment source, making it more susceptible to subsequent debris flow events. Moreover, the analysis of sediment trapping efficiency at notches within different sediment transport regimes reveals that as the notch constriction ratio increases, the sediment accumulation per unit area also increases. The accumulation thickness per unit area in high-concentration sediment-laden flow zones is greater than in debris flow zones, indicating differences in sediment deposition characteristics among various sediment transport regimes. Regarding sediment control rates at notches, there is a generally positive correlation with the notch constriction ratio. During the 2009 Morakot Typhoon, the substantial sediment supply from slope failures in the upstream catchment led to an oversupplied sediment transport condition in the river channel. Consequently, sediment control rates were more pronounced during medium and small sediment transport events between 2010 and 2015. However, there were no significant differences in sediment control rates among the different sediment transport regimes at notches. Overall, this research provides valuable insights into the sediment control characteristics of notches under various sediment transport conditions, which can aid in the development of improved sediment management strategies in watersheds.

Keywords: landslide, debris flow, notch, sediment control, DTM, slope–area relation

Procedia PDF Downloads 28
602 Evaluation of Serine and Branched Chain Amino Acid Levels in Depression and the Beneficial Effects of Exercise in Rats

Authors: V. A. Doss, R. Sowndarya, K. Juila Rose Mary

Abstract:

Objective: Amino acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. The objective of the present study was to identify the amino acids as possible metabolite biomarkers for depression using GCMS (Gas Chromatography Mass Spectrometry) before and after exercise regimen in brain samples of depression induced animal models. Methods: Depression-like behaviour was induced by Chronic Unpredictable mild stress (CUMS). Severity of depression was measured by forced swim test (FST) and sucrose consumption test (SCT). Swimming protocol was followed for 4 weeks of exercise treatment. Brain obtained from depressed and exercise treated rats were used for the metabolite analysis by GCMS. Subsequent statistical analysis obtained by ANOVA followed by post hoc test revealed significant metabolic changes. Results: Amino acids such as alanine, glycine, serine, glutamate, homocysteine, proline and branched chain aminoacids (BCAs) Leucine, Isoleucine, Valine were determined in brain samples of control, depressed and exercised groups. Among these amino acids, the levels of D-Serine and branched chain amino acids were found to be decreased in depression induced rats. After four weeks of swimming exercise regimen, there were improvements in the levels of serine and Branched chain amino acids. Conclusion: We suggest that Serine and BCAs may be investigated as potential metabolite markers using GCMS and their beneficial metabolic changes in Exercise.

Keywords: metabolomics, depression, forced swim test, exercise, amino acid metabolites, GCMS, biomarker

Procedia PDF Downloads 326
601 In situ Grazing Incidence Small Angle X-Ray Scattering Study of Permalloy Thin Film Growth on Nanorippled Si

Authors: Sarathlal Koyiloth Vayalil, Stephan V. Roth, Gonzalo Santoro, Peng Zhang, Matthias Schwartzkopf, Bjoern Beyersdorff

Abstract:

Nanostructured magnetic thin films have gained significant relevance due to its applications in magnetic storage and recording media. Self-organized arrays of nanoparticles and nanowires can be produced by depositing metal thin films on nano-rippled substrates. The substrate topography strongly affects the film growth giving rise to anisotropic properties (optical, magnetic, electronic transport). Ion-beam erosion (IBE) method can provide large-area patterned substrates with the valuable possibility to widely modify pattern length scale by simply acting on ion beam parameters (i.e. energy, ions, geometry, etc.). In this work, investigation of the growth mechanism of Permalloy thin films on such nano-rippled Si (100) substrates using in situ grazing incidence small angle x-ray scattering measurements (GISAXS) have been done. In situ GISAXS measurements during the deposition of thin films have been carried out at the P03/MiNaXS beam line of PETRA III storage ring of DESY, Hamburg. Nanorippled Si substrates prepared by low energy ion beam sputtering with an average wavelength of 33 nm and 1 nm have been used as templates. It has been found that the film replicates the morphology up to larger thickness regimes and also the growth is highly anisotropic along and normal to the ripple wave vectors. Various growth regimes have been observed. Further, magnetic measurements have been done using magneto-optical Kerr effect by rotating the sample in the azimuthal direction. Strong uniaxial magnetic anisotropy with its easy axis in a direction normal to the ripple wave vector has been observed. The strength of the magnetic anisotropy is found to be decreasing with increasing thin film thickness values. The mechanism of the observed strong uniaxial magnetic anisotropy and its depends on the thickness of the film has been explained by correlating it with the GISAXS results. In conclusion, we have done a detailed growth analysis of Permalloy thin films deposited on nanorippled Si templates and tried to explain the correlation between structure, morphology to the observed magnetic properties.

Keywords: grazing incidence small angle x-ray scattering, magnetic thin films, magnetic anisotropy, nanoripples

Procedia PDF Downloads 312
600 Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test

Authors: Bernd Engel, Sara Salman Hassan Al-Maeeni

Abstract:

A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance.

Keywords: deflection, FE analysis, shaft, stress, three-point bending

Procedia PDF Downloads 158
599 Effect of Shape and Size of Concrete Specimen and Strength of Concrete Mixture in the Absence and Presence of Fiber

Authors: Sultan Husein Bayqra, Ali Mardani Aghabaglou, Zia Ahmad Faqiri, Hassane Amidou Ouedraogo

Abstract:

In this study, the effect of shape and size of the concrete specimen on the compressive and splitting tensile strength of the concrete mixtures in the absence and presence of steel fiber was investigated. For this aim, ten different concrete mixtures having w/c ratio of 0.3, 0.4, 0.5, 0.6 and 0.7 with and without fiber were prepared. In the mixtures containing steel fibers having aspect ratio (L/D) of 64 were used by 1% of the total mixture volume. In all concrete mixtures, CEM I 42,5R type Portland cement and crushed Lime-stone aggregates having different aggregate size fractions were used. The combined aggregate was obtained by mixing %40 0-5 mm, %30 5-12 mm and %30 12-22 mm aggregate size fraction. The slump values of concrete mixtures were kept constant as 17 ± 2 cm. To provide the desired slump value, a polycarboxylate ether-based high range water reducing admixture was used. In order to investigate the effect of size and shape of concrete specimen on strength properties 10 cm, 15 cm cubic specimens and 10×20 cm, 15×30 cm cylindrical specimens were prepared for each mixture. The specimens were cured under standard conditions until testing days. The 7- and 28-day compressive and splitting tensile strengths of mixtures were determined. The results obtained from the experimental study showed that the strength ratio between the cylinder and the cube specimens increased with the increase of the strength of the concrete. Regardless of the fiber utilization and specimen shape, strength values of concrete mixtures were increased by decreasing specimen size. However, the mentioned behaviour was not observed for the case that the mixtures having high W/C ratio and containing fiber. The compressive strength of cube specimens containing fiber was less affected by the size of the specimen compared to that of cube specimens containing no fibers.

Keywords: compressive strength, splitting tensile strength, fiber reinforced concrete, size effect, shape effect

Procedia PDF Downloads 177
598 Modelling of Pipe Jacked Twin Tunnels in a Very Soft Clay

Authors: Hojjat Mohammadi, Randall Divito, Gary J. E. Kramer

Abstract:

Tunnelling and pipe jacking in very soft soils (fat clays), even with an Earth Pressure Balance tunnel boring machine (EPBM), can cause large ground displacements. In this study, the short-term and long-term ground and tunnel response is predicted for twin, pipe-jacked EPBM 3 meter diameter tunnels with a narrow pillar width. Initial modelling indicated complete closure of the annulus gap at the tail shield onto the centrifugally cast, glass-fiber-reinforced, polymer mortar jacking pipe (FRP). Numerical modelling was employed to simulate the excavation and support installation sequence, examine the ground response during excavation, confirm the adequacy of the pillar width and check the structural adequacy of the installed pipe. In the numerical models, Mohr-Coulomb constitutive model with the effect of unloading was adopted for the fat clays, while for the bedrock layer, the generalized Hoek-Brown was employed. The numerical models considered explicit excavation sequences and different levels of ground convergence prior to support installation. The well-studied excavation sequences made the analysis possible for this study on a very soft clay, otherwise, obtaining the convergency in the numerical analysis would be impossible. The predicted results indicate that the ground displacements around the tunnel and its effect on the pipe would be acceptable despite predictions of large zones of plastic behaviour around the tunnels and within the entire pillar between them due to excavation-induced ground movements.

Keywords: finite element modeling (FEM), pipe-jacked tunneling, very soft clay, EPBM

Procedia PDF Downloads 82
597 Beyond Informality: Relocation from a Traditional Village 'Mit Oqbah' to Masaken El-Barageel and the Role of ‘Urf in Governing Built Environment, Egypt

Authors: Sarah Eldefrawi, Maike Didero

Abstract:

In Egypt, residents’ urban interventions (colloquially named A’hali’s interventions) are always tackled by government, scholars, and media as an encroachment (taeadiyat), chaotic (a’shwa’i) or informal (gheir mokanan) practices. This paper argues that those interventions cannot be simply described as an encroachment on public space or chaotic behaviour. We claim here that they are relevant to traditional governing methods (‘Urf) that were governing Arab cities for many decades. Through an in-depth field study conducted in a real estate public housing project in the city of Giza called 'Masaken El-Barageel', we traced the urban transformations demonstrated in private and public spaces. To understand those transformations, we used wide-range of qualitative research methods such as semi-guided and informal interviews, observations and mapping of the built environment and the newly added interventions. This study was as well strengthened through the contributions of the author in studying nine sectors emerging by Ahali in six districts in Great Cairo. The results of this study indicate that a culturally and socially sensitive framework has to be related to the individual actions toward the spatial and social structures as well as to culturally transmitted views and meanings connected with 'Urf'. The study could trace three crucial principals in ‘urf that influenced these interventions; the eliminating of harm (Al-Marafiq wa Man’ al-Darar), the appropriation of space (Haqq el-Intefa’) and public interest (maslaha a’ma). Our findings open the discussion for the (il) legitimate of a’hali governing methods in contemporary cities.

Keywords: Urf, urban governance, public space, public housing, encroachments, chaotic, Egyptian cities

Procedia PDF Downloads 134
596 The Influence of Morphology and Interface Treatment on Organic 6,13-bis (triisopropylsilylethynyl)-Pentacene Field-Effect Transistors

Authors: Daniel Bülz, Franziska Lüttich, Sreetama Banerjee, Georgeta Salvan, Dietrich R. T. Zahn

Abstract:

For the development of electronics, organic semiconductors are of great interest due to their adjustable optical and electrical properties. Especially for spintronic applications they are interesting because of their weak spin scattering, which leads to longer spin life times compared to inorganic semiconductors. It was shown that some organic materials change their resistance if an external magnetic field is applied. Pentacene is one of the materials which exhibit the so called photoinduced magnetoresistance which results in a modulation of photocurrent when varying the external magnetic field. Also the soluble derivate of pentacene, the 6,13-bis (triisopropylsilylethynyl)-pentacene (TIPS-pentacene) exhibits the same negative magnetoresistance. Aiming for simpler fabrication processes, in this work, we compare TIPS-pentacene organic field effect transistors (OFETs) made from solution with those fabricated by thermal evaporation. Because of the different processing, the TIPS-pentacene thin films exhibit different morphologies in terms of crystal size and homogeneity of the substrate coverage. On the other hand, the interface treatment is known to have a high influence on the threshold voltage, eliminating trap states of silicon oxide at the gate electrode and thereby changing the electrical switching response of the transistors. Therefore, we investigate the influence of interface treatment using octadecyltrichlorosilane (OTS) or using a simple cleaning procedure with acetone, ethanol, and deionized water. The transistors consist of a prestructured OFET substrates including gate, source, and drain electrodes, on top of which TIPS-pentacene dissolved in a mixture of tetralin and toluene is deposited by drop-, spray-, and spin-coating. Thereafter we keep the sample for one hour at a temperature of 60 °C. For the transistor fabrication by thermal evaporation the prestructured OFET substrates are also kept at a temperature of 60 °C during deposition with a rate of 0.3 nm/min and at a pressure below 10-6 mbar. The OFETs are characterized by means of optical microscopy in order to determine the overall quality of the sample, i.e. crystal size and coverage of the channel region. The output and transfer characteristics are measured in the dark and under illumination provided by a white light LED in the spectral range from 450 nm to 650 nm with a power density of (8±2) mW/cm2.

Keywords: organic field effect transistors, solution processed, surface treatment, TIPS-pentacene

Procedia PDF Downloads 447
595 Research on Tight Sandstone Oil Accumulation Process of the Third Member of Shahejie Formation in Dongpu Depression, China

Authors: Hui Li, Xiongqi Pang

Abstract:

In recent years, tight oil has become a hot spot for unconventional oil and gas exploration and development in the world. Dongpu Depression is a typical hydrocarbon-rich basin in the southwest of Bohai Bay Basin, in which tight sandstone oil and gas have been discovered in deep reservoirs, most of which are buried more than 3500m. The distribution and development characteristics of deep tight sandstone reservoirs need to be studied. The main source rocks in study area are dark mudstone and shale of the middle and lower third sub-member of Shahejie Formation. Total Organic Carbon (TOC) content of source rock is between 0.08-11.54%, generally higher than 0.6% and the value of S1+S2 is between 0.04–72.93 mg/g, generally higher than 2 mg/g. It can be evaluated as middle to fine level overall. The kerogen type of organic matter is predominantly typeⅡ1 andⅡ2. Vitrinite reflectance (Ro) is mostly greater than 0.6% indicating that the source rock entered the hydrocarbon generation threshold. The physical property of reservoir was poor, the most reservoir has a porosity lower than 12% and a permeability of less than 1×10⁻³μm. The rocks in this area showed great heterogeneity, some areas developed desserts with high porosity and permeability. According to SEM, thin section image, inclusion test and so on, the reservoir was affected by compaction and cementation during early diagenesis stage (44-31Ma). The diagenesis caused the tight reservoir in Huzhuangji, Pucheng, Weicheng Area while the porosity in Machang, Qiaokou, Wenliu Area was still over 12%. In the process of middle diagenesis phase stage A (31-17Ma), the reservoir porosity in Machang, Pucheng, Huzhuangji Area increased due to dissolution; after that the oil generation window of source rock was achieved for the first phase hydrocarbon charging (31-23Ma), formed the conventional oil deposition in Machang, Qiaokou, Wenliu, Huzhuangji Area and unconventional tight reservoir in Pucheng, Weicheng Area. Then came to stage B of middle diagenesis phase (17-7Ma), in this stage, the porosity of reservoir continued to decrease after the dissolution and led to a situation that the reservoirs were generally compacted. And since then, the second hydrocarbon filling has been processing since 7Ma. Most of the pools charged and formed in this procedure are tight sandstone oil reservoir. In conclusion, tight sandstone oil was formed in two patterns in Dongpu Depression, which could be concluded as ‘density fist then accumulation’ pattern and ‘accumulation fist next density’ pattern.

Keywords: accumulation process, diagenesis, dongpu depression, tight sandstone oil

Procedia PDF Downloads 116
594 Tumor Cell Detection, Isolation and Monitoring Using Bi-Layer Magnetic Microfluidic Chip

Authors: Amir Seyfoori, Ehsan Samiei, Mohsen Akbari

Abstract:

The use of microtechnology for detection and high yield isolation of circulating tumor cells (CTCs) has shown enormous promise as an indication of clinical metastasis prognosis and cancer treatment monitoring. The Immunomagnetic assay has been also coupled to microtechnology to improve the selectivity and efficiency of the current methods of cancer biomarker isolation. In this way, generation and configuration of the local high gradient magnetic field play essential roles in such assay. Additionally, considering the intrinsic heterogeneity of cancer cells, real-time analysis of isolated cells is necessary to characterize their responses to therapy. Totally, on-chip isolation and monitoring of the specific tumor cells is considered as a pressing need in the way of modified cancer therapy. To address these challenges, we have developed a bi-layer magnetic-based microfluidic chip for enhanced CTC detection and capturing. Micromagnet arrays at the bottom layer of the chip were fabricated using a new method of magnetic nanoparticle paste deposition so that they were arranged at the center of the chain microchannel with the lowest fluid velocity zone. Breast cancer cells labelled with EPCAM-conjugated smart microgels were immobilized on the tip of the micromagnets with greater localized magnetic field and stronger cell-micromagnet interaction. Considering different magnetic nano-powder usage (MnFe2O4 & gamma-Fe2O3) and micromagnet shapes (ellipsoidal & arrow), the capture efficiency of the systems was adjusted while the higher CTC capture efficiency was acquired for MnFe2O4 arrow micromagnet as around 95.5%. As a proof of concept of on-chip tumor cell monitoring, magnetic smart microgels made of thermo-responsive poly N-isopropylacrylamide-co-acrylic acid (PNIPAM-AA) composition were used for both purposes of targeted cell capturing as well as cell monitoring using antibody conjugation and fluorescent dye loading at the same time. In this regard, magnetic microgels were successfully used as cell tracker after isolation process so that by raising the temperature up to 37⁰ C, they released the contained dye and stained the targeted cell just after capturing. This microfluidic device was able to provide a platform for detection, isolation and efficient real-time analysis of specific CTCs in the liquid biopsy of breast cancer patients.

Keywords: circulating tumor cells, microfluidic, immunomagnetic, cell isolation

Procedia PDF Downloads 143
593 Crossing Multi-Source Climate Data to Estimate the Effects of Climate Change on Evapotranspiration Data: Application to the French Central Region

Authors: Bensaid A., Mostephaoui T., Nedjai R.

Abstract:

Climatic factors are the subject of considerable research, both methodologically and instrumentally. Under the effect of climate change, the approach to climate parameters with precision remains one of the main objectives of the scientific community. This is from the perspective of assessing climate change and its repercussions on humans and the environment. However, many regions of the world suffer from a severe lack of reliable instruments that can make up for this deficit. Alternatively, the use of empirical methods becomes the only way to assess certain parameters that can act as climate indicators. Several scientific methods are used for the evaluation of evapotranspiration which leads to its evaluation either directly at the level of the climatic stations or by empirical methods. All these methods make a point approach and, in no case, allow the spatial variation of this parameter. We, therefore, propose in this paper the use of three sources of information (network of weather stations of Meteo France, World Databases, and Moodis satellite images) to evaluate spatial evapotranspiration (ETP) using the Turc method. This first step will reflect the degree of relevance of the indirect (satellite) methods and their generalization to sites without stations. The spatial variation representation of this parameter using the geographical information system (GIS) accounts for the heterogeneity of the behaviour of this parameter. This heterogeneity is due to the influence of site morphological factors and will make it possible to appreciate the role of certain topographic and hydrological parameters. A phase of predicting the evolution over the medium and long term of evapotranspiration under the effect of climate change by the application of the Intergovernmental Panel on Climate Change (IPCC) scenarios gives a realistic overview as to the contribution of aquatic systems to the scale of the region.

Keywords: climate change, ETP, MODIS, GIEC scenarios

Procedia PDF Downloads 100
592 Statistical Modelling of Maximum Temperature in Rwanda Using Extreme Value Analysis

Authors: Emmanuel Iyamuremye, Edouard Singirankabo, Alexis Habineza, Yunvirusaba Nelson

Abstract:

Temperature is one of the most important climatic factors for crop production. However, severe temperatures cause drought, feverish and cold spells that have various consequences for human life, agriculture, and the environment in general. It is necessary to provide reliable information related to the incidents and the probability of such extreme events occurring. In the 21st century, the world faces a huge number of threats, especially from climate change, due to global warming and environmental degradation. The rise in temperature has a direct effect on the decrease in rainfall. This has an impact on crop growth and development, which in turn decreases crop yield and quality. Countries that are heavily dependent on agriculture use to suffer a lot and need to take preventive steps to overcome these challenges. The main objective of this study is to model the statistical behaviour of extreme maximum temperature values in Rwanda. To achieve such an objective, the daily temperature data spanned the period from January 2000 to December 2017 recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to model and analyse extreme temperature. Model parameters were estimated, while the extreme temperature return periods and confidence intervals were predicted. The model fit suggests Gumbel and Beta distributions to be the most appropriate models for the annual maximum of daily temperature. The results show that the temperature will continue to increase, as shown by estimated return levels.

Keywords: climate change, global warming, extreme value theory, rwanda, temperature, generalised extreme value distribution, generalised pareto distribution

Procedia PDF Downloads 183
591 Cultural Psychology in Sports: How Understanding Culture May Help Sports Psychologists Augment Athletic Performance

Authors: Upasana Ranjib

Abstract:

Sports psychology, as a niche area, has, since the last two decades, found for itself a space within the outer peripheries of the discipline of traditional psychology. It has aimed to understand the many variables that push athletes to enhance their performances. While sociological aspects have been duly represented in academia, little has been written about the role of culture in shaping the psyche of athletes. The impact that cultures of different communities and societies have towards specifics like gender, castes, religion and race and how that helps evolve an individual has not been fully addressed. In the case of Sport, culture has made itself felt in the form of stereotypes, traditional outlooks towards sects and its implication on the engagement with sports. Culture is an environment that an individual imbibes. It is what shapes him, physically as well as mentally. Their nurture and nature both stem from it and depend on it. To realize the linkages between their nurture, nature and sports efficiency, cultural studies must collaborate in scholarship with psychology and practical sports. Cultural sports psychology would allow sports psychologists, coaches and even athletes themselves to understand the behavioural variations that affect their performance. The variations in the performance of athletes from different cultures and countries could be attributed to their socio-political, economic and environmental differences. These cultural influences shape and impact the athlete's behaviour and might lead as a gateway to understanding their skill sets and internal motivational factors. With that knowledge in mind, this paper aims to understand and reflect on how, in the present times of heavy sporting competition, shifting cultural equations and changing world dynamics, it is mandatory to infuse Cultural Studies with Sports Psychology to understand how Sports Psychologists can help and augment the performances of athletes.

Keywords: sporting performance, Asian sports, sports psychology, cultural psychology, society

Procedia PDF Downloads 92
590 Coulomb-Explosion Driven Proton Focusing in an Arched CH Target

Authors: W. Q. Wang, Y. Yin, D. B. Zou, T. P. Yu, J. M. Ouyang, F. Q. Shao

Abstract:

High-energy-density state, i.e., matter and radiation at energy densities in excess of 10^11 J/m^3, is related to material, nuclear physics, astrophysics, and geophysics. Laser-driven particle beams are better suited to heat the matter as a trigger due to their unique properties of ultrashort duration and low emittance. Compared to X-ray and electron sources, it is easier to generate uniformly heated large-volume material for the proton and ion beams because of highly localized energy deposition. With the construction of state-of-art high power laser facilities, creating of extremely conditions of high-temperature and high-density in laboratories becomes possible. It has been demonstrated that on a picosecond time scale the solid density material can be isochorically heated to over 20 eV by the ultrafast proton beam generated from spherically shaped targets. For the above-mentioned technique, the proton energy density plays a crucial role in the formation of warm dense matter states. Recently, several methods have devoted to realize the focusing of the accelerated protons, involving externally exerted static-fields or specially designed targets interacting with a single or multi-pile laser pulses. In previous works, two co-propagating or opposite direction laser pulses are employed to strike a submicron plasma-shell. However, ultra-high pulse intensities, accurately temporal synchronization and undesirable transverse instabilities for a long time are still intractable for currently experimental implementations. A mechanism of the focusing of laser-driven proton beams from two-ion-species arched targets is investigated by multi-dimensional particle-in-cell simulations. When an intense linearly-polarized laser pulse impinges on the thin arched target, all electrons are completely evacuated, leading to a Coulomb-explosive electric-field mostly originated from the heavier carbon ions. The lighter protons in the moving reference frame by the ionic sound speed will be accelerated and effectively focused because of this radially isotropic field. At a 2.42×10^21 W/cm^2 laser intensity, a ballistic proton bunch with its energy-density as high as 2.15×10^17 J/m^3 is produced, and the highest proton energy and the focusing position agree well with that from the theory.

Keywords: Coulomb explosion, focusing, high-energy-density, ion acceleration

Procedia PDF Downloads 344
589 Association between a Forward Lag of Historical Total Accumulated Gasoline Lead Emissions and Contemporary Autism Prevalence Trends in California, USA

Authors: Mark A. S. Laidlaw, Howard W. Mielke

Abstract:

In California between the late 1920’s and 1986 the lead concentrations in urban soils and dust climbed rapidly following the deposition of greater than 387,000 tonnes of lead emitted from gasoline. Previous research indicates that when children are lead exposed around 90% of the lead is retained in their bones and teeth due to the substitution of lead for calcium. Lead in children’s bones has been shown to accumulate over time and is highest in inner-city urban areas, lower in suburban areas and lowest in rural areas. It is also known that women’s bones demineralize during pregnancy due to the foetus's high demand for calcium. Lead accumulates in women’s bones during childhood and the accumulated lead is subsequently released during pregnancy – a lagged response. This results in calcium plus lead to enter the blood stream and cross the placenta to expose the foetus with lead. In 1970 in the United States, the average age of a first‐time mother was about 21. In 2008, the average age was 25.1. In this study, it is demonstrated that in California there is a forward lagged relationship between the accumulated emissions of lead from vehicle fuel additives and later autism prevalence trends between the 1990’s and current time period. Regression analysis between a 24 year forward lag of accumulated lead emissions and autism prevalence trends in California are associated strongly (R2=0.95, p=0.00000000127). It is hypothesized that autism in genetically susceptible children may stem from vehicle fuel lead emission exposures of their mothers during childhood and that the release of stored lead during subsequent pregnancy resulted in lead exposure of foetuses during a critical developmental period. It is furthermore hypothesized that the 24 years forward lag between lead exposures has occurred because that is time period is the average length for women to enter childbearing age. To test the hypothesis that lead in mothers bones is associated with autism, it is hypothesized that retrospective case-control studies would show an association between the lead in mother’s bones and autism. Furthermore, it is hypothesized that the forward lagged relationship between accumulated historical vehicle fuel lead emissions (or air lead concentrations) and autism prevalence trends will be similar in cities at the national and international scale. If further epidemiological studies indicate a strong relationship between accumulated vehicle fuel lead emissions (or accumulated air lead concentrations) and lead in mother’s bones and autism rates, then urban areas may require extensive soil intervention to prevent the development of autism in children.

Keywords: autism, bones, lead, gasoline, petrol, prevalence

Procedia PDF Downloads 294
588 A Review on Silicon Based Induced Resistance in Plants against Insect Pests

Authors: Asim Abbasi, Muhammad Sufyan, Muhammad Kamran, Iqra

Abstract:

Development of resistance in insect pests against various groups of insecticides has prompted the use of alternative integrated pest management approaches. Among these induced host plant resistance represents an important strategy as it offers a practical, cheap and long lasting solution to keep pests populations below economic threshold level (ETL). Silicon (Si) has a major role in regulating plant eco-relationship by providing strength to the plant in the form of anti-stress mechanism which was utilized in coping with the environmental extremes to get a better yield and quality end produce. Among biotic stresses, insect herbivore signifies one class against which Si provide defense. Silicon in its neutral form (H₄SiO₄) is absorbed by the plants via roots through an active process accompanied by the help of different transporters which were located in the plasma membrane of root cells or by a passive process mostly regulated by transpiration stream, which occurs via the xylem cells along with the water. Plants tissues mainly the epidermal cell walls are the sinks of absorbed silicon where it polymerizes in the form of amorphous silica or monosilicic acid. The noteworthy function of this absorbed silicon is to provide structural rigidity to the tissues and strength to the cell walls. Silicon has both direct and indirect effects on insect herbivores. Increased abrasiveness and hardness of epidermal plant tissues and reduced digestibility as a result of deposition of Si primarily as phytoliths within cuticle layer is now the most authenticated mechanisms of Si in enhancing plant resistance to insect herbivores. Moreover, increased Si content in the diet also impedes the efficiency by which insects transformed consumed food into the body mass. The palatability of food material has also been changed by Si application, and it also deters herbivore feeding for food. The production of defensive compounds of plants like silica and phenols have also been amplified by the exogenous application of silicon sources which results in reduction of the probing time of certain insects. Some studies also highlighted the role of silicon at the third trophic level as it also attracts natural enemies of insects attacking the crop. Hence, the inclusion of Si in pest management approaches can be a healthy and eco-friendly tool in future.

Keywords: defensive, phytoliths, resistance, stresses

Procedia PDF Downloads 188
587 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications

Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries

Abstract:

A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.

Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing

Procedia PDF Downloads 462
586 Risk Tolerance in Youth With Emerging Mood Disorders

Authors: Ange Weinrabe, James Tran, Ian B. Hickie

Abstract:

Risk-taking behaviour is common during youth. In the time between adolescence and early adulthood, young people (aged 15-25 years) are more vulnerable to mood disorders, such as anxiety and depression. What impact does an emerging mood disorder have on decision-making in youth at critical decision points in their lives? In this article, we explore the impact of risk and ambiguity on youth decision-making in a clinical setting using a well-known economic experiment. At two time points, separated by six to eight weeks, we measured risky and ambiguous choices concurrently with findings from three psychological questionnaires, the 10-item Kessler Psychological Distress Scale (K10), the 17-item Quick Inventory of Depressive Symptomatology Adolescent Version (QIDS-A17), and the 12-item Somatic and Psychological Health Report (SPHERE-12), for young help seekers aged 16-25 (n=30, mean age 19.22 years, 19 males). When first arriving for care, we found that 50% (n=15) of participants experienced severe anxiety (K10 ≥ 30) and were severely depressed (QIDS-A17 ≥ 16). In Session 2, taking attrition rates into account (n=5), we found that 44% (n=11) remained severe across the full battery of questionnaires. When applying multiple regression analyses of the pooled sample of observations (N=55), across both sessions, we found that participants who rated severely anxious avoided making risky decisions. We suggest there is some statistically significant (although weak) (p=0.09) relation between risk and severe anxiety scores as measured by K10. Our findings may support working with novel tools with which to evaluate youth experiencing an emerging mood disorder and their cognitive capacities influencing decision-making.

Keywords: anxiety, decision-making, risk, adolescence

Procedia PDF Downloads 116
585 The Relationship between Self-Care Behaviour and Quality of Life Among Heart Failure Patients in Jakarta, Indonesia

Authors: Shedy Maharani Nariswari, Prima Agustia Nova, I. Made Kariasa

Abstract:

Background. Heart Failure (HF) is a chronic and progressive condition associated with significant morbidity, mortality, health care expenditures, and a high readmission rate over the years. Self‐care is essential to manage chronic heart failure in the long term, and it is related to better outcomes and can enhance the quality of life. Objective. The aims of this study were to describe the relationship between self-care behavior and quality of life among heart failure patients in East Jakarta, Indonesia. Methods. This study used a correlational-descriptive design with a cross-sectional study, the sampling method used purposive sampling method. Self-care was measured using Self-care Heart Failure Index version 6.2, and quality of life was measured using The Minnesota Living with Heart Failure. Pearson correlation and Spearman-rho correlations are used to analyze the data. Results. We recruited 103 patients with HF in both outpatient and inpatient ward: mean age 59.26 ± 11.643 years, 63.1% male. Patients with higher levels of education were associated with higher self-care maintenance (p= 0.007). The patient's average quality of life is quite high, with a score of 72,07 ± 16,89. There were a significant relationship among self-care maintenance (r=0,305, p=0,001), self-care management (r=0,330, p=0,001), and self-care confidence (r=0,335, p=0,001) towards the quality of life. Most participants have inadequate self-care maintenance, self-care management, and self-care confidence (score < 70), while the score of quality of life is categorized as poor. Conclusion. The self-care behaviors were limited among patients living with HF in Indonesia yet was associated with better quality of life. It is necessary to promote health related to knowledge and adherence to self-care behavior so that it can improve the quality of life of heart failure patients. This study can be used as a reference to promote self-care among patients with heart failure, it can help to enhance their quality of life.

Keywords: heart failure, self-care maintenance, self-care management, self-care confidence, quality of life

Procedia PDF Downloads 106