Search results for: thin layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3264

Search results for: thin layer

1164 The Nexus between Climate Change and Criminality: The Nigerian Experience

Authors: Dagaci Aliyu Manbe, Anthony Abah Ebonyi

Abstract:

The increase in global temperatures is worsened by frequent natural events and human activities. Climate change has taken a prominent space in the global discourse on crime and criminality. Compared to when the subject centred around the discussion on the depletion of the ozone layer and global warming, today, the narrative revolves around the implications of changes in weather and climatic conditions in relations to violent crimes or conflict that traverse vast social, economic, and political spaces in different countries. Global warming and climate change refer to an increase in average global temperatures in the Earth’s near-surface air and oceans, which occurs due to human activities such as deforestation and the burning of fossil fuel such as gas flaring. The trend is projected to continue, if unchecked. This paper seeks to explore the nexus between climate change and criminality in Nigeria. It further examines the main ecological changes that predispose conflict dynamics of security threats factored by climate change to peaceful co-existence in Nigeria. It concludes with some recommendations on the way forward.

Keywords: conflict, climate change, criminality, global warning, peace

Procedia PDF Downloads 171
1163 Structural Evaluation of Airfield Pavement Using Finite Element Analysis Based Methodology

Authors: Richard Ji

Abstract:

Nondestructive deflection testing has been accepted widely as a cost-effective tool for evaluating the structural condition of airfield pavements. Backcalculation of pavement layer moduli can be used to characterize the pavement existing condition in order to compute the load bearing capacity of pavement. This paper presents an improved best-fit backcalculation methodology based on deflection predictions obtained using finite element method (FEM). The best-fit approach is based on minimizing the squared error between falling weight deflectometer (FWD) measured deflections and FEM predicted deflections. Then, concrete elastic modulus and modulus of subgrade reaction were back-calculated using Heavy Weight Deflectometer (HWD) deflections collected at the National Airport Pavement Testing Facility (NAPTF) test site. It is an alternative and more versatile method in considering concrete slab geometry and HWD testing locations compared to methods currently available.

Keywords: nondestructive testing, pavement moduli backcalculation, finite element method, concrete pavements

Procedia PDF Downloads 166
1162 Transparent Photovoltaic Skin for Artificial Thermoreceptor and Nociceptor Memory

Authors: Priyanka Bhatnagar, Malkeshkumar Patel, Joondong Kim, Joonpyo Hong

Abstract:

Artificial skin and sensory memory platforms are produced using a flexible, transparent photovoltaic (TPV) device. The TPV device is composed of a metal oxide heterojunction (nZnO/p-NiO) and transmits visible light (> 50%) while producing substantial electric power (0.5 V and 200 μA cm-2 ). This TPV device is a transparent energy interface that can be used to detect signals and propagate information without an external energy supply. The TPV artificial skin offers a temperature detection range (0 C75 C) that is wider than that of natural skin (5 C48 °C) due to the temperature-sensitive pyrocurrent from the ZnO layer. Moreover, the TPV thermoreceptor offers sensory memory of extreme thermal stimuli. Much like natural skin, artificial skin uses the nociceptor mechanism to protect tissue from harmful damage via signal amplification (hyperalgesia) and early adaption (allodynia). This demonstrates the many features of TPV artificial skin, which can sense and transmit signals and memorize information under self-operation mode. This transparent photovoltaic skin can provide sustainable energy for use in human electronics.

Keywords: transparent, photovoltaics, thermal memory, artificial skin, thermoreceptor

Procedia PDF Downloads 110
1161 Speciation Analysis by Solid-Phase Microextraction and Application to Atrazine

Authors: K. Benhabib, X. Pierens, V-D Nguyen, G. Mimanne

Abstract:

The main hypothesis of the dynamics of solid phase microextraction (SPME) is that steady-state mass transfer is respected throughout the SPME extraction process. It considers steady-state diffusion is established in the two phases and fast exchange of the analyte at the solid phase film/water interface. An improved model is proposed in this paper to handle with the situation when the analyte (atrazine) is in contact with colloid suspensions (carboxylate latex in aqueous solution). A mathematical solution is obtained by substituting the diffusion coefficient by the mean of diffusion coefficient between analyte and carboxylate latex, and also thickness layer by the mean thickness in aqueous solution. This solution provides an equation relating the extracted amount of the analyte to the extraction a little more complicated than previous models. It also gives a better description of experimental observations. Moreover, the rate constant of analyte obtained is in satisfactory agreement with that obtained from the initial curve fitting.

Keywords: pesticide, solid-phase microextraction (SPME) methods, steady state, analytical model

Procedia PDF Downloads 489
1160 Assessment of Ground Water Potential Zone: A Case Study of Paramakudi Taluk, Ramanathapuram, Tamilnadu, India

Authors: Shri Devi

Abstract:

This paper was conducted to see the ground water potential zones in Paramakudi taluk, Ramanathapuram,Tamilnadu India with a total areal extent of 745 sq. km. The various thematic map have been prepared for the study such as soil, geology, geomorphology, drainage, land use of the particular study area using the Toposheet of 1: 50000. The digital elevation model (DEM) has been generated from contour interval of 10m and also the slope was prepared. The ground water potential zone of the region was obtained using the weighted overlay analysis for which all the thematic maps were overlayed in arc gis 10.2. For the particular output the ranking has been given for all the parameters of each thematic layer with different weightage such as 25% was given to soil, 25% to geomorphology and land use land cover also 25%, slope 15%, lineament with 5% and drainage streams with 5 percentage. Using these entire potential zone maps was prepared which was overlayed with the village map to check the region which has good, moderate and low groundwater potential zone.

Keywords: GIS, ground water, Paramakudi, weighted overlay analysis

Procedia PDF Downloads 342
1159 Clutter Suppression Based on Singular Value Decomposition and Fast Wavelet Algorithm

Authors: Ruomeng Xiao, Zhulin Zong, Longfa Yang

Abstract:

Aiming at the problem that the target signal is difficult to detect under the strong ground clutter environment, this paper proposes a clutter suppression algorithm based on the combination of singular value decomposition and the Mallat fast wavelet algorithm. The method first carries out singular value decomposition on the radar echo data matrix, realizes the initial separation of target and clutter through the threshold processing of singular value, and then carries out wavelet decomposition on the echo data to find out the target location, and adopts the discard method to select the appropriate decomposition layer to reconstruct the target signal, which ensures the minimum loss of target information while suppressing the clutter. After the verification of the measured data, the method has a significant effect on the target extraction under low SCR, and the target reconstruction can be realized without the prior position information of the target and the method also has a certain enhancement on the output SCR compared with the traditional single wavelet processing method.

Keywords: clutter suppression, singular value decomposition, wavelet transform, Mallat algorithm, low SCR

Procedia PDF Downloads 118
1158 Bearing Capacity Improvement in a Silty Clay Soil with Crushed Polyethylene Terephthalate

Authors: Renzo Palomino, Alessandra Trujillo, Lidia Pacheco

Abstract:

The document presents a study based on the incremental bearing capacity of silty clay soil with the incorporation of crushed PET fibers. For a better understanding of the behavior of soil, it is necessary to know its origin. The analyzed samples came from the subgrade layer of a highway that connects the cities of Muniches and Yurimaguas in Loreto, Peru. The material in this area usually has properties such as low support index, medium to high plasticity, and other characteristics that make it considered a ‘problematic’ soil due to factors such as climate, humidity, and geographical location. In addition, PET fibers are obtained from the decomposition of plastic bottles that are polluting agents with a high production rate in our country; in that sense, their use in a construction process represents a considerable reduction in environmental impact. Moreover, to perform a precise analysis of the behavior of this soil mixed with PET, tests such as the hydrometer test, Proctor and CBR with 15%, 10%, 5%, 4%, 3%, and 1% of PET with respect to the mass of the sample of natural soil were carried out. The results show that when a low percentage of PET is used, the support index increases.

Keywords: environmental impact, geotechnics, PET, silty clay soil

Procedia PDF Downloads 237
1157 Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate

Authors: Anna Bykalyuk, Frédéric Kuznik, Kévyn Johannes

Abstract:

In this paper, the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM).

Keywords: CFD modeling, natural convection, thermal conductive plate, time-depending boundary conditions

Procedia PDF Downloads 277
1156 Instant Fire Risk Assessment Using Artifical Neural Networks

Authors: Tolga Barisik, Ali Fuat Guneri, K. Dastan

Abstract:

Major industrial facilities have a high potential for fire risk. In particular, the indices used for the detection of hidden fire are used very effectively in order to prevent the fire from becoming dangerous in the initial stage. These indices provide the opportunity to prevent or intervene early by determining the stage of the fire, the potential for hazard, and the type of the combustion agent with the percentage values of the ambient air components. In this system, artificial neural network will be modeled with the input data determined using the Levenberg-Marquardt algorithm, which is a multi-layer sensor (CAA) (teacher-learning) type, before modeling the modeling methods in the literature. The actual values produced by the indices will be compared with the outputs produced by the network. Using the neural network and the curves to be created from the resulting values, the feasibility of performance determination will be investigated.

Keywords: artifical neural networks, fire, Graham Index, levenberg-marquardt algoritm, oxygen decrease percentage index, risk assessment, Trickett Index

Procedia PDF Downloads 137
1155 Alteration of Sex Steroid Hormone Levels in Sex Reversed Chickens

Authors: A. H. Shaikat, M. B. Hossain, S. K. M. A. Islam, M. M. Hassan, S. A. Khan, A. K. M. Saifuddin, M. N. Islam, M. A. Hoque

Abstract:

A total of eighteen (18) sex reversed chickens with unusual phenotypic characteristics of male birds were identified over 2000 Hyline layer chickens at Motaher Poultry Farm, Ramu, Cox’s Bazar. Chickens were subdivided into two groups (case = 18, control = 20) based on the appearance of sex-reversed secondary sexual characteristics. Phenotypic traits of studied chickens were measured with farm management details. Hormone assay using ELISA, autopsy followed by gross examination of viscera was performed. The study found higher body weight (gm) (1579.3; 95% CI: 1561.7-1596.8), comb length (cm) (12.2; 11.5-12.8), comb width (cm) (7.9; 7.7-8.2), wattle length (cm) (4.9; 4.8-5.1) distinct spur, and shortened pubic bones distance, suggesting decrease oviposition in sex-reversed chickens. Testosterone concentration (ng/ml) (8.5; 6.4-10.6) was significantly higher (p<0.001) along with decrease estrogen (pg/ml) (5.1; 4.9-5.5) and progesterone concentration (pg/ml) (310.9; 289.4-332.5) in sex-reversed chickens. Mass abdominal fat deposition with atrophied ovary was found upon exploration of viscera.

Keywords: ovary, phenotypic traits, sex hormone, sex reversal

Procedia PDF Downloads 447
1154 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault

Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola

Abstract:

Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.

Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula

Procedia PDF Downloads 82
1153 NFResNet: Multi-Scale and U-Shaped Networks for Deblurring

Authors: Tanish Mittal, Preyansh Agrawal, Esha Pahwa, Aarya Makwana

Abstract:

Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three differ-ent loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.

Keywords: multi-scale, Unet, deblurring, FFT, resblock, NAF-block, nfresnet, charbonnier, edge, frequency reconstruction

Procedia PDF Downloads 136
1152 Ceramide-PLGA Nanoparticle Formation to Apply to Atopic Dermatitis

Authors: Sang-Myung Jung, Gwang Heum Yoon, Hoo Chul Lee, Hwa Sung Shin

Abstract:

Ceramide, a component of stratum corneum at epidermis, helps to construct a rigid and dense skin barrier to prevent pathogens that cause atopic dermatitis. However, ceramide was too hydrophobic to be directly absorbed into stratum corneum and has risks of side effects by excessive treatment. To overcome the obstacles, ceramide was embedded into PLGA nanoparticles coated with chitosan. PLGA and chitosan have been known as biocompatible materials. PLGA was squeezed when faced with water and pumped ceramide out of PLGA nanoparticle. In addition, the chitosan coating layer helped initial adherence of nanoparticles to skin and regulate ceramide release until removed. This coating was degraded at weakly acid state like skin surface, finally ceramide release could be controlled. Finally, the nanoparticle was demonstrated to be non-cytotoxic and regenerate stratum corneum of atopic dermatitis model. Overall the nanoparticle is suggested as a novel and effective nanodrug to apply atopic dermatitis.

Keywords: nanoparticle, controlled release, atopic dermatitis, chitosan coating, ceramide

Procedia PDF Downloads 394
1151 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate

Authors: Andrey A. Chernousov, Ben Y. B. Chan

Abstract:

The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the Energy Plus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.

Keywords: thermal performance, phase change material, energy efficiency, PCM optimization

Procedia PDF Downloads 402
1150 Hydraulic Design of Proposed Ranney Well for Water Supply Scheme in Kurukshetra

Authors: Gaurav Kumar, Baldev Setia

Abstract:

Water is essential for sustenance of life and the ecosystem. Among the various uses of water, the water required for drinking and domestics has the priority over other needs. Water that is required for human consumption must be available in sufficient quantity and should be of good quality. Keeping in view the futuristic needs of water of Kurukshetra town, a durable and cost-effective water supply system with the help of Ranney well has been proposed. This has been proposed on the premise that Brahmsarovar, the largest static water body in the state of Haryana provides sufficient recharge to the groundwater aquifer. In the study, a 30 year design period has been adopted and the water demand up to the year 2050 has been computed. The proposed Ranney well to be constructed in the vicinity of the Brahmsarovar will have a caisson of diameter of 12 m and will be laid at a depth of 30 m below MSL. The laterals, 20 in number, 300 mm in diameter and 15 m in length will be located in two layer separated by 1.5 m. the impact on environment because of the construction and working of the Ranney well is also studied and it has been found that there are no adverse impacts of the proposed scheme. However, the present study is limited to the hydraulics design of the scheme and does not address the structural design of components of Ranney well and the cost involved.

Keywords: drawdown, Ranney well, LPCD, MSL, transmissibility, storativity

Procedia PDF Downloads 300
1149 Effect of Aging on Hardness and Corrosion Resistance of WE43 Magnesium Alloy

Authors: Ziya Esen, Özgür Duygulu, Nazlı S. Büyükatak

Abstract:

This study investigates the effects of aging heat treatment on corrosion resistance and mechanical properties of WE43 Magnesium alloy. The heat treatment of alloys was conducted by solutionizing at 525oC for 16 h, followed by aging at 190, 210 and 230oC for up to 48 h. The type and the size of precipitates formed upon aging have influenced both the mechanical properties and corrosion behavior of the alloy. Solutionized alloy displayed the worst corrosion resistance in simulated body fluid, while peak hardness and the best corrosion resistance were observed in the alloy aged at 210oC for 24 h as a result of β’ precipitate formation. Longer aging duration at 210oC decreased the corrosion rate due to the coarsening of the precipitates and formation of precipitate-free zones. The increased corrosion resistance of the peak aged samples was attributed to the slowing down effect of the Mg(OH)₂/MgO corrosion layer by the pinning effect of β’-precipitates.

Keywords: WE43 magnesium alloy, simulated body fluid, corrosion, mechanical properties

Procedia PDF Downloads 5
1148 Clouds Influence on Atmospheric Ozone from GOME-2 Satellite Measurements

Authors: S. M. Samkeyat Shohan

Abstract:

This study is mainly focused on the determination and analysis of the photolysis rate of atmospheric, specifically tropospheric, ozone as function of cloud properties through-out the year 2007. The observational basis for ozone concentrations and cloud properties are the measurement data set of the Global Ozone Monitoring Experiment-2 (GOME-2) sensor on board the polar orbiting Metop-A satellite. Two different spectral ranges are used; ozone total column are calculated from the wavelength window 325 – 335 nm, while cloud properties, such as cloud top height (CTH) and cloud optical thick-ness (COT) are derived from the absorption band of molecular oxygen centered at 761 nm. Cloud fraction (CF) is derived from measurements in the ultraviolet, visible and near-infrared range of GOME-2. First, ozone concentrations above clouds are derived from ozone total columns, subtracting the contribution of stratospheric ozone and filtering those satellite measurements which have thin and low clouds. Then, the values of ozone photolysis derived from observations are compared with theoretical modeled results, in the latitudinal belt 5˚N-5˚S and 20˚N - 20˚S, as function of CF and COT. In general, good agreement is found between the data and the model, proving both the quality of the space-borne ozone and cloud properties as well as the modeling theory of ozone photolysis rate. The found discrepancies can, however, amount to approximately 15%. Latitudinal seasonal changes of photolysis rate of ozone are found to be negatively correlated to changes in upper-tropospheric ozone concentrations only in the autumn and summer months within the northern and southern tropical belts, respectively. This fact points to the entangled roles of temperature and nitrogen oxides in the ozone production, which are superimposed on its sole photolysis induced by thick and high clouds in the tropics.

Keywords: cloud properties, photolysis rate, stratospheric ozone, tropospheric ozone

Procedia PDF Downloads 211
1147 The System of Uniform Criteria for the Characterization and Evaluation of Elements of Economic Structure: The Territory, Infrastructure, Processes, Technological Chains, the End Products

Authors: Aleksandr A. Gajour, Vladimir G. Merzlikin, Vladimir I. Veselov

Abstract:

This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with the spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the polar regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under limited and unlimited amount of heat-energy resources are analyzed.

Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes

Procedia PDF Downloads 402
1146 Optimization of Cutting Forces in Drilling of Polimer Composites via Taguchi Methodology

Authors: Eser Yarar, Fahri Vatansever, A. Tamer Erturk, Sedat Karabay

Abstract:

In this study, drilling behavior of multi-layer orthotropic polyester composites reinforced with woven polyester fiber and PTFE particle was investigated. Conventional drilling methods have low cost and ease of use. Therefore, it is one of the most preferred machining methods. The increasing range of use of composite materials in many areas has led to the investigation of the machinability performance of these materials. The drilling capability of the synthetic polymer composite material was investigated by measuring the cutting forces using different tool diameters, feed rate and high cutting speed parameters. Cutting forces were measured using a dynamometer in the experiments. In order to evaluate the results of the experiment, the Taguchi experimental design method was used. According to the results, the optimum cutting parameters were obtained for 0.1 mm/rev, 1070 rpm and 2 mm diameter drill bit. Verification tests were performed for the optimum cutting parameters obtained according to the model. Verification experiments showed the success of the established model.

Keywords: cutting force, drilling, polimer composite, Taguchi

Procedia PDF Downloads 162
1145 Household Low Temperature MS2 (ATCC15597-B1) Virus Inactivation Using a Hot Bubble Column Evaporator

Authors: Adrian Garrido Sanchis, Richard Pashley

Abstract:

The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses when using a hot air bubble column evaporator (HBCE) system in the treatment of household wastewater. In this study, we have combined MS2 virus surface charging properties with thermal inactivation rates, using an improved double layer plaque assay technique, in order to assess the efficiency of the HBCE process for virus removal in water. When bubbling a continuous flow of dry air, at 200°C, only heats the aqueous solution in the bubble column to about 50°C. Viruses are not inactivated by this solution temperature, as confirmed separately from water bath heating experiments. Hence, the efficiency of the HBCE process for virus removal in water appeared to be caused entirely by collisions between the hot air bubbles and the virus organisms. This new energy efficient treatment for water reuse applications can reduce the thermal energy required to only 25% (about 113.7 kJ/L) of that required for boiling (about 450 kJ/L).

Keywords: MS2 virus inactivation, water reuse, hot bubble column evaporator, water treatment

Procedia PDF Downloads 210
1144 4-Allylpyrocatechol Loaded Polymeric Micelles for Solubility Enhancing and Effects on Streptococcus mutans Biofilms

Authors: Siriporn Okonogi, Pimpak Phumat, Sakornrat Khongkhunthian

Abstract:

Piper betle has been extensively reported for various pharmacological effects including antimicrobial activity. 4-Allylpyrocatechol (AC) is a principle active compound found in P. betle. However, AC has a problem of solubility in water. The aims of the present study were to prepare AC loaded polymeric micelles for enhancing its water solubility and to evaluate its anti-biofilm activity against oral phathogenic bacteria. AC was loaded in polymeric micelles (PM) of Pluronic F127 by using thin film hydration method to obtain AC loaded PM (PMAC). The results revealed that AC in the form of PMAC possessed high water solubility. PMAC particles were characterized using a transmission electron microscope and photon correlation spectroscopy. Determination of entrapment efficiency (EE) and loading capacity (LC) of PMAC was done by using high-performance liquid chromatography. The highest EE (86.33 ± 14.27 %) and LC (19.25 ± 3.18 %) of PMAC were found when the weight ratio of polymer to AC was 4 to 1. At this ratio, the particles showed spherical in shape with the size of 38.83 ± 1.36 nm and polydispersity index of 0.28 ± 0.10. Zeta potential of the particles is negative with the value of 16.43 ± 0.55 mV. Crystal violet assay and confocal microscopy were applied to evaluate the effects of PMAC on Streptococcus mutans biofilms using chlorhexidine (CHX) as a positive control. PMAC contained 1.5 mg/mL AC could potentially inhibit (102.01 ± 9.18%) and significantly eradicate (85.05 ± 2.03 %) these biofilms (p < 0.05). Comparison with CHX, PMAC showed slightly similar biofilm inhibition but significantly stronger biofilm eradication (p < 0.05) than CHX. It is concluded that PMAC can enhance water solubility and anti-biofilm activity of AC.

Keywords: pluronic, polymeric micelles, solubility, 4-allylpyrocathecol, Streptococcus mutans, anti-biofilm

Procedia PDF Downloads 144
1143 Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel

Authors: Zone-Ching Lin, Hao-Yuan Jheng, Shih-Hung Ma

Abstract:

The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared.

Keywords: atomic force microscopy (AFM), nanochannel, specific down force energy (SDFE), Y shape, burr, silicon

Procedia PDF Downloads 407
1142 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database

Procedia PDF Downloads 151
1141 Electrical Transport through a Large-Area Self-Assembled Monolayer of Molecules Coupled with Graphene for Scalable Electronic Applications

Authors: Chunyang Miao, Bingxin Li, Shanglong Ning, Christopher J. B. Ford

Abstract:

While it is challenging to fabricate electronic devices close to atomic dimensions in conventional top-down lithography, molecular electronics is promising to help maintain the exponential increase in component densities via using molecular building blocks to fabricate electronic components from the bottom up. It offers smaller, faster, and more energy-efficient electronic and photonic systems. A self-assembled monolayer (SAM) of molecules is a layer of molecules that self-assembles on a substrate. They are mechanically flexible, optically transparent, low-cost, and easy to fabricate. A large-area multi-layer structure has been designed and investigated by the team, where a SAM of designed molecules is sandwiched between graphene and gold electrodes. Each molecule can act as a quantum dot, with all molecules conducting in parallel. When a source-drain bias is applied, significant current flows only if a molecular orbital (HOMO or LUMO) lies within the source-drain energy window. If electrons tunnel sequentially on and off the molecule, the charge on the molecule is well-defined and the finite charging energy causes Coulomb blockade of transport until the molecular orbital comes within the energy window. This produces ‘Coulomb diamonds’ in the conductance vs source-drain and gate voltages. For different tunnel barriers at either end of the molecule, it is harder for electrons to tunnel out of the dot than in (or vice versa), resulting in the accumulation of two or more charges and a ‘Coulomb staircase’ in the current vs voltage. This nanostructure exhibits highly reproducible Coulomb-staircase patterns, together with additional oscillations, which are believed to be attributed to molecular vibrations. Molecules are more isolated than semiconductor dots, and so have a discrete phonon spectrum. When tunnelling into or out of a molecule, one or more vibronic states can be excited in the molecule, providing additional transport channels and resulting in additional peaks in the conductance. For useful molecular electronic devices, achieving the optimum orbital alignment of molecules to the Fermi energy in the leads is essential. To explore it, a drop of ionic liquid is employed on top of the graphene to establish an electric field at the graphene, which screens poorly, gating the molecules underneath. Results for various molecules with different alignments of Fermi energy to HOMO have shown highly reproducible Coulomb-diamond patterns, which agree reasonably with DFT calculations. In summary, this large-area SAM molecular junction is a promising candidate for future electronic circuits. (1) The small size (1-10nm) of the molecules and good flexibility of the SAM lead to the scalable assembly of ultra-high densities of functional molecules, with advantages in cost, efficiency, and power dissipation. (2) The contacting technique using graphene enables mass fabrication. (3) Its well-observed Coulomb blockade behaviour, narrow molecular resonances, and well-resolved vibronic states offer good tuneability for various functionalities, such as switches, thermoelectric generators, and memristors, etc.

Keywords: molecular electronics, Coulomb blokade, electron-phonon coupling, self-assembled monolayer

Procedia PDF Downloads 63
1140 Comparative Analysis of Turbulent Plane Jets from a Sharp-Edged Orifice, a Beveled-Edge Orifice and a Radially Contoured Nozzle

Authors: Ravinesh C. Deo

Abstract:

This article investigates through experiments the flow characteristics of plane jets from sharp-edged orifice-plate, beveled-edge and radially contoured nozzle. The first two configurations exhibit saddle-backed velocity profiles while the third shows a top-hat. A vena contracta is found for the jet emanating from orifice at x/h = 3 while the contoured case displays a potential core extending to the range x/h = 5. A spurt in jet pressure on the centerline supports vena contracta for the orifice-jet. Momentum thicknesses and integral length scales elongate linearly with x although the growth of the shear-layer and large-scale eddies for the orifice are greater than the contoured case. The near-field spectrum exhibits higher frequency of the primary eddies that concur with enhanced turbulence intensity. Importantly, highly “turbulent” state of the orifice-jet prevails in the far-field where the spectra confirm more energetic secondary eddies associated with greater flapping amplitude of the orifice-jet.

Keywords: orifice, beveled-edge-orifice, radially contoured nozzle, plane jets

Procedia PDF Downloads 154
1139 [Keynote Talk]: Mathematical and Numerical Modelling of the Cardiovascular System: Macroscale, Mesoscale and Microscale Applications

Authors: Aymen Laadhari

Abstract:

The cardiovascular system is centered on the heart and is characterized by a very complex structure with different physical scales in space (e.g. micrometers for erythrocytes and centimeters for organs) and time (e.g. milliseconds for human brain activity and several years for development of some pathologies). The development and numerical implementation of mathematical models of the cardiovascular system is a tremendously challenging topic at the theoretical and computational levels, inducing consequently a growing interest over the past decade. The accurate computational investigations in both healthy and pathological cases of processes related to the functioning of the human cardiovascular system can be of great potential in tackling several problems of clinical relevance and in improving the diagnosis of specific diseases. In this talk, we focus on the specific task of simulating three particular phenomena related to the cardiovascular system on the macroscopic, mesoscopic and microscopic scales, respectively. Namely, we develop numerical methodologies tailored for the simulation of (i) the haemodynamics (i.e., fluid mechanics of blood) in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets, (ii) the hyperelastic anisotropic behaviour of cardiomyocytes and the influence of calcium concentrations on the contraction of single cells, and (iii) the dynamics of red blood cells in microvasculature. For each problem, we present an appropriate fully Eulerian finite element methodology. We report several numerical examples to address in detail the relevance of the mathematical models in terms of physiological meaning and to illustrate the accuracy and efficiency of the numerical methods.

Keywords: finite element method, cardiovascular system, Eulerian framework, haemodynamics, heart valve, cardiomyocyte, red blood cell

Procedia PDF Downloads 252
1138 Enhancement in Bactericidal Activity of Hydantoin Based Microsphere from Smooth to Rough

Authors: Rajani Kant Rai, Jayakrishnan Athipet

Abstract:

There have been several attempts to prepare polymers with antimicrobial properties by doping with various N-halamines. Hydantoins (Cyclic N-halamine) is of importance due to their stability rechargeable chloroamide function, broad-spectrum anti-microbial action and ability to prevent resistance to the organisms. Polymerizable hydantoins are synthesized by tethering vinyl moieties to 5,5,-dialkyl hydantoin sacrificing the imide hydrogen in the molecule thereby restricting the halogen capture only to the amide nitrogen that results in compromised antibacterial activity. In order to increase the activity of the antimicrobial polymer, we have developed a scheme to maximize the attachment of chlorine to the amide and the imide moieties of hydantoin. Vinyl hydantoin monomer, (Z)-5-(4-((3-methylbuta-1,3-dien-2-yl)oxy)benzylidene)imidazolidine-2,4-dione (MBBID) was synthesized and copolymerized with a commercially available monomer, methyl methacrylate, by free radical polymerization. The antimicrobial activity of hydantoin is strongly dependent on their surface area and hence their microbial activity increases when incorporated in microspheres or nanoparticles as compared to their bulk counterpart. In this regard, smooth and rough surface microsphere of the vinyl monomer (MBBID) with commercial monomer was synthesized. The oxidative chlorine content of the copolymer ranged from 1.5 to 2.45 %. Further, to demonstrate the water purification potential, the thin column was packed with smooth or rough microspheres and challenged with simulated contaminated water that exhibited 6 log kill (total kill) of the bacteria in 20 minutes of exposure with smooth (25 mg/ml) and rough microsphere (15.0 mg/ml).

Keywords: cyclic N-halamine, vinyl hydantoin monomer, rough surface microsphere, simulated contaminated water

Procedia PDF Downloads 145
1137 Performance Evaluation of a Minimum Mean Square Error-Based Physical Sidelink Share Channel Receiver under Fading Channel

Authors: Yang Fu, Jaime Rodrigo Navarro, Jose F. Monserrat, Faiza Bouchmal, Oscar Carrasco Quilis

Abstract:

Cellular Vehicle to Everything (C-V2X) is considered a promising solution for future autonomous driving. From Release 16 to Release 17, the Third Generation Partnership Project (3GPP) has introduced the definitions and services for 5G New Radio (NR) V2X. Experience from previous generations has shown that establishing a simulator for C-V2X communications is an essential preliminary step to achieve reliable and stable communication links. This paper proposes a complete framework of a link-level simulator based on the 3GPP specifications for the Physical Sidelink Share Channel (PSSCH) of the 5G NR Physical Layer (PHY). In this framework, several algorithms in the receiver part, i.e., sliding window in channel estimation and Minimum Mean Square Error (MMSE)-based equalization, are developed. Finally, the performance of the developed PSSCH receiver is validated through extensive simulations under different assumptions.

Keywords: C-V2X, channel estimation, link-level simulator, sidelink, 3GPP

Procedia PDF Downloads 130
1136 Environmental Pb-Free Cu Front Electrode for Si-Base Solar Cell Application

Authors: Wen-Hsi Lee, C.G. Kao

Abstract:

In this study, Cu paste was prepared and printed with narrow line screen printing process on polycrystalline Si solar cell which has already finished the back Al printing and deposition of double anti-reflection coatings (DARCs). Then, two-step firing process was applied to sinter the front electrode and obtain the ohmic contact between front electrode and solar cell. The first step was in air atmosphere. In this process, PbO-based glass frit etched the DARCs and Ag recrystallized at the surface of Si, constructing the preliminary contact. The second step was in reducing atmosphere. In this process, CuO reduced to Cu and sintered. Besides, Ag nanoparticles recrystallized in the glass layer at interface due to the interactions between H2, Ag and PbO-based glass frit and the volatility of Pb, constructing the ohmic contact between electrode and solar cell. By experiment and analysis, reaction mechanism in each stage was surmised, and it was also proven that ohmic contact and good sheet resistance for front electrode could both be obtained by applying newly-invented paste and process.

Keywords: front electrode, solar cell, ohmic contact, screen printing, paste

Procedia PDF Downloads 332
1135 Enhancement in the Absorption Efficiency of GaAs/InAs Nanowire Solar Cells through a Decrease in Light Reflection

Authors: Latef M. Ali, Farah A. Abed, Zheen L. Mohammed

Abstract:

In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV. it explore the design and optimization of high-efficiency solar cells on low-reflective absorption efficiency of GaAs/InAs using simulation software tool. The changes in the core and shell diameters profoundly affects the generation and recombination process, thus affecting the conversion efficiency of solar cells.

Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, FDTD simulation

Procedia PDF Downloads 49