Search results for: low interfacial tension viscoelastic fluid flooding
1253 Resilient Design Solutions for Megathermal Climates of the Global South
Authors: Bobuchi Ken-Opurum
Abstract:
The impacts of climate change on urban settlements is growing. In the global south, communities are even more vulnerable and suffer there is an increased vulnerability from due to climate change disasters such as flooding and high temperatures. This is primarily due to high intensity rainfall, low-lying coasts, inadequate infrastructure, and limited resources. According to the Emergency Events Database, floods were the leading cause of disaster -based deaths in the global south between 2006 and 2015. This includes deaths from heat stress related health outcomes. Adapting to climate vulnerabilities is paramount in reducing the significant redevelopment costs from climate disasters. Governments and urban planners provide top-down approaches such as evacuation, and disaster and emergency communication. While they address infrastructure and public services, they are not always able to address the immediate and critical day to day needs of poor and vulnerable populations. There is growing evidence that some bottom-up strategies and grassroots initiatives of self-build housing such as in urban informal settlements are successful in coping and adapting to hydroclimatic impacts. However, these research findings are not consolidated and the evaluation of the resilience outcomes of the bottom-up strategies are limited. Using self-build housing as a model for sustainable and resilient urban planning, this research aimed to consolidate the flood and heat stress resilient design solutions, analyze the effectiveness of these solutions, and develop guidelines and methods for adopting these design solutions into mainstream housing in megathermal climates. The methodological approach comprised of analyses of over 40 ethnographic based peer reviewed literature, white papers, and reports between the years 2000 and 2019 to identify coping strategies and grassroots initiatives that have been applied by occupants and communities of the global south. The results of the research provide a consolidated source and prioritized list of the best bottom-up strategies for communities in megathermal climates to improve the lives of people in some of the most vulnerable places in the world.Keywords: resilient, design, megathermal, climate change
Procedia PDF Downloads 1251252 Architectural Wind Data Maps Using an Array of Wireless Connected Anemometers
Authors: D. Serero, L. Couton, J. D. Parisse, R. Leroy
Abstract:
In urban planning, an increasing number of cities require wind analysis to verify comfort of public spaces and around buildings. These studies are made using computer fluid dynamic simulation (CFD). However, this technique is often based on wind information taken from meteorological stations located at several kilometers of the spot of analysis. The approximated input data on project surroundings produces unprecise results for this type of analysis. They can only be used to get general behavior of wind in a zone but not to evaluate precise wind speed. This paper presents another approach to this problem, based on collecting wind data and generating an urban wind cartography using connected ultrasound anemometers. They are wireless devices that send immediate data on wind to a remote server. Assembled in array, these devices generate geo-localized data on wind such as speed, temperature, pressure and allow us to compare wind behavior on a specific site or building. These Netatmo-type anemometers communicate by wifi with central equipment, which shares data acquired by a wide variety of devices such as wind speed, indoor and outdoor temperature, rainfall, and sunshine. Beside its precision, this method extracts geo-localized data on any type of site that can be feedback looped in the architectural design of a building or a public place. Furthermore, this method allows a precise calibration of a virtual wind tunnel using numerical aeraulic simulations (like STAR CCM + software) and then to develop the complete volumetric model of wind behavior over a roof area or an entire city block. The paper showcases connected ultrasonic anemometers, which were implanted for an 18 months survey on four study sites in the Grand Paris region. This case study focuses on Paris as an urban environment with multiple historical layers whose diversity of typology and buildings allows considering different ways of capturing wind energy. The objective of this approach is to categorize the different types of wind in urban areas. This, particularly the identification of the minimum and maximum wind spectrum, helps define the choice and performance of wind energy capturing devices that could be implanted there. The localization on the roof of a building, the type of wind, the altimetry of the device in relation to the levels of the roofs, the potential nuisances generated. The method allows identifying the characteristics of wind turbines in order to maximize their performance in an urban site with turbulent wind.Keywords: computer fluid dynamic simulation in urban environment, wind energy harvesting devices, net-zero energy building, urban wind behavior simulation, advanced building skin design methodology
Procedia PDF Downloads 1011251 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics
Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou
Abstract:
Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle
Procedia PDF Downloads 3251250 Modeling the Time-Dependent Rheological Behavior of Clays Used in Fabrication of Ceramic
Authors: Larbi Hammadi, N. Boudjenane, N. Benhallou, R. Houjedje, R. Reffis, M. Belhadri
Abstract:
Many of clays exhibited the thixotropic behavior in which, the apparent viscosity of material decreases with time of shearing at constant shear rate. The structural kinetic model (SKM) was used to characterize the thixotropic behavior of two different kinds of clays used in fabrication of ceramic. Clays selected for analysis represent the fluid and semisolid clays materials. The SKM postulates that the change in the rheological behavior is associated with shear-induced breakdown of the internal structure of the clays. This model for the structure decay with time at constant shear rate assumes nth order kinetics for the decay of the material structure with a rate constant.Keywords: ceramic, clays, structural kinetic model, thixotropy, viscosity
Procedia PDF Downloads 4101249 Opposed Piston Engine Crankshaft Strength Calculation Using Finite Element Method
Authors: Konrad Pietrykowski, Michał Gęca, Michał Bialy
Abstract:
The paper presents the results of the crankshaft strength simulation. The crankshaft was taken from the opposed piston engine. Calculations were made using finite element method (FEM) in Abaqus software. This program allows to perform strength tests of individual machine parts as well as their assemblies. The crankshaft that was used in the calculations will be used in the two-stroke aviation research aircraft engine. The assumptions for the calculations were obtained from the AVL Boost software, from one-dimensional engine cycle model and from the multibody model using the method developed in the MSC Adams software. The research engine will be equipped with 3 combustion chambers and two crankshafts. In order to shorten the calculation time, only one crankcase analysis was performed. The cut of the shaft has been selected with the greatest forces resulting from the engine operation. Calculations were made for two cases. For maximum piston force when maximum bending load occurs and for the maximum torque. Cast iron material was adopted. For this material, Poisson's number, density, and Young's modulus were determined. The computational grid contained of 1,977,473 Tet elements. This type of elements was chosen because of the complex design of the crankshaft. Results are presented in the form of stress distributions maps and displacements on the surface and inside the geometry of the shaft. The results show the places of tension stresses, however, no stresses are exceeded at any place. The shaft can thus be applied to the engine in its present form. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK 'PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.Keywords: aircraft diesel engine, crankshaft, finite element method, two-stroke engine
Procedia PDF Downloads 1811248 Flood Hazard Assessment and Land Cover Dynamics of the Orai Khola Watershed, Bardiya, Nepal
Authors: Loonibha Manandhar, Rajendra Bhandari, Kumud Raj Kafle
Abstract:
Nepal’s Terai region is a part of the Ganges river basin which is one of the most disaster-prone areas of the world, with recurrent monsoon flooding causing millions in damage and the death and displacement of hundreds of people and households every year. The vulnerability of human settlements to natural disasters such as floods is increasing, and mapping changes in land use practices and hydro-geological parameters is essential in developing resilient communities and strong disaster management policies. The objective of this study was to develop a flood hazard zonation map of Orai Khola watershed and map the decadal land use/land cover dynamics of the watershed. The watershed area was delineated using SRTM DEM, and LANDSAT images were classified into five land use classes (forest, grassland, sediment and bare land, settlement area and cropland, and water body) using pixel-based semi-automated supervised maximum likelihood classification. Decadal changes in each class were then quantified using spatial modelling. Flood hazard mapping was performed by assigning weights to factors slope, rainfall distribution, distance from the river and land use/land cover on the basis of their estimated influence in causing flood hazard and performing weighed overlay analysis to identify areas that are highly vulnerable. The forest and grassland coverage increased by 11.53 km² (3.8%) and 1.43 km² (0.47%) from 1996 to 2016. The sediment and bare land areas decreased by 12.45 km² (4.12%) from 1996 to 2016 whereas settlement and cropland areas showed a consistent increase to 14.22 km² (4.7%). Waterbody coverage also increased to 0.3 km² (0.09%) from 1996-2016. 1.27% (3.65 km²) of total watershed area was categorized into very low hazard zone, 20.94% (60.31 km²) area into low hazard zone, 37.59% (108.3 km²) area into moderate hazard zone, 29.25% (84.27 km²) area into high hazard zone and 31 villages which comprised 10.95% (31.55 km²) were categorized into high hazard zone area.Keywords: flood hazard, land use/land cover, Orai river, supervised maximum likelihood classification, weighed overlay analysis
Procedia PDF Downloads 3531247 Computational Fluid Dynamics (CFD) Calculations of the Wind Turbine with an Adjustable Working Surface
Authors: Zdzislaw Kaminski, Zbigniew Czyz, Krzysztof Skiba
Abstract:
This paper discusses the CFD simulation of a flow around a rotor of a Vertical Axis Wind Turbine. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed and avoid a costly preparation of a model or a prototype for a bench test. CFD simulation enables us to compare characteristics of aerodynamic forces acting on rotor working surfaces and define operational parameters like torque or power generated by a turbine assembly. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angular aperture α increases, the working surface which absorbs wind kinetic energy also increases. The operation of turbines is characterized by parameters like the angular aperture of blades, power, torque, speed for a given wind speed. These parameters have an impact on the efficiency of assemblies. The distribution of forces acting on the working surfaces in our turbine changes according to the angular velocity of the rotor. Moreover, the resultant force from the force acting on an advancing blade and retreating blade should be as high as possible. This paper is part of the research to improve an efficiency of a rotor assembly. Therefore, using simulation, the courses of the above parameters were studied in three full rotations individually for each of the blades for three angular apertures of blade working surfaces, i.e. 30 °, 60 °, 90 °, at three wind speeds, i.e. 4 m / s, 6 m / s, 8 m / s and rotor speeds ranging from 100 to 500 rpm. Finally, there were created the characteristics of torque coefficients and power as a function of time for each blade separately and for the entire rotor. Accordingly, the correlation between the turbine rotor power as a function of wind speed for varied values of rotor rotational speed. By processing this data, the correlation between the power of the turbine rotor and its rotational speed for each of the angular aperture of the working surfaces was specified. Finally, the optimal values, i.e. of the highest output power for given wind speeds were read. The research results in receiving the basic characteristics of turbine rotor power as a function of wind speed for the three angular apertures of the blades. Given the nature of rotor operation, the growth in the output turbine can be estimated if angular aperture of the blades increases. The controlled adjustment of angle α enables a smooth adjustment of power generated by a turbine rotor. If wind speed is significant, this type of adjustment enables this output power to remain at the same level (by reducing angle α) with no risk of damaging a construction. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: computational fluid dynamics, numerical analysis, renewable energy, wind turbine
Procedia PDF Downloads 2171246 Numerical Study of an Impinging Jet in a Coflow Stream
Authors: Rim Ben Kalifa, Sabra Habli, Nejla Mahjoub Saïd, Hervé Bournot, Georges Le Palec
Abstract:
The present study treats different phenomena taking place in a configuration of air jet impinging on a flat surface in a coflow stream. A Computational Fluid Dynamics study is performed using the Reynolds-averaged Navier–Stokes equations by means of the Reynolds Stress Model (RSM) second order turbulent closure model. The results include mean and turbulent velocities and quantify the large effects of the coflow stream on an impinging air jet. The study of the jet in a no-directed coflow stream shows the presence of a phenomenon of recirculation near the flat plate. The influence of the coflow velocity ratio on the behavior of an impinging plane jet was also numerically investigated. The coflow stream imposed noticeable restrictions on the spreading of the impinging jet. The results show that the coflow stream decreases considerably the entrainment of air jet.Keywords: turbulent jet, turbulence models, coflow stream, velocity ratio
Procedia PDF Downloads 2381245 Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks
Authors: Mustapha Rilwan Adewale, Salau Ayobami Muhammed
Abstract:
This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas.Keywords: squeezing flow, magneto-hydro-dynamics (MHD), chebyshev collocation method(CCA), parallel manifolds, finite difference method (FDM)
Procedia PDF Downloads 761244 Stabilizing Effect of Magnetic Field in a Thermally Modulated Porous Layer
Authors: M. Meenasaranya, S. Saravanan
Abstract:
Nonlinear stability analysis is carried out to determine the effect of surface temperature modulation in an infinite horizontal porous layer heated from below. The layer is saturated by an electrically conducting, viscous, incompressible and Newtonian fluid. The Brinkman model is used for momentum equation, and the Boussinesq approximation is invoked. The system is assumed to be bounded by rigid boundaries. The energy theory is implemented to find the global exponential stability region of the considered system. The results are analysed for arbitrary values of modulation frequency and amplitude. The existence of subcritical instability region is confirmed by comparing the obtained result with the known linear result. The vertical magnetic field is found to stabilize the system.Keywords: Brinkman model, energy method, magnetic field, surface temperature modulation
Procedia PDF Downloads 3951243 The Role of Cultural Expectations in Emotion Regulation among Nepali Adolescents
Authors: Martha Berg, Megan Ramaiya, Andi Schmidt, Susanna Sharma, Brandon Kohrt
Abstract:
Nepali adolescents report tension and negative emotion due to perceived expectations of both academic and social achievement. These societal goals, which are internalized through early-life socialization, drive the development of self-regulatory processes such as emotion regulation. Emotion dysregulation is linked with adverse psychological outcomes such as depression, self-harm, and suicide, which are public health concerns for organizations working with Nepali adolescents. This study examined the relation among socialization, internalized cultural goals, and emotion regulation to inform interventions for reducing depression and suicide in this population. Participants included 102 students in grades 7 through 9 in a post-earthquake school setting in rural Kathmandu valley. All participants completed a tablet-based battery of quantitative measures, comprising transculturally adapted assessments of emotion regulation, depression, and self-harm/suicide ideation and behavior. Qualitative measures included two focus groups and semi-structured interviews with 22 students and 3 parents. A notable proportion of the sample reported depression symptoms in the past 2 weeks (68%), lifetime self-harm ideation (28%), and lifetime suicide attempts (13%). Students who lived with their nuclear family reported lower levels of difficulty than those who lived with more distant relatives (z=2.16, p=.03), which suggests a link between family environment and adolescent emotion regulation, potentially mediated by socialization and internalization of cultural goals. These findings call for further research into the aspects of nuclear versus extended family environments that shape the development of emotion regulation.Keywords: adolescent mental health, emotion regulation, Nepal, socialization
Procedia PDF Downloads 2721242 Using Divergent Nozzle with Aerodynamic Lens to Focus Nanoparticles
Authors: Hasan Jumaah Mrayeh, Fue-Sang Lien
Abstract:
ANSYS Fluent will be used to simulate Computational Fluid Dynamics (CFD) for an efficient lens and nozzle design which will be explained in this paper. We have designed and characterized an aerodynamic lens and a divergent nozzle for focusing flow that transmits sub 25 nm particles through the aerodynamic lens. The design of the lens and nozzle has been improved using CFD for particle trajectories. We obtained a case for calculating nanoparticles (25 nm) flowing through the aerodynamic lens and divergent nozzle. Nanoparticles are transported by air, which is pumped into the aerodynamic lens through the nozzle at 1 atmospheric pressure. We have also developed a computational methodology that can determine the exact focus characteristics of aerodynamic lens systems. Particle trajectories were traced using the Lagrange approach. The simulation shows the ability of the aerodynamic lens to focus on 25 nm particles after using a divergent nozzle.Keywords: aerodynamic lens, divergent nozzle, ANSYS Fluent, Lagrange approach
Procedia PDF Downloads 3061241 Blindness and Deafness, the Outcomes of Varicella Zoster Virus Encephalitis in HIV Positive Patient
Authors: Hadiseh Hosamirudsari, Farhad Afsarikordehmahin, Pooria Sekhavatfar
Abstract:
Concomitant cortical blindness and deafness that follow varicella zoster virus (VZV) infection is rare. We describe a case of ophthalmic zoster that caused cortical blindness and deafness after central nervous system (CNS) involvement. A 42-year old, HIV infected woman has developed progressive blurry vision and deafness, 4 weeks after ophthalmic zoster. A physical examination and positive VZV polymerase chain reaction (PCR) of cerebrospinal fluid (CSF) suggested VZV encephalitis. Complication of VZV encephalitis is considered as the cause of blindness and deafness. In neurological deficit patient especially with a history of herpes zoster, VZV infection should be regarded as the responsible agent in inflammatory disorders of nervous system. The immunocompromised state of patient (including HIV) is as important an agent as VZV infection in developing the disease.Keywords: blindness, deafness, hiv, VZV encephalitis
Procedia PDF Downloads 3081240 Physical Planning Strategies for Disaster Mitigation and Preparedness in Coastal Region of Andhra Pradesh, India
Authors: Thimma Reddy Pothireddy, Ramesh Srikonda
Abstract:
India is prone to natural disasters such as Floods, droughts, cyclones, earthquakes and landslides frequently due to its geographical considerations. It has become a persistent phenomenon as observed in last ten decades. The recent survey indicates that about 60% of the landmass is prone to earthquakes of various intensities with reference to Richard scale, over 40 million hectares is prone to floods; about 8% of the total area is prone to cyclones and 68% of the area is vulnerable to drought. Climate change is likely to be perceived through the experience of extreme weather events. There is growing societal concern about climate change, given the potential impacts of associated natural hazards such as cyclones, flooding, earthquakes, landslides etc. The recent natural calamities such as Cyclone Hudhud had crossed the land at Northern cost of AP, Vishakapatanam on 12 Oct’2014 with a wind speed ranging between 175 – 200 kmph and the records show that the tidal waves were reached to the height of 14mts and above; and it alarms us to have critical focus on planning issues so as to find appropriate solutions. The existing condition is effective is in terms of institutional set up along with responsive management mechanism of disaster mitigation but considerations at settlement planning level to allow mitigation operations are not adequate. This paper deals to understand the response to climate change will possibly happen through adaptation to climate hazards and essential to work out an appropriate mechanism and disaster receptive settlement planning for responding to natural (and climate-related) calamities particularly to cyclones and floods. The statistics indicate that 40 million hectares flood prone (5% of area), and 1853 kmts of cyclone prone coastal length in India so it is essential and crucial to have appropriate physical planning considerations to improve preparedness and to operate mitigation measures effectively to minimize the loss and damage. Vijayawada capital region which is susceptible to cyclonic and floods has been studied with respect to trajectory analysis to work out risk vulnerability and to integrated disaster mitigation physical planning considerations.Keywords: meta analysis, vulnerability index, physical planning, trajectories
Procedia PDF Downloads 2491239 Evaluation of Marwit Rod El Leqah Quartz Deposits As A Strategic Source of High Purity Quartz
Authors: Suzan Sami Ibrahim, Mohamed Gad Shahien, Ali Quarny Seliem, Mostafa Ragab Abukhadra
Abstract:
Pegmatite quartz deposits of Marwit Rod El Leqah area classify as medium purity quartz with 99.575 % average SiO2 content and therefore do not match the requirements of high technical applications (99.8 % SiO2 for solar cells, 99.8% SiO2 for electronics). Petrographic field and petrographic investigations reveal that, the reduction of the silica content attributed mainly to impurities of iron oxide, muscovite, rutile, orthoclase, granitic rafts and fluid inclusions. Such impurities resulted in raising Fe2O3, Al2O3, MgO, CaO, K2O and Na2O relative to the silica content. Structural impurities are the main source of trace elements in the quartz samples.Keywords: High purity quartz, High-tech applications, solid impurities, structural impurities
Procedia PDF Downloads 5001238 Effect of Temperature on Corrosion Fatigue Cracking Behavior of Inconel 625 in Steam and Supercritical Water
Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang
Abstract:
Inconel 625 is a nickel-based alloy having outstanding corrosion resistance and developed for use at service temperatures ranging from cryogenic to 980°C. It got a wide range of applications in nuclear, petrochemical, chemical, marine, aeronautical, and aerospace industries. Currently, it is one of the candidate materials to be used as a structural material in ultra-supercritical (USC) power plants. In the high-temperature corrosive medium environment, metallic materials are susceptible to corrosion fatigue (CF). CF is an interaction between cyclic stress and corrosive medium environment that acts on a susceptible material and results in initiation and propagation of cracks. For the application of Inconel 625 as a structural material in USC power plants, CF behavior must be evaluated in steam and supercritical water (SCW) environment. Fatigue crack growth rate (FCGR) curves obtained from CF experiments are required to predict residual life of metallic materials used in power plants. In this study, FCGR tests of Inconel 625 were obtained by using compact tension specimen at 550-650 °C in steam (8 MPa) and SCW (25 MPa). The dissolved oxygen level was kept constant at 8000 ppb for the test conducted in steam and SCW. The tests were performed under sine wave loading waveform, 1 Hz loading frequency, stress ratio of 0.6 and maximum stress intensity factor of 32 MPa√m. Crack growth rate (CGR) was detected by using direct current potential drop technique. Results showed that CGR increased with an increase in temperature in the tested environmental conditions. The mechanism concerning the influence of temperature on FCGR are further discussed.Keywords: corrosion fatigue, crack growth rate, nickel-based alloy, temperature
Procedia PDF Downloads 1311237 J-Integral Method for Assessment of Structural Integrity of a Pressure Vessel
Authors: Karthik K. R, Viswanath V, Asraff A. K
Abstract:
The first stage of a new-generation launch vehicle of ISRO makes use of large pressure vessels made of Aluminium alloy AA2219 to store fuel and oxidizer. These vessels have many weld joints that may contain cracks or crack-like defects during their fabrication. These defects may propagate across the vessel during pressure testing or while in service under the influence of tensile stresses leading to catastrophe. Though ductile materials exhibit significant stable crack growth prior to failure, it is not generally acceptable for an aerospace component. There is a need to predict the initiation of stable crack growth. The structural integrity of the vessel from fracture considerations can be studied by constructing the Failure Assessment Diagram (FAD) that accounts for both brittle fracture and plastic collapse. Critical crack sizes of the pressure vessel may be highly conservative if it is predicted from FAD alone. If the J-R curve for material under consideration is available apriori, the critical crack sizes can be predicted to a certain degree of accuracy. In this paper, a novel approach is proposed to predict the integrity of a weld in a pressure vessel made of AA2219 material. Fracture parameter ‘J-integral’ at the crack front, evaluated through finite element analyses, is used in the new procedure. Based on the simulation of tension tests carried out on SCT specimens by NASA, a cut-off value of J-integral value (J?ᵤₜ_ₒ??) is finalised. For the pressure vessel, J-integral at the crack front is evaluated through FE simulations incorporating different surface cracks at long seam weld in a cylinder and in dome petal welds. The obtained J-integral, at vessel level, is compared with a value of J?ᵤₜ_ₒ??, and the integrity of vessel weld in the presence of the surface crack is firmed up. The advantage of this methodology is that if SCT test data of any metal is available, the critical crack size in hardware fabricated using that material can be predicted to a better level of accuracy.Keywords: FAD, j-integral, fracture, surface crack
Procedia PDF Downloads 1871236 Pressure Surge Analysis for Al Gardabiya Pump Station Phase III of the Man-Made River Project
Authors: Ahmed Bensreti, Mohamed Gouarsha
Abstract:
This paper presents a review of the pressure surge simulations carried out for Phase III of the Man Made River project in Libya with particular emphasis on the transient generated by simultaneous pump trips at Al Gardabiya Pump Station. The omission of the surge vessel check valve and bypass system on the grounds of cost, ease of design, and construction will result in, as expected, increased surge fluctuations as the damping effect in the form was removed. From the hydraulic and control requirements, it is recommended for Al Gardabiya Pump station that the check valve and check valve bypass be included in the final surge vessel design.Keywords: computational fluid dynamics, surge vessel design, transient surge analysis, water pipe hydraulics
Procedia PDF Downloads 741235 Effect of Compaction Method on the Mechanical and Anisotropic Properties of Asphalt Mixtures
Authors: Mai Sirhan, Arieh Sidess
Abstract:
Asphaltic mixture is a heterogeneous material composed of three main components: aggregates; bitumen and air voids. The professional experience and scientific literature categorize asphaltic mixture as a viscoelastic material, whose behavior is determined by temperature and loading rate. Properties characterization of the asphaltic mixture used under the service conditions is done by compacting and testing cylindric asphalt samples in the laboratory. These samples must resemble in a high degree internal structure of the mixture achieved in service, and the mechanical characteristics of the compacted asphalt layer in the pavement. The laboratory samples are usually compacted in temperatures between 140 and 160 degrees Celsius. In this temperature range, the asphalt has a low degree of strength. The laboratory samples are compacted using the dynamic or vibrational compaction methods. In the compaction process, the aggregates tend to align themselves in certain directions that lead to anisotropic behavior of the asphaltic mixture. This issue has been studied in the Strategic Highway Research Program (SHRP) research, that recommended using the gyratory compactor based on the assumption that this method is the best in mimicking the compaction in the service. In Israel, the Netivei Israel company is considering adopting the Gyratory Method as a replacement for the Marshall method used today. Therefore, the compatibility of the Gyratory Method for the use with Israeli asphaltic mixtures should be investigated. In this research, we aimed to examine the impact of the compaction method used on the mechanical characteristics of the asphaltic mixtures and to evaluate the degree of anisotropy in relation to the compaction method. In order to carry out this research, samples have been compacted in the vibratory and gyratory compactors. These samples were cylindrically cored both vertically (compaction wise) and horizontally (perpendicular to compaction direction). These models were tested under dynamic modulus and permanent deformation tests. The comparable results of the tests proved that: (1) specimens compacted by the vibratory compactor had higher dynamic modulus values than the specimens compacted by the gyratory compactor (2) both vibratory and gyratory compacted specimens had anisotropic behavior, especially in high temperatures. Also, the degree of anisotropy is higher in specimens compacted by the gyratory method. (3) Specimens compacted by the vibratory method that were cored vertically had the highest resistance to rutting. On the other hand, specimens compacted by the vibratory method that were cored horizontally had the lowest resistance to rutting. Additionally (4) these differences between the different types of specimens rise mainly due to the different internal arrangement of aggregates resulting from the compaction method. (5) Based on the initial prediction of the performance of the flexible pavement containing an asphalt layer having characteristics based on the results achieved in this research. It can be concluded that there is a significant impact of the compaction method and the degree of anisotropy on the strains that develop in the pavement, and the resistance of the pavement to fatigue and rutting defects.Keywords: anisotropy, asphalt compaction, dynamic modulus, gyratory compactor, mechanical properties, permanent deformation, vibratory compactor
Procedia PDF Downloads 1181234 Effect of Using Baffles Inside Spiral Micromixer
Authors: Delara Soltani, Sajad Alimohammadi, Tim Persoons
Abstract:
Microfluidic technology reveals a new area of research in drug delivery, biomedical diagnostics, and the food and chemical industries. Mixing is an essential part of microfluidic devices. There is a need for fast and homogeneous mixing in microfluidic devices. On the other hand, mixing is difficult to achieve in microfluidic devices because of the size and laminar flow in these devices. In this study, a hybrid passive micromixer of a curved channel with obstacles inside the channel is designed. The computational fluid dynamic method is employed to solve governing equations. The results show that using obstacles can improve mixing efficiency in spiral micromixers. the effects of Reynolds number, number, and position of baffles are investigated. In addition, the effect of baffles on pressure drop is presented. this novel micromixer has the potential to utilize in microfluidic devices.Keywords: CFD, micromixer, microfluidics, spiral, reynolds number
Procedia PDF Downloads 911233 Democratic Action as Insurgency: On Claude Lefort's Concept of the Political Regime
Authors: Lorenzo Buti
Abstract:
This paper investigates the nature of democratic action through a critical reading of Claude Lefort’s notion of the democratic ‘regime’. Lefort provides one of the most innovative accounts of the essential features of a democratic regime. According to him, democracy is a political regime that acknowledges the indeterminacy of a society and stages it as a contestation between competing political actors. As such, democracy provides the symbolic markers of society’s openness towards the future. However, despite their democratic features, the recent decades in late capitalist societies attest to a sense of the future becoming fixed and predetermined. This suggests that Lefort’s conception of democracy harbours a misunderstanding of the character and experience of democratic action. This paper examines this underlying tension in Lefort’s work. It claims that Lefort underestimates how a democratic regime, next to its symbolic function, also takes a materially constituted form with its particular dynamics of power relations. Lefort’s systematic dismissal of this material dimension for democratic action can lead to the contemporary paradoxical situation where democracy’s symbolic markers are upheld (free elections, public debate, dynamic between government and opposition in parliament,…) but the room for political decision-making is constrained due to a myriad of material constraints (e.g., market pressures, institutional inertias). The paper draws out the implications for the notion of democratic action. Contra Lefort, it argues that democratic action necessarily targets the material conditions that impede the capacity for decision-making on the basis of equality and liberty. This analysis shapes our understanding of democratic action in two ways. First, democratic action takes an asymmetrical, insurgent form, as a contestation of material power relations from below. Second, it reveals an ambivalent position vis-à-vis the political regime: democratic action is symbolically made possible by the democratic dispositive, but it contests the constituted form that the democratic regime takes.Keywords: Claude Lefort, democratic action, material constitution, political regime
Procedia PDF Downloads 1411232 Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)
Authors: Biao Sun, Tejas Bhatelia, Vishnu Pareek, Ranjeet Utikar, Moses Tadé
Abstract:
Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology.Keywords: Additive Manufacturing (AM), 3D printing, Computational Fluid Dynamics (CFD, structured packing (SpiroPak)
Procedia PDF Downloads 871231 Thermal and Acoustic Design of Mobile Hydraulic Vehicle Engine Room
Authors: Homin Kim, Hyungjo Byun, Jinyoung Do, Yongil Lee, Hyunho Shin, Seungbae Lee
Abstract:
Engine room of mobile hydraulic vehicle is densely packed with an engine and many hydraulic components mostly generating heat and sound. Though hydraulic oil cooler, ATF cooler, and axle oil cooler etc. are added to vehicle cooling system of mobile vehicle, the overheating may cause downgraded performance and frequent failures. In order to improve thermal and acoustic environment of engine room, the computational approaches by Computational Fluid Dynamics (CFD) and Boundary Element Method (BEM) are used together with necessary modal analysis of belt-driven system. The engine room design layout and process, which satisfies the design objectives of sound power level and temperature levels of radiator water, charged air cooler, transmission and hydraulic oil coolers, is discussed.Keywords: acoustics, CFD, engine room design, mobile hydraulics
Procedia PDF Downloads 3261230 Performance of a Solar Heating System on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume
Abstract:
Climate change and its effects on low external temperatures in winter require great consumption of energy to improve the greenhouse microclimate and increase agricultural production. To reduce the amount of energy consumed, a solar system has been developed to heat an agricultural greenhouse. This system is based on a transfer fluid that will circulate inside the greenhouse through a solar copper coil positioned on the roof of the greenhouse. This thermal energy accumulated during the day will be stored to be released during the night to improve the greenhouse’s microclimate. The use of this solar heating system has resulted in an average increase in the greenhouse’s indoor temperature of 8.3°C compared to the outdoor environment. This improved temperature has created a more favorable climate for crops and has subsequently had a positive effect on their development, quality, and production.Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying
Procedia PDF Downloads 891229 Design and Fabrication of Stiffness Reduced Metallic Locking Compression Plates through Topology Optimization and Additive Manufacturing
Authors: Abdulsalam A. Al-Tamimi, Chris Peach, Paulo Rui Fernandes, Paulo J. Bartolo
Abstract:
Bone fixation implants currently used to treat traumatic fractured bones and to promote fracture healing are built with biocompatible metallic materials such as stainless steel, cobalt chromium and titanium and its alloys (e.g., CoCrMo and Ti6Al4V). The noticeable stiffness mismatch between current metallic implants and host bone associates with negative outcomes such as stress shielding which causes bone loss and implant loosening leading to deficient fracture treatment. This paper, part of a major research program to design the next generation of bone fixation implants, describes the combined use of three-dimensional (3D) topology optimization (TO) and additive manufacturing powder bed technology (Electron Beam Melting) to redesign and fabricate the plates based on the current standard one (i.e., locking compression plate). Topology optimization is applied with an objective function to maximize the stiffness and constraint by volume reductions (i.e., 25-75%) in order to obtain optimized implant designs with reduced stress shielding phenomenon, under different boundary conditions (i.e., tension, bending, torsion and combined loads). The stiffness of the original and optimised plates are assessed through a finite-element study. The TO results showed actual reduction in the stiffness for most of the plates due to the critical values of volume reduction. Additionally, the optimized plates fabricated using powder bed techniques proved that the integration between the TO and additive manufacturing presents the capability of producing stiff reduced plates with acceptable tolerances.Keywords: additive manufacturing, locking compression plate, finite element, topology optimization
Procedia PDF Downloads 1991228 Effect of Pre-Plasma Potential on Laser Ion Acceleration
Authors: Djemai Bara, Mohamed Faouzi Mahboub, Djamila Bennaceur-Doumaz
Abstract:
In this work, the role of the preformed plasma created on the front face of a target, irradiated by a high intensity short pulse laser, in the framework of ion acceleration process, modeled by Target Normal Sheath Acceleration (TNSA) mechanism, is studied. This plasma is composed of cold ions governed by fluid equations and non-thermal & trapped with densities represented by a "Cairns-Gurevich" equation. The self-similar solution of the equations shows that electronic trapping and the presence of non-thermal electrons in the pre-plasma are both responsible in ion acceleration as long as the proportion of energetic electrons is not too high. In the case where the majority of electrons are energetic, the electrons are accelerated directly by the ponderomotive force of the laser without the intermediate of an accelerating plasma wave.Keywords: Cairns-Gurevich Equation, ion acceleration, plasma expansion, pre-plasma
Procedia PDF Downloads 1321227 Heat Transfer Characteristics of Film Condensation
Authors: M. Mosaad, J. H. Almutairi, A. S. Almutairi
Abstract:
In this paper, saturated-vapour film condensation on a vertical wall with the backside cooled by forced convection is analyzed as a conjugate problem. In the analysis, the temperature and heat flux at the wall sides are assumed unknown and determined from the solution. The model is presented in a dimensionless form to take a broad view of the solution. The dimensionless variables controlling this coupled heat transfer process are discovered from the analysis. These variables explain the relative impact of the interactive heat transfer mechanisms of forced convection and film condensation. The study shows that the conjugate treatment of film condensation process yields results different from that predicted by a non-conjugate Nusselt-type solution, wherein the effect of the cooling fluid is neglected.Keywords: film condensation, forced convection, coupled heat transfer, analytical modelling
Procedia PDF Downloads 3211226 Research on the Feasibility of Evaluating Low-Temperature Cracking Performance of Asphalt Mixture Using Fracture Energy
Authors: Tao Yang, Yongli Zhao
Abstract:
Low-temperature cracking is one of the major challenges for asphalt pavement in the cold region. Fracture energy could determine from various test methods, which is a commonly used parameter to evaluate the low-temperature cracking resistance of asphalt mixture. However, the feasibility of evaluating the low-temperature cracking performance of asphalt mixture using fracture energy is not investigated comprehensively. This paper aims to verify whether fracture energy is an appropriate parameter to evaluate the low-temperature cracking performance. To achieve this goal, this paper compared the test results of thermal stress restrained specimen test (TSRST) and semi-circular bending test (SCB) of asphalt mixture with different types of aggregate, TSRST and indirect tensile test (IDT) of asphalt mixture with different additives, and single-edge notched beam test (SENB) and TSRST of asphalt mixture with different asphalt. Finally, the correlation between in-suit cracking performance and fracture energy was surveyed. The experimental results showed the evaluation result of critical cracking temperature and fracture energy are not always consistent; the in-suit cracking performance is also not correlated well with fracture energy. These results indicated that it is not feasible to evaluate low-temperature performance by fracture energy. Then, the composition of fracture energy of TSRST, SCB, disk-shaped compact tension test (DCT), three-point bending test (3PB) and IDT was analyzed. The result showed: the area of thermal stress versus temperature curve is the multiple of fracture energy and could be used to represent fracture energy of TSRST, as the multiple is nearly equal among different asphalt mixtures for a specific specimen; the fracture energy, determined from TSRST, SCB, DCT, 3PB, SENB and IDT, is mainly the surface energy that forms the fracture face; fracture energy is inappropriate to evaluate the low-temperature cracking performance of asphalt mixture, as the relaxation/viscous performance is not considered; if the fracture energy was used, it is recommended to combine this parameter with an index characterizing the relaxation or creep performance of asphalt mixture.Keywords: asphalt pavement, cold region, critical cracking temperature, fracture energy, low-temperature cracking
Procedia PDF Downloads 1881225 Impact of Civil Engineering and Economic Growth in the Sustainability of the Environment: Case of Albania
Authors: Rigers Dodaj
Abstract:
Nowadays, the environment is a critical goal for civil engineers, human activity, construction projects, economic growth, and whole national development. Regarding the development of Albania's economy, people's living standards are increasing, and the requirements for the living environment are also increasing. Under these circumstances, environmental protection and sustainability this is the critical issue. The rising industrialization, urbanization, and energy demand affect the environment by emission of carbon dioxide gas (CO2), a significant parameter known to impact air pollution directly. Consequently, many governments and international organizations conducted policies and regulations to address environmental degradation in the pursuit of economic development, for instance in Albania, the CO2 emission calculated in metric tons per capita has increased by 23% in the last 20 years. This paper analyzes the importance of civil engineering and economic growth in the sustainability of the environment focusing on CO2 emission. The analyzed data are time series 2001 - 2020 (with annual frequency), based on official publications of the World Bank. The statistical approach with vector error correction model and time series forecasting model are used to perform the parameter’s estimations and long-run equilibrium. The research in this paper adds a new perspective to the evaluation of a sustainable environment in the context of carbon emission reduction. Also, it provides reference and technical support for the government toward green and sustainable environmental policies. In the context of low-carbon development, effectively improving carbon emission efficiency is an inevitable requirement for achieving sustainable economic and environmental protection. Also, the study reveals that civil engineering development projects impact greatly the environment in the long run, especially in areas of flooding, noise pollution, water pollution, erosion, ecological disorder, natural hazards, etc. The potential for reducing industrial carbon emissions in recent years indicates that reduction is becoming more difficult, it needs another economic growth policy and more civil engineering development, by improving the level of industrialization and promoting technological innovation in industrial low-carbonization.Keywords: CO₂ emission, civil engineering, economic growth, environmental sustainability
Procedia PDF Downloads 851224 Numerical Analysis of Swirling Chamber Using Improved Delayed Detached Eddy Simulation Turbulence Model
Authors: Hamad M. Alhajeri
Abstract:
Swirling chamber is a promising cooling method for heavily thermally loaded parts like turbine blades due to the additional circumferential velocity and therefore improved turbulent mixing of the fluid. This paper investigates numerically the effect of turbulence model on the heat convection of the swirling chamber. Grid independence analysis is conducted to obtain the proper grid dimension. The work validated with experimental data available in the literature. Flow analysis using improved delayed detached eddy simulation turbulence model and Reynolds averaged Navier-Stokes k-ɛ turbulence model is carried. The flow characteristic near the exit is reformed when improved delayed detached eddy simulation model used.Keywords: gas turbine, Nusselt number, flow characteristics, heat transfer
Procedia PDF Downloads 202