Search results for: liquid organic fertilizer
2294 A Universal Hybrid Adsorbent Based on Chitosan for Water Treatment
Authors: Sandrine Delpeux-Ouldriane, Min Cai, Laurent Duclaux, Laurence Reinert, Fabrice Muller
Abstract:
A novel hybrid adsorbent, based on chitosan biopolymer, clays and activated carbon was prepared. Hybrid chitosan beads containing dispersed clays and activated carbons were prepared by precipitation in basic medium. Such a composite material is still very porous and presents a wide adsorption spectrum. The obtained composite adsorbent is able to handle all the pollution types including heavy metals, polar and hydrophobic organic molecules and nitrates. It could find a place of choice in tertiary water treatment processes or for an ‘at source’ treatment concerning chemical or pharmaceutical industries.Keywords: adsorption, chitosan, clay mineral, activated carbon
Procedia PDF Downloads 4002293 Factors Controlling Marine Shale Porosity: A Case Study between Lower Cambrian and Lower Silurian of Upper Yangtze Area, South China
Authors: Xin Li, Zhenxue Jiang, Zhuo Li
Abstract:
Generally, shale gas is trapped within shale systems with low porosity and ultralow permeability as free and adsorbing states. Its production is controlled by properties, in terms of occurrence phases, gas contents, and percolation characteristics. These properties are all influenced by porous features. In this paper, porosity differences of marine shales were explored between Lower Cambrian shale and Lower Silurian shale of Sichuan Basin, South China. Both the two shales were marine shales with abundant oil-prone kerogen and rich siliceous minerals. Whereas Lower Cambrian shale (3.56% Ro) possessed a higher thermal degree than that of Lower Silurian shale (2.31% Ro). Samples were measured by a combination of organic-chemistry geology measurement, organic matter (OM) isolation, X-ray diffraction (XRD), N2 adsorption, and focused ion beam milling and scanning electron microscopy (FIB-SEM). Lower Cambrian shale presented relatively low pore properties, with averaging 0.008ml/g pore volume (PV), averaging 7.99m²/g pore surface area (PSA) and averaging 5.94nm average pore diameter (APD). Lower Silurian shale showed as relatively high pore properties, with averaging 0.015ml/g PV, averaging 10.53m²/g PSA and averaging 18.60nm APD. Additionally, fractal analysis indicated that the two shales presented discrepant pore morphologies, mainly caused by differences in the combination of pore types between the two shales. More specifically, OM-hosted pores with pin-hole shape and dissolved pores with dead-end openings were the main types in Lower Cambrian shale, while OM-hosted pore with a cellular structure was the main type in Lower Silurian shale. Moreover, porous characteristics of isolated OM suggested that OM of Lower Silurian shale was more capable than that of Lower Cambrian shale in the aspect of pore contribution. PV of isolated OM in Lower Silurian shale was almost 6.6 times higher than that in Lower Cambrian shale, and PSA of isolated OM in Lower Silurian shale was almost 4.3 times higher than that in Lower Cambrian shale. However, no apparent differences existed among samples with various matrix compositions. At late diagenetic or metamorphic epoch, extensive diagenesis overprints the effects of minerals on pore properties and OM plays the dominant role in pore developments. Hence, differences of porous features between the two marine shales highlight the effect of diagenetic degree on OM-hosted pore development. Consequently, distinctive pore characteristics may be caused by the different degrees of diagenetic evolution, even with similar matrix basics.Keywords: marine shale, lower Cambrian, lower Silurian, om isolation, pore properties, om-hosted pore
Procedia PDF Downloads 1342292 Assessment of Bisphenol A and 17 α-Ethinyl Estradiol Bioavailability in Soils Treated with Biosolids
Authors: I. Ahumada, L. Ascar, C. Pedraza, J. Montecino
Abstract:
It has been found that the addition of biosolids to soil is beneficial to soil health, enriching soil with essential nutrient elements. Although this sludge has properties that allow for the improvement of the physical features and productivity of agricultural and forest soils and the recovery of degraded soils, they also contain trace elements, organic trace and pathogens that can cause damage to the environment. The application of these biosolids to land without the total reclamation and the treated wastewater can transfer these compounds into terrestrial and aquatic environments, giving rise to potential accumulation in plants. The general aim of this study was to evaluate the bioavailability of bisphenol A (BPA), and 17 α-ethynyl estradiol (EE2) in a soil-biosolid system using wheat (Triticum aestivum) plant assays and a predictive extraction method using a solution of hydroxypropyl-β-cyclodextrin (HPCD) to determine if it is a reliable surrogate for this bioassay. Two soils were obtained from the central region of Chile (Lo Prado and Chicauma). Biosolids were obtained from a regional wastewater treatment plant. The soils were amended with biosolids at 90 Mg ha-1. Soils treated with biosolids, spiked with 10 mgkg-1 of the EE2 and 15 mgkg-1 and 30 mgkg-1of BPA were also included. The BPA, and EE2 concentration were determined in biosolids, soils and plant samples through ultrasound assisted extraction, solid phase extraction (SPE) and gas chromatography coupled to mass spectrometry determination (GC/MS). The bioavailable fraction found of each one of soils cultivated with wheat plants was compared with results obtained through a cyclodextrin biosimulator method. The total concentration found in biosolid from a treatment plant was 0.150 ± 0.064 mgkg-1 and 12.8±2.9 mgkg-1 of EE2 and BPA respectively. BPA and EE2 bioavailability is affected by the organic matter content and the physical and chemical properties of the soil. The bioavailability response of both compounds in the two soils varied with the EE2 and BPA concentration. It was observed in the case of EE2, the bioavailability in wheat plant crops contained higher concentrations in the roots than in the shoots. The concentration of EE2 increased with increasing biosolids rate. On the other hand, for BPA, a higher concentration was found in the shoot than the roots of the plants. The predictive capability the HPCD extraction was assessed using a simple linear correlation test, for both compounds in wheat plants. The correlation coefficients for the EE2 obtained from the HPCD extraction with those obtained from the wheat plants were r= 0.99 and p-value ≤ 0.05. On the other hand, in the case of BPA a correlation was not found. Therefore, the methodology was validated with respect to wheat plants bioassays, only in the EE2 case. Acknowledgments: The authors thank FONDECYT 1150502.Keywords: emerging compounds, bioavailability, biosolids, endocrine disruptors
Procedia PDF Downloads 1452291 Study of Natural Convection in Storage Tank of LNG
Authors: Hariti Rafika, Fekih Malika, Saighi Mohamed
Abstract:
Heat transfer by natural convection in storage tanks for LNG is extremely related to heat gains through the walls with thermal insulation is not perfectly efficient. In this paper, we present the study of natural convection in the unsteady regime for natural gas in aware phase using the fluent software. The gas is just on the surface of the liquid phase. The CFD numerical method used to solve the system of equations is based on the finite volume method. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature.Keywords: numerical simulation, natural convection, heat gains, storage tank, liquefied natural gas
Procedia PDF Downloads 4372290 A Novel Comparison Scheme for Thermal Conductivity Enhancement of Heat Transfer
Authors: Islam Tarek, Moataz Soliman
Abstract:
With the amazing development of nanoscience’s and the discovery of the unique properties of nanometric materials, the ideas of scientists and researchers headed to take advantage of this progress in various fields, and one of the most important of these areas is the field of heat transfer and benefit from it in saving energy used for heat transfer, so nanometric materials were used to improve the properties of heat transfer fluids and increase the efficiency of the liquid. In this paper, we will compare two types of heat transfer fluid, one industrial type (the base fluid is a mix of ethylene glycol and deionized water ) and another natural oils(the base fluid is a mix of jatropha oil and expired olive oil), explaining the method of preparing each of them, starting from the method of preparing CNT, collecting and sorting jatropha seeds, and the most appropriate method for extracting oil from them, and characterization the both of two fluids and when to use both.Keywords: nanoscience, heat transfer, thermal conductivity, jatropha oil
Procedia PDF Downloads 2172289 Methodology of Geometry Simplification for Conjugate Heat Transfer of Electrical Rotating Machines Using Computational Fluid Dynamics
Authors: Sachin Aggarwal, Sarah Kassinger, Nicholas Hoffman
Abstract:
Geometry simplification is a key step in performing conjugate heat transfer analysis using CFD. This paper proposes a standard methodology for the geometry simplification of rotating machines, such as electrical generators and electrical motors (both air and liquid-cooled). These machines are extensively deployed throughout the aerospace and automotive industries, where optimization of weight, volume, and performance is paramount -especially given the current global transition to renewable energy sources and vehicle hybridization and electrification. Conjugate heat transfer analysis is an essential step in optimizing their complex design. This methodology will help in reducing convergence issues due to poor mesh quality, thus decreasing computational cost and overall analysis time.Keywords: CFD, electrical machines, Geometry simplification, heat transfer
Procedia PDF Downloads 1322288 Overview on the Failure in the Multiphase Mechanical Seal in Centrifugal Pumps
Authors: Aydin Azizi, Ahmed Al. Azizi
Abstract:
Mechanical seals are essential components in centrifugal pumps since they help in controlling leaking out of the liquid that is pumped under pressure. Unlike the common types of packaging, mechanical seals are highly efficient and they reduce leakage by a great extent. However, all multiphase mechanical seals leak and they are subject to failure. Some of the factors that have been recognized to their failure include excessive heating, open seal faces, as well as environment related factors that trigger failure of the materials used to manufacture seals. The proposed research study will explore the failure of multiphase mechanical seal in centrifugal pumps. The objective of the study includes how to reduce the failure in multiphase mechanical seals and to make them more efficient.Keywords: mechanical seals, centrifugal pumps, multi phase failure, excessive heating
Procedia PDF Downloads 3632287 Sensory Characteristics of White Chocolate Enriched with Encapsulated Raspberry Juice
Authors: Ivana Loncarevic, Biljana Pajin, Jovana Petrovic, Danica Zaric, Vesna Tumbas Saponjac, Aleksandar Fistes
Abstract:
Chocolate is a food that activates pleasure centers in the human brain. In comparison to black and milk chocolate, white chocolate does not contain fat-free cocoa solids and thus lacks bioactive components. The aim of this study was to examine the sensory characteristics of enriched white chocolate with the addition of 10% of raspberry juice encapsulated in maltodextrins (denoted as encapsulate). Chocolate is primarily intended for enjoyment, and therefore, the sensory expectation is a critical factor for consumers when selecting a new type of chocolate. Consumer acceptance of chocolate depends primarily on the appearance and taste, but also very much on the mouthfeel, which mainly depends on the particle size of chocolate. Chocolate samples were evaluated by a panel of 8 trained panelists, food technologists, trained according to ISO 8586 (2012). Panelists developed the list of attributes to be used in this study: intensity of red color (light to dark); glow on the surface (mat to shiny); texture on snap (appearance of cavities or holes on the snap surface that are seen - even to gritty); hardness (hardness felt during the first bite of chocolate sample in half by incisors - soft to hard); melting (the time needed to convert solid chocolate into a liquid state – slowly to quickly); smoothness (perception of evenness of chocolate during melting - very even to very granular); fruitiness (impression of fruity taste - light fruity notes to distinct fruity notes); sweetness (organoleptic characteristic of pure substance or mixture giving sweet taste - lightly sweet to very sweet). The chocolate evaluation was carried out 24 h after sample preparation in the sensory laboratory, in partitioned booths, which were illuminated with fluorescent lights (ISO 8589, 2007). Samples were served in white plastic plates labeled with three-digit codes from a random number table. Panelist scored the perceived intensity of each attribute using a 7-point scale (1 = the least intensity and 7 = the most intensity) (ISO 4121, 2002). The addition of 10% of encapsulate had a big influence on chocolate color, where enriched chocolate got a nice reddish color. At the same time, the enriched chocolate sample had less intensity of gloss on the surface. The panelists noticed that addition of encapsulate reduced the time needed to convert solid chocolate into a liquid state, increasing its hardness. The addition of encapsulate had a significant impact on chocolate flavor. It reduced the sweetness of white chocolate and contributed to the fruity raspberry flavor.Keywords: white chocolate, encapsulated raspberry juice, color, sensory characteristics
Procedia PDF Downloads 1602286 ANFIS Based Technique to Estimate Remnant Life of Power Transformer by Predicting Furan Contents
Authors: Priyesh Kumar Pandey, Zakir Husain, R. K. Jarial
Abstract:
Condition monitoring and diagnostic is important for testing of power transformer in order to estimate the remnant life. Concentration of furan content in transformer oil can be a promising indirect measurement of the aging of transformer insulation. The oil gets contaminated mainly due to ageing. The present paper introduces adaptive neuro fuzzy technique to correlate furanic compounds obtained by high performance liquid chromatography (HPLC) test and remnant life of the power transformer. The results are obtained by conducting HPLC test at TIFAC-CORE lab, NIT Hamirpur on thirteen power transformer oil samples taken from Himachal State Electricity Board, India.Keywords: adaptive neuro fuzzy technique, furan compounds, remnant life, transformer oil
Procedia PDF Downloads 4642285 Microstructural Characterization of Bitumen/Montmorillonite/Isocyanate Composites by Atomic Force Microscopy
Authors: Francisco J. Ortega, Claudia Roman, Moisés García-Morales, Francisco J. Navarro
Abstract:
Asphaltic bitumen has been largely used in both industrial and civil engineering, mostly in pavement construction and roofing membrane manufacture. However, bitumen as such is greatly susceptible to temperature variations, and dramatically changes its in-service behavior from a viscoelastic liquid, at medium-high temperatures, to a brittle solid at low temperatures. Bitumen modification prevents these problems and imparts improved performance. Isocyanates like polymeric MDI (mixture of 4,4′-diphenylmethane di-isocyanate, 2,4’ and 2,2’ isomers, and higher homologues) have shown to remarkably enhance bitumen properties at the highest in-service temperatures expected. This comes from the reaction between the –NCO pendant groups of the oligomer and the most polar groups of asphaltenes and resins in bitumen. In addition, oxygen diffusion and/or UV radiation may provoke bitumen hardening and ageing. With the purpose of minimizing these effects, nano-layered-silicates (nanoclays) are increasingly being added to bitumen formulations. Montmorillonites, a type of naturally occurring mineral, may produce a nanometer scale dispersion which improves bitumen thermal, mechanical and barrier properties. In order to increase their lipophilicity, these nanoclays are normally treated so that organic cations substitute the inorganic cations located in their intergallery spacing. In the present work, the combined effect of polymeric MDI and the commercial montmorillonite Cloisite® 20A was evaluated. A selected bitumen with penetration within the range 160/220 was modified with 10 wt.% Cloisite® 20A and 2 wt.% polymeric MDI, and the resulting ternary composites were characterized by linear rheology, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The rheological tests evidenced a notable solid-like behavior at the highest temperatures studied when bitumen was just loaded with 10 wt.% Cloisite® 20A and high-shear blended for 20 minutes. However, if polymeric MDI was involved, the sequence of addition exerted a decisive control on the linear rheology of the final ternary composites. Hence, in bitumen/Cloisite® 20A/polymeric MDI formulations, the previous solid-like behavior disappeared. By contrast, an inversion in the order of addition (bitumen/polymeric MDI/ Cloisite® 20A) enhanced further the solid-like behavior imparted by the nanoclay. In order to gain a better understanding of the factors that govern the linear rheology of these ternary composites, a morphological and microstructural characterization based on XRD and AFM was conducted. XRD demonstrated the existence of clay stacks intercalated by bitumen molecules to some degree. However, the XRD technique cannot provide detailed information on the extent of nanoclay delamination, unless the entire fraction has effectively been fully delaminated (situation in which no peak is observed). Furthermore, XRD was unable to provide precise knowledge neither about the spatial distribution of the intercalated/exfoliated platelets nor about the presence of other structures at larger length scales. In contrast, AFM proved its power at providing conclusive information on the morphology of the composites at the nanometer scale and at revealing the structural modification that yielded the rheological properties observed. It was concluded that high-shear blending brought about a nanoclay-reinforced network. As for the bitumen/Cloisite® 20A/polymeric MDI formulations, the solid-like behavior was destroyed as a result of the agglomeration of the nanoclay platelets promoted by chemical reactions.Keywords: Atomic Force Microscopy, bitumen, composite, isocyanate, montmorillonite.
Procedia PDF Downloads 2612284 An Integrated Approach to Handle Sour Gas Transportation Problems and Pipeline Failures
Authors: Venkata Madhusudana Rao Kapavarapu
Abstract:
The Intermediate Slug Catcher (ISC) facility was built to process nominally 234 MSCFD of export gas from the booster station on a day-to-day basis and to receive liquid slugs up to 1600 m³ (10,000 BBLS) in volume when the incoming 24” gas pipelines are pigged following upsets or production of non-dew-pointed gas from gathering centers. The maximum slug sizes expected are 812 m³ (5100 BBLS) in winter and 542 m³ (3400 BBLS) in summer after operating for a month or more at 100 MMSCFD of wet gas, being 60 MMSCFD of treated gas from the booster station, combined with 40 MMSCFD of untreated gas from gathering center. The water content is approximately 60% but may be higher if the line is not pigged for an extended period, owing to the relative volatility of the condensate compared to water. In addition to its primary function as a slug catcher, the ISC facility will receive pigged liquids from the upstream and downstream segments of the 14” condensate pipeline, returned liquids from the AGRP, pigged through the 8” pipeline, and blown-down fluids from the 14” condensate pipeline prior to maintenance. These fluids will be received in the condensate flash vessel or the condensate separator, depending on the specific operation, for the separation of water and condensate and settlement of solids scraped from the pipelines. Condensate meeting the colour and 200 ppm water specifications will be dispatched to the AGRP through the 14” pipeline, while off-spec material will be returned to BS-171 via the existing 10” condensate pipeline. When they are not in operation, the existing 24” export gas pipeline and the 10” condensate pipeline will be maintained under export gas pressure, ready for operation. The gas manifold area contains the interconnecting piping and valves needed to align the slug catcher with either of the 24” export gas pipelines from the booster station and to direct the gas to the downstream segment of either of these pipelines. The manifold enables the slug catcher to be bypassed if it needs to be maintained or if through-pigging of the gas pipelines is to be performed. All gas, whether bypassing the slug catcher or returning to the gas pipelines from it, passes through black powder filters to reduce the level of particulates in the stream. These items are connected to the closed drain vessel to drain the liquid collected. Condensate from the booster station is transported to AGRP through 14” condensate pipeline. The existing 10” condensate pipeline will be used as a standby and for utility functions such as returning condensate from AGRP to the ISC or booster station or for transporting off-spec fluids from the ISC back to booster station. The manifold contains block valves that allow the two condensate export lines to be segmented at the ISC, thus facilitating bi-directional flow independently in the upstream and downstream segments, which ensures complete pipeline integrity and facility integrity. Pipeline failures will be attended to with the latest technologies by remote techno plug techniques, and repair activities will be carried out as needed. Pipeline integrity will be evaluated with ili pigging to estimate the pipeline conditions.Keywords: integrity, oil & gas, innovation, new technology
Procedia PDF Downloads 722283 Efficiency Enhancement of Blue OLED by Incorporating Ag Nanoplate Layers
Authors: So-Jeong Kim, Nak-Kwan Chung, Jintae Kim, Juyoung Yun
Abstract:
The metal nanoplates are potentially used for electroluminescence enhancement of OLEDs owing to the localized surface plasmon resonance. In our study, enhanced electroluminescence in blue organic light-emitting diodes is demonstrated by incorporating silver nanoplates into poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid. To have surface plasmon resonance absorption peak matching with photoluminescent (PL) peak of blue, Ag nanoplates with triangular shape are used in this study. Finally, about 30 % enhancement in electroluminescence intensity and current efficiency for blue emission devices is obtained via Ag nanoplates.Keywords: efficiency enhancement, nanoplate, OLED, surface plasmon resonance
Procedia PDF Downloads 3432282 Pilot Scale Deproteinization Study on Fish Scale Using Response Surface Methodology
Authors: Fatima Bellali, Mariem Kharroubi
Abstract:
Fish scale wastes are one of the main sources of production of value-added products such as collagen. The main aim of this study is to investigate the optimization conditions of the sardine scale deproteinization using response surface methodology (RSM) on a pilot scale. In order to look for the optimal conditions, a Box–Behnken-based design of experiment (DOE) method was carried out. The model predicted values of product coal ash content were in good agreement with the experiment values (R2 = 0.9813). Finally, model-based optimization was carried out to identify the operating parameters (reaction time=4h and the solid-liquid ratio= 1/10) and to obtain the lowest collagen content.Keywords: pilot scale, Plackett and Burman design, fish waste, deproteinization
Procedia PDF Downloads 1602281 Nuclear Power Plant Radioactive Effluent Discharge Management in China
Authors: Jie Yang, Qifu Cheng, Yafang Liu, Zhijie Gu
Abstract:
Controlled emissions of effluent from nuclear power plants are an important means of ensuring environmental safety. In order to fully grasp the actual discharge level of nuclear power plant in China's nuclear power plant in the pressurized water reactor and heavy water reactor, it will use the global average nuclear power plant effluent discharge as a reference to the standard analysis of China's nuclear power plant environmental discharge status. The results show that the average normalized emission of liquid tritium in PWR nuclear power plants in China is slightly higher than the global average value, and the other nuclides emissions are lower than the global average values.Keywords: radioactive effluent, HWR, PWR, nuclear power plant
Procedia PDF Downloads 2432280 Towards a Non-Cohesive Self Metamodernist Literature as Case Study
Authors: Ali Oublal
Abstract:
If any period in history seems appropriate for the study of identity, it is a period of greater mobility; the 21st century. Margaret Wetherill (2009) is thus right while asking who we can be in this age. New biographies of people, their trajectories and new locations appear on the ground; how people do make sense of the self becomes the central question not only for social scientists, and cultural theorists but also for literary critics. New-fangled technologies have resulted in the substitution of stable identities by multiple, fragmented and more uncertain identities. A liquid sense of the self as well as unstable and dynamic forms of life does not fail to inspire novelists who have given robust sense of identities attributed to their characters. The following account comes to snapshot features of identity as being presented by meta-modernist novels: the sympathizer, sisters and a girl is a half formed thing. It is a stance that refutes the claim of Elliott‘s who still adheres the stable state of identity in meta-modernist age while reconciling the two paradigms modernity and postmodernity.Keywords: identity, metamodernism, fragmantation, stability, literature
Procedia PDF Downloads 1092279 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization
Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder
Abstract:
In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening
Procedia PDF Downloads 3012278 Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant
Authors: M. Wigwe, J. G Akpa, E. N Wami
Abstract:
Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures.Keywords: separations, absorption, simulation, dehydration, water content, triethylene glycol
Procedia PDF Downloads 4992277 Fuelwood Heating, Felling, Energy Renewing in Total Fueling of Fuelwood, Renewable Technologies
Authors: Adeiza Matthew, Oluwamishola Abubakar
Abstract:
In conclusion, Fuelwood is a traditional and renewable source of energy that can have both positive and negative impacts. Adopting sustainable practices for its collection, transportation, and use and investing in renewable technologies can help mitigate the negative effects and provide a clean and reliable source of energy, improve living standards and support economic development. For example, solar energy can be used to generate electricity, heat homes and water, and can even be used for cooking. Wind energy can be used to generate electricity, and geothermal energy can be used for heating and cooling. Biogas can be produced from waste products such as animal manure, sewage, and organic kitchen waste and can be used for cooking and lighting.Keywords: calorific, BTU, wood moisture content, density of wood
Procedia PDF Downloads 1072276 Comparative Analysis of Climate Mitigation Strategies Adopted by Farmers of Pakistan and the USA
Authors: Gulfam Hasan, Ijaz Ashraf, Saleem Ashraf, Muhammad Rafay Muzammil, Salman Asghar, Shafiq-Ur-Rehman Zia
Abstract:
The word “climate change” has become the most popular term when anyone observes any uncertain climate variation in their respective region. Asian countries are more prone to the impact of this phenomenon, and Pakistan is the leading affected country. Last few years, governments all over the world have been trying to cater to this issue for the best entrust of their population, especially agriculture. Now the farmers in Pakistan are fully aware of the term “climate change” and are more concerned about its solutions. On the other hand, developed countries like the USA are setting a benchmark for developing countries in every sphere of life. Based on cultural and other variations, the research was carried out to identify the behavior of farmers regarding the same issue. Cross-sectional survey research was designed for an in-depth study of relevant research questions. Face-to-face interviews were conducted in Pakistan, while virtual and face-to-face interviews were conducted in the Indiana State of the USA. The results of the present study and the responses of farmers were very interesting. The common climate change mitigation strategies suggested by farmers of both countries were less use of motor vehicles (replacement with bicycles in the circle of 10 Km), less dependency on chemical fertilizers (increased use of Manure, Bio-fertilizer, Compost), and plantation of the tree. The difference of opinion was in less government interest, lack of farmers’ education, political instability (views of Pakistani farmers), awareness of local communities, self-satisfaction, and economic disparities (views of USA farmers). Based on the given evidence, it was recommended that there is a dire need to address the climate change issue all over the world without discrimination of race, color, region, or religion. Because it will affect not only agriculture but also the real effect will be on HUMANITY.Keywords: climate change, mitigation strategies, forests, biodiversity
Procedia PDF Downloads 1252275 Carbon Dioxide Capture and Utilization by Using Seawater-Based Industrial Wastewater and Alkanolamine Absorbents
Authors: Dongwoo Kang, Yunsung Yoo, Injun Kim, Jongin Lee, Jinwon Park
Abstract:
Since industrial revolution, energy usage by human-beings has been drastically increased resulting in the enormous emissions of carbon dioxide into the atmosphere. High concentration of carbon dioxide is well recognized as the main reason for the climate change by breaking the heat equilibrium of the earth. In order to decrease the amount of carbon dioxide emission, lots of technologies have been developed. One of the methods is to capture carbon dioxide after combustion process using liquid type absorbents. However, for some nations, captured carbon dioxide cannot be treated and stored properly due to their geological structures. Also, captured carbon dioxide can be leaked out when crust activities are active. Hence, the method to convert carbon dioxide as stable and useful products were developed. It is usually called CCU, that is, Carbon Capture and Utilization. There are several ways to convert carbon dioxide into useful substances. For example, carbon dioxide can be converted and used as fuels such as diesel, plastics, and polymers. However, these types of technologies require lots of energy to make stable carbon dioxide into a reactive one. Hence, converting it into metal carbonates salts have been studied widely. When carbon dioxide is captured by alkanolamine-based liquid absorbents, it exists as ionic forms such as carbonate, carbamate, and bicarbonate. When adequate metal ions are added, metal carbonate salt can be produced by ionic reaction with fast reaction kinetics. However, finding metal sources can be one of the problems for this method to be commercialized. If natural resources such as calcium oxide were used to supply calcium ions, it is not thought to have the economic feasibility to use natural resources to treat carbon dioxide. In this research, high concentrated industrial wastewater produced from refined salt production facility have been used as metal supplying source, especially for calcium cations. To ensure purity of final products, calcium ions were selectively separated in the form of gypsum dihydrate. After that, carbon dioxide is captured using alkanolamine-based absorbents making carbon dioxide into reactive ionic form. And then, high purity calcium carbonate salt was produced. The existence of calcium carbonate was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) images. Also, carbon dioxide loading curves for absorption, conversion, and desorption were provided. Also, in order to investigate the possibility of the absorbent reuse, reabsorption experiments were performed either. Produced calcium carbonate as final products is seemed to have potential to be used in various industrial fields including cement and paper making industries and pharmaceutical engineering fields.Keywords: alkanolamine, calcium carbonate, climate change, seawater, industrial wastewater
Procedia PDF Downloads 1852274 Spectrophotometric Determination of 5-Aminosalicylic Acid in Pharmaceutical Samples
Authors: Chand Pasha
Abstract:
A Simple, accurate and precise spectrophotometric method for the quantitative analysis of determination of 5-aminosalicylic acid is described. This method is based on the reaction of 5-aminosalicylic acid with nitrite in acid medium to form diazonium ion, which is coupled with acetylacetone in basic medium to form azo dyes, which shows absorption maxima at 470 nm. The method obeys Beer’s law in the concentration range of 0.5-11.2 gml-1 of 5-aminosalicylic acid with acetylacetone. The molar absorptivity and Sandell’s sensitivity of 5-aminosalicylic acid -acetylacetone azo dye is 2.672 ×104 lmol-1cm-1, 5.731 × 10-3 gcm-2 respectively. The dye formed is stable for 10 hrs. The optimum reaction conditions and other analytical parameters are evaluated. Interference due to foreign organic compounds have been investigated. The method has been successfully applied to the determination of 5-aminosalicylic acid in pharmaceutical samples.Keywords: spectrophotometry, diazotization, mesalazine, nitrite, acetylacetone
Procedia PDF Downloads 1892273 Method Development and Validation for Quantification of Active Content and Impurities of Clodinafop Propargyl and Its Enantiomeric Separation by High-Performance Liquid Chromatography
Authors: Kamlesh Vishwakarma, Bipul Behari Saha, Sunilkumar Sing, Abhishek Mishra, Sreenivas Rao
Abstract:
A rapid, sensitive and inexpensive method has been developed for complete analysis of Clodinafop Propargyl. Clodinafop Propargyl enantiomers were separated on chiral column, Chiral Pak AS-H (250 mm. 4.6mm x 5µm) with mobile phase n-hexane: IPA (96:4) at flow rate 1.5 ml/min. The effluent was monitored by UV detector at 230 nm. Clodinafop Propagyl content and impurity quantification was done with reverse phase HPLC. The present study describes a HPLC method using simple mobile phase for the quantification of Clodinafop Propargyl and its impurities. The method was validated and found to be accurate, precise, convenient and effective. Moreover, the lower solvent consumption along with short analytical run time led to a cost effective analytical method.Keywords: Clodinafop Propargyl, method, validation, HPLC-UV
Procedia PDF Downloads 3712272 Fast Fashion Parallel to Sustainable Fashion in India
Authors: Saurav Sharma, Deepshikha Sharma, Pratibha Sharma
Abstract:
This paper includes fast fashion verses sustainable fashion or slow fashion Indian based consumers. The expression ‘Fast fashion’ is generally referred to low-cost clothing collections that considered first hand copy of luxury brands, sometime interchangeably used with ‘mass fashion’. Whereas slow fashion or limited fashion which are consider to be more organic or eco-friendly. "Sustainable fashion is ethical fashion and here the consumer is just not design conscious but also social-environment conscious". Paper will deal with desire of young Indian consumer towards such luxury brands present in India, and their understanding of sustainable fashion, how to maintain the equilibrium between never newer fashion, style, and fashion sustainability.Keywords: fast fashion, sustainable fashion, sustainability, India
Procedia PDF Downloads 7712271 Changes in the Properties of Composites Caused by Chemical Treatment of Hemp Hurds
Authors: N. Stevulova, I. Schwarzova
Abstract:
The possibility of using industrial hemp as a source of natural fibers for purpose of construction, mainly for the preparation of lightweight composites based on hemp hurds is described. In this article, an overview of measurement results of important technical parameters (compressive strength, density, thermal conductivity) of composites based on organic filler - chemically modified hemp hurds in three solutions (EDTA, NaOH and Ca(OH)2) and inorganic binder MgO-cement after 7, 28, 60, 90 and 180 days of hardening is given. The results of long-term water storage of 28 days hardened composites at room temperature were investigated. Changes in the properties of composites caused by chemical treatment of hemp material are discussed.Keywords: hemp hurds, chemical modification, lightweight composites, testing material properties
Procedia PDF Downloads 3492270 Extracting an Experimental Relation between SMD, Mass Flow Rate, Velocity and Pressure in Swirl Fuel Atomizers
Authors: Mohammad Hassan Ziraksaz
Abstract:
Fuel atomizers are used in a wide range of IC engines, turbojets and a variety of liquid propellant rocket engines. As the fuel spray fully develops its characters approach their ultimate amounts. Fuel spray characters such as SMD, injection pressure, mass flow rate, droplet velocity and spray cone angle play important roles to atomize the liquid fuel to finely atomized fuel droplets and finally form the fine fuel spray. Well performed, fully developed, fine spray without any defections, brings the idea of finding an experimental relation between the main effective spray characters. Extracting an experimental relation between SMD and other fuel spray physical characters in swirl fuel atomizers is the main scope of this experimental work. Droplet velocity, fuel mass flow rate, SMD and spray cone angle are the parameters which are measured. A set of twelve reverse engineering atomizers without any spray defections and a set of eight original atomizers as referenced well-performed spray are contributed in this work. More than 350 tests, mostly repeated, were performed. This work shows that although spray cone angle plays a very effective role in spray formation, after formation, it smoothly approaches to an almost constant amount while the other characters are changed to create fine droplets. Therefore, the work to find the relation between the characters is focused on SMD, droplet velocity, fuel mass flow rate, and injection pressure. The process of fuel spray formation begins in 5 Psig injection pressures, where a tiny fuel onion attaches to the injector tip and ended in 250 Psig injection pressure, were fully developed fine fuel spray forms. Injection pressure is gradually increased to observe how the spray forms. In each step, all parameters are measured and recorded carefully to provide a data bank. Various diagrams have been drawn to study the behavior of the parameters in more detail. Experiments and graphs show that the power equation can best show changes in parameters. The SMD experimental relation with pressure P, fuel mass flow rate Q ̇ and droplet velocity V extracted individually in pairs. Therefore, the proportional relation of SMD with other parameters is founded. Now it is time to find an experimental relation including all the parameters. Using obtained proportional relation, replacing the parameters with experimentally measured ones and drawing the graphs of experimental SMD versus proportion SMD (〖SMD〗_P), a correctional equation and consequently the final experimental equation is obtained. This experimental equation is specified to use for swirl fuel atomizers and the use of this experimental equation in different conditions shows about 3% error, which is expected to achieve lower error and consequently higher accuracy by increasing the number of experiments and increasing the accuracy of data collection.Keywords: droplet velocity, experimental relation, mass flow rate, SMD, swirl fuel atomizer
Procedia PDF Downloads 1612269 Ayurvastra: A Study on the Ancient Indian Textile for Healing
Authors: Reena Aggarwal
Abstract:
The use of textile chemicals in the various pre and post-textile manufacturing processes has made the textile industry conscious of its negative contribution to environmental pollution. Popular environmentally friendly fibers such as recycled polyester and organic cotton have been now increasingly used by fabrics and apparel manufacturers. However, after these textiles or the finished apparel are manufactured, they have to be dyed in the same chemical dyes that are harmful and toxic to the environment. Dyeing is a major area of concern for the environment as well as for people who have chemical sensitivities as it may cause nausea, breathing difficulties, seizures, etc. Ayurvastra or herbal medical textiles are one step ahead of the organic lifestyle, which supports the core concept of holistic well-being and also eliminates the impact of harmful chemicals and pesticides. There is a wide range of herbs that can be used not only for dyeing but also for providing medicinal properties to the textiles like antibacterial, antifungal, antiseptic, antidepressant and for treating insomnia, skin diseases, etc. The concept of herbal dyeing of fabric is to manifest herbal essence in every aspect of clothing, i.e., from production to end-use, additionally to eliminate the impact of harmful chemical dyes and chemicals which are known to result in problems like skin rashes, headache, trouble concentrating, nausea, diarrhea, fatigue, muscle and joint pain, dizziness, difficulty breathing, irregular heartbeat and seizures. Herbal dyeing or finishing on textiles will give an extra edge to the textiles as it adds an extra function to the fabric. The herbal extracts can be applied to the textiles by a simple process like the pad dry cure method and mainly acts on the human body through the skin for aiding in the treatment of disease or managing the medical condition through its herbal properties. This paper, therefore, delves into producing Ayurvastra, which is a perfect amalgamation of cloth and wellness. The aim of the paper is to design and create herbal disposable and non-disposable medical textile products acting mainly topically (through the skin) for providing medicinal properties/managing medical conditions. Keeping that in mind, a range of antifungal socks and antibacterial napkins treated with turmeric and aloe vera were developed, which are recommended for the treatment of fungal and bacterial infections, respectively. Both Herbal Antifungal socks and Antibacterial napkins have proved to be efficient enough in managing and treating fungal and bacterial infections of the skin, respectively.Keywords: ayurvastra, ayurveda, herbal, pandemic, sustainable
Procedia PDF Downloads 1302268 Pressure Regulator Optimization in LPG Fuel Injection Systems
Authors: M. Akif Ceviz, Alirıza Kaleli, Erdoğan Güner
Abstract:
LPG pressure regulator is a device which is used to change the phase of LPG from liquid to gas by decreasing the pressure. During the phase change, it is necessary to supply the latent heat of LPG to prevent excessive low temperature. Engine coolant is circulated in the pressure regulator for this purpose. Therefore, pressure regulator is a type of heat exchanger that should be designed for different engine operating conditions. The design of the regulator should ensure that the flow of LPG is in gaseous phase to the injectors during the engine steady state and transient operating conditions. The pressure regulators in the LPG gaseous injection systems currently used can easily change the phase of LPG, however, there is no any control on the LPG temperature in conventional LPG injection systems. It is possible to increase temperature excessively. In this study, a control unit has been tested to keep the LPG temperature in a band. Result of the study showed that the engine performance characteristics can be increased by using the system.Keywords: temperature, pressure regulator, LPG, PID
Procedia PDF Downloads 5162267 Phenolic Composition and Contribution of Individual Compounds to Antioxidant Activity of Malus domestica Borkh Fruit Cultivars
Authors: Raudone Lina, Raudonis Raimondas, Liaudanskas Mindaugas, Pukalskas Audrius, Viskelis Pranas, Janulis Valdimaras
Abstract:
Human health fortification, its protection and disease prophylaxis are the main problems of the health care systems. Plant origin materials and their preparations are applied for the prevention of the common diseases. Oxidative stress takes part in the pathogenesis of many autoimmune, neurodegenerative, tumor and ageing processes. The antioxidants are able to protect the human body from the free radicals and to stop the progression of numerous chronic diseases. The research of plant origin materials is relevant for the search of natural antioxidants. A group of compounds that gained scientific attention due to antioxidant properties and effects on human health are phenolic compounds. Phenolic compounds are widely abundant in various parts of plants, i.e. leaves, stems, roots, flowers and fruits. Most commonly consumed fruits all over the world are apples. It is very important to analyze the antioxidant activity of apples as they are extensively used in the prevention of various diseases. The aim of this study was to determine the antioxidant profiles of Malus domestica Borkh fruit cultivars (Aldas, Auksis, Connel Red, Ligol, Lodel, Rajka) and to identify the phenolic compounds with potent contribution to antioxidant activity. Nineteen constituents were identified in apple cultivars using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Phytochemical profile was constituted of phenolic acids, procyanidins, quercetin derivatives and dihydrochalcones. Reducing and radical scavenging activities of individual constituents were determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP and ABTS assay, respectively. Significant differences of total radical scavenging and reducing activity (expressed as trolox equivalents, TE µmol/g) were determined between the investigated cultivars. Chlorogenic acid and complex of procyanidins were the main contributors to antioxidant activity determining up to 35 % and 55 % of total TE values, respectively. Determined phenolic composition and antioxidant activity significantly depend on apple cultivars. It is important to determine the individual compounds that are significant for antioxidant activity and that could be investigated in vivo systems. The identification of the antioxidants provides information for the further research of standardized extracts that could be used for pharmaceutical preparations with specific phenolic traits.Keywords: FRAP, ABTS, antioxidant, phenolic, apples, chlorogenic acid
Procedia PDF Downloads 4082266 Selection the Most Suitable Method for DNA Extraction from Muscle of Iran's Canned Tuna by Comparison of Different DNA Extraction Methods
Authors: Marjan Heidarzadeh
Abstract:
High quality and purity of DNA isolated from canned tuna is essential for species identification. In this study, the efficiency of five different methods for DNA extraction was compared. Method of national standard in Iran, the CTAB precipitation method, Wizard DNA Clean Up system, Nucleospin and GenomicPrep were employed. DNA was extracted from two different canned tuna in brine and oil of the same tuna species. Three samples of each type of product were analyzed with the different methods. The quantity and quality of DNA extracted was evaluated using the 260 nm absorbance and ratio A260/A280 by spectrophotometer picodrop. Results showed that the DNA extraction from canned tuna preserved in different liquid media could be optimized by employing a specific DNA extraction method in each case. Best results were obtained with CTAB method for canned tuna in oil and with Wizard method for canned tuna in brine.Keywords: canned tuna PCR, DNA, DNA extraction methods, species identification
Procedia PDF Downloads 6572265 Production of Biodiesel Using Brine Waste as a Heterogeneous Catalyst
Authors: Hilary Rutto, Linda Sibali
Abstract:
In these modern times, we constantly search for new and innovative technologies to lift the burden of our extreme energy demand. The overall purpose of biofuel production research is to source an alternative energy source to replace the normal use of fossil fuel as liquid petroleum products. This experiment looks at the basis of biodiesel production with regards to alternative catalysts that can be used to produce biodiesel. The key factors that will be addressed during the experiments will focus on temperature variation, catalyst additions to the overall reaction, methanol to oil ratio, and the impact of agitation on the reaction. Brine samples sources from nearby plants will be evaluated and tested thoroughly and the key characteristics of these brine samples analysed for the verification of its use as a possible catalyst in biodiesel production. The one factor at a time experimental approach was used in this experiment, and the recycle and reuse characteristics of the heterogeneous catalyst was evaluated.Keywords: brine sludge, heterogenous catalyst, biodiesel, one factor
Procedia PDF Downloads 171