Search results for: earth observation data cube
24778 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes
Authors: Hyun-Woo Cho
Abstract:
The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.Keywords: process data, data mining, process operation, real-time monitoring
Procedia PDF Downloads 64024777 High Speed Motion Tracking with Magnetometer in Nonuniform Magnetic Field
Authors: Jeronimo Cox, Tomonari Furukawa
Abstract:
Magnetometers have become more popular in inertial measurement units (IMU) for their ability to correct estimations using the earth's magnetic field. Accelerometer and gyroscope-based packages fail with dead-reckoning errors accumulated over time. Localization in robotic applications with magnetometer-inclusive IMUs has become popular as a way to track the odometry of slower-speed robots. With high-speed motions, the accumulated error increases over smaller periods of time, making them difficult to track with IMU. Tracking a high-speed motion is especially difficult with limited observability. Visual obstruction of motion leaves motion-tracking cameras unusable. When motions are too dynamic for estimation techniques reliant on the observability of the gravity vector, the use of magnetometers is further justified. As available magnetometer calibration methods are limited with the assumption that background magnetic fields are uniform, estimation in nonuniform magnetic fields is problematic. Hard iron distortion is a distortion of the magnetic field by other objects that produce magnetic fields. This kind of distortion is often observed as the offset from the origin of the center of data points when a magnetometer is rotated. The magnitude of hard iron distortion is dependent on proximity to distortion sources. Soft iron distortion is more related to the scaling of the axes of magnetometer sensors. Hard iron distortion is more of a contributor to the error of attitude estimation with magnetometers. Indoor environments or spaces inside ferrite-based structures, such as building reinforcements or a vehicle, often cause distortions with proximity. As positions correlate to areas of distortion, methods of magnetometer localization include the production of spatial mapping of magnetic field and collection of distortion signatures to better aid location tracking. The goal of this paper is to compare magnetometer methods that don't need pre-productions of magnetic field maps. Mapping the magnetic field in some spaces can be costly and inefficient. Dynamic measurement fusion is used to track the motion of a multi-link system with us. Conventional calibration by data collection of rotation at a static point, real-time estimation of calibration parameters each time step, and using two magnetometers for determining local hard iron distortion are compared to confirm the robustness and accuracy of each technique. With opposite-facing magnetometers, hard iron distortion can be accounted for regardless of position, Rather than assuming that hard iron distortion is constant regardless of positional change. The motion measured is a repeatable planar motion of a two-link system connected by revolute joints. The links are translated on a moving base to impulse rotation of the links. Equipping the joints with absolute encoders and recording the motion with cameras to enable ground truth comparison to each of the magnetometer methods. While the two-magnetometer method accounts for local hard iron distortion, the method fails where the magnetic field direction in space is inconsistent.Keywords: motion tracking, sensor fusion, magnetometer, state estimation
Procedia PDF Downloads 8424776 Host-Guest Interaction in a Homestay Setting a Study Based on Homestays in Sabah and Sarawak, Malaysia
Authors: Lau Sing Yew
Abstract:
The purpose of this research is to investigate and analyse the host-guests interaction in a homestay setting with the sub context of cultural exchange and cultural differences between both parties. The research were carried out in Malaysia, specifically in the state of Sabah and Sarawak which are more well-known for its’ rural tourism and homestay programs. The research problem addressed here is on the suitability of the homestay setting as a platform for intercultural communication between the host and foreign tourists. The key issues that were discussed include ‘cultural representations’, ‘touristic representations’ and ‘social representations’ which contoured the image that tourists form about destinations and local communities while debating on the benefits and disbenefits of cultural exchange. These issues were deliberated through observation and interviews and it was found that the homestay setting in Malaysia though there are varied types available acts as a suitable platform to encourage intercultural interaction between tourists and local communities.Keywords: homestay program, Malaysia, host-guest interactions, cultural representations
Procedia PDF Downloads 34024775 Knowledge, Attitude, and Practice Regarding Standard Precautions in Medical Students of Rawalpindi Medical University, Pakistan; A Cross-Sectional Descriptive Study
Authors: Zainab Idrees Ahmad, Mahjabeen Qureshi, Zainab Hussain
Abstract:
Standard precautions are a set of infection control practices used to prevent the transmission of diseases that can be acquired by contact with body fluids, non-intact skin, and mucous membranes. Lack of practice of SPs can result in a considerable increase in morbidity and mortality rates. Medical students (the future physicians) should have the highest knowledge of standard precautions to prevent the spread of nosocomial infections and ensure their safety as well. This study was designed. To assess the knowledge of medical students regarding standard precautions. And explore the attitude of medical students of MBBS in the third, fourth and final year towards standard precautions.: A descriptive cross-sectional study was conducted in the setting of Rawalpindi Medical University, Pakistan including the students of MBBS in their 3rd, 4th and final years. The study duration was from October 2022 to February 2023. The sample size calculated was 282 with a confidence interval of 95%. A questionnaire was structured utilizing the WHO guidelines on SPs assessing knowledge and attitude regarding hand hygiene, needle stick injury, use of gloves and mask, and sharp disposal. A total of 300 responses were received utilizing the technique of non-random convenience sampling. Data was analyzed using the latest version of SPSS.:Knowledge score regarding components of SPs, hand hygiene, and moments of hand hygiene was satisfactory. However, score regarding the use of PPE, needle stick injury, and sharp disposal was low. Almost all the students were compliant with the proper washing of hands but the observation of recommended time length was lacking. Compliance with the use of correct PPE and informing the supervisor upon getting a needle stick injury was low. This study signifies that medical students lack knowledge regarding standard precautions. This is alarming as this can be the vehicle for the spread of nosocomial infections. Proper training should be given to medical students to prevent the spread of hospital-acquired infections.Keywords: attitude, knowledge, medical students, standard precautions
Procedia PDF Downloads 12724774 Iron Oxide Nanoparticles: Synthesis, Properties, and Environmental Application
Authors: Shalini Rajput, Dinesh Mohan
Abstract:
Water is the most important and essential resources for existing of life on the earth. Water quality is gradually decreasing due to increasing urbanization and industrialization and various other developmental activities. It can pose a threat to the environment and public health therefore it is necessary to remove hazardous contaminants from wastewater prior to its discharge to the environment. Recently, magnetic iron oxide nanoparticles have been arise as significant materials due to its distinct properties. This article focuses on the synthesis method with a possible mechanism, structure and application of magnetic iron oxide nanoparticles. The various characterization techniques including X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray, Fourier transform infrared spectroscopy and vibrating sample magnetometer are useful to describe the physico-chemical properties of nanoparticles. Nanosized iron oxide particles utilized for remediation of contaminants from aqueous medium through adsorption process. Due to magnetic properties, nanoparticles can be easily separate from aqueous media. Considering the importance and emerging trend of nanotechnology, iron oxide nanoparticles as nano-adsorbent can be of great importance in the field of wastewater treatment.Keywords: nanoparticles, adsorption, iron oxide, nanotechnology
Procedia PDF Downloads 55824773 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network
Authors: Asmau Mukhtar Ahmed, Olga Duran
Abstract:
Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image
Procedia PDF Downloads 11324772 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory, synthetic data generation, traffic management
Procedia PDF Downloads 2624771 Microseismics: Application in Hydrocarbon Reservoir Management
Authors: Rahul Kumar Singh, Apurva Sharma, Dilip Kumar Srivastava
Abstract:
Tilting of our interest towards unconventional exploitation of hydrocarbons has raised a serious concern to environmentalists. Emerging technologies like horizontal/multi-lateral drilling with subsequent hydraulic fracturing or fracking etc., for exploitation of different conventional/unconventional hydrocarbon reservoirs, are related to creating micro-level seismic events below the surface of the earth. Monitoring of these micro-level seismic events is not possible by the conventional methodology of the seismic method. So, to tackle this issue, a new technology that is microseismic is very much in discussions around the globe. Multiple researches are being carried out these days around the globe in order to prove microseismic as a new essential in the E & P industry, especially for unconventional reservoir management. Microseismic monitoring is now used for reservoir surveillance, and the best application is checking the integrity of the caprock and containment of fluid in it. In general, in whatever terms we want to use micro-seismic related events monitoring and understanding the effectiveness of stimulation, this technology offers a lot of value in terms of insight into the subsurface characteristics and processes, and this makes it really a good geophysical method to be used in future.Keywords: microseismic, monitoring, hydraulic fracturing or fracking, reservoir surveillance, seismic hazards
Procedia PDF Downloads 18324770 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning
Procedia PDF Downloads 21324769 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases
Authors: Suglo Tohari Luri
Abstract:
Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.Keywords: data, engine, intelligence, customer, neo4j, database
Procedia PDF Downloads 19324768 Decision Making System for Clinical Datasets
Authors: P. Bharathiraja
Abstract:
Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.Keywords: decision making, data mining, normalization, fuzzy rule, classification
Procedia PDF Downloads 51724767 A User Centred Based Approach for Designing Everyday Product: A Case Study of an Alarm Clock
Authors: Obokhai Kess Asikhia
Abstract:
This work explores design concept generation by understanding user needs through observation and interview. The aim is to examine several principles and guidelines in obtaining evidence from observing how users interact with the targeted product and interviewing them to acquire deep insights of their needs. With the help of Quality Function Deployment (QFD), the identified needs of the users while interacting with the product were ranked using the normalised weighting approach. Furthermore, a low fidelity prototype of the alarm clock is developed with a view of addressing the identified needs of the users. Finally, the low fidelity prototype design was evaluated with two design prototypes already existing in the market through a study involving 30 participants. Preliminary results reveal higher performance ratings by the majority of the participants of the new prototype compared to the other existing alarm clocks in the market used in the study.Keywords: design concept, low fidelity prototype, normalised weighting approach, quality function deployment, user needs
Procedia PDF Downloads 18424766 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models
Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales
Abstract:
The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.Keywords: concrete bridges, deterioration, Markov chains, probability matrix
Procedia PDF Downloads 33624765 Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio
Authors: Fan Ye
Abstract:
Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.Keywords: RWIS, visibility distance, low visibility, adverse weather
Procedia PDF Downloads 25024764 Design and Simulation of All Optical Fiber to the Home Network
Authors: Rahul Malhotra
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 55524763 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm
Authors: Vahid Bayrami Rad
Abstract:
In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability
Procedia PDF Downloads 6624762 Minority Language Policy and Planning in Manchester, Britain
Authors: Mohamed F. Othman
Abstract:
Manchester, Britain has become the destination of immigrants from different parts of the world. As a result, it is currently home to over 150 different ethnic languages. The present study investigates minority language policy and planning at the micro-level of the city. In order to get an in-depth investigation of such a policy, it was decided to cover it from two angles: the first is the policy making process. This was aimed at getting insights on how decisions regarding the provision of government services in minority languages are taken and what criteria are employed. The second angle is the service provider; i.e. the different departments in Manchester City Council (MCC), the NHS, the courts, and police, etc., to obtain information on the actual provisions of services. Data was collected through semi-structured interviews with different personnel representing different departments in MCC, solicitors, interpreters, etc.; through the internet, e.g. the websites of MCC, NHS, courts, and police, etc.; and via personal observation of provisions of community languages in government services. The results show that Manchester’s language policy is formulated around two concepts that work simultaneously: one is concerned with providing services in community languages in order to help minorities manage their life until they acquire English, and the other with helping the integration of minorities through encouraging them to learn English. In this regard, different government services are provided in community languages, though to varying degrees, depending on the numerical strength of each individual language. Thus, it is concluded that there is awareness in MCC and other government agencies working in Manchester of the linguistic diversity of the city and there are serious attempts to meet this diversity in their services. It is worth mentioning here that providing such services in minority languages are not meant to support linguistic diversity, but rather to maintain the legal right to equal opportunities among the residents of Manchester and to avoid any misunderstanding that may result due to the language barrier, especially in such areas as hospitals, courts, and police. There is actually no explicitly-mentioned language policy regarding minorities in Manchester; rather, there is an implied or covert policy resulting from factors that are not explicitly documented. That is, there are guidelines from the central government, which emphasize the principle of equal opportunities; then the implementation of such guidelines requires providing services in the different ethnic languages.Keywords: community language, covert language policy, micro-language policy and planning, minority language
Procedia PDF Downloads 26724761 Wage Differentiation Patterns of Households Revisited for Turkey in Same Industry Employment: A Pseudo-Panel Approach
Authors: Yasin Kutuk, Bengi Yanik Ilhan
Abstract:
Previous studies investigate the wage differentiations among regions in Turkey between couples who work in the same industry and those who work in different industries by using the models that is appropriate for cross sectional data. However, since there is no available panel data for this investigation in Turkey, pseudo panels using repeated cross-section data sets of the Household Labor Force Surveys 2004-2014 are employed in order to open a new way to examine wage differentiation patterns. For this purpose, household heads are separated into groups with respect to their household composition. These groups’ membership is assumed to be fixed over time such as age groups, education, gender, and NUTS1 (12 regions) Level. The average behavior of them can be tracked overtime same as in the panel data. Estimates using the pseudo panel data would be consistent with the estimates using genuine panel data on individuals if samples are representative of the population which has fixed composition, characteristics. With controlling the socioeconomic factors, wage differentiation of household income is affected by social, cultural and economic changes after global economic crisis emerged in US. It is also revealed whether wage differentiation is changing among the birth cohorts.Keywords: wage income, same industry, pseudo panel, panel data econometrics
Procedia PDF Downloads 39724760 A New Approach for Improving Accuracy of Multi Label Stream Data
Authors: Kunal Shah, Swati Patel
Abstract:
Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer
Procedia PDF Downloads 58424759 Secure Cryptographic Operations on SIM Card for Mobile Financial Services
Authors: Kerem Ok, Serafettin Senturk, Serdar Aktas, Cem Cevikbas
Abstract:
Mobile technology is very popular nowadays and it provides a digital world where users can experience many value-added services. Service Providers are also eager to offer diverse value-added services to users such as digital identity, mobile financial services and so on. In this context, the security of data storage in smartphones and the security of communication between the smartphone and service provider are critical for the success of these services. In order to provide the required security functions, the SIM card is one acceptable alternative. Since SIM cards include a Secure Element, they are able to store sensitive data, create cryptographically secure keys, encrypt and decrypt data. In this paper, we design and implement a SIM and a smartphone framework that uses a SIM card for secure key generation, key storage, data encryption, data decryption and digital signing for mobile financial services. Our frameworks show that the SIM card can be used as a controlled Secure Element to provide required security functions for popular e-services such as mobile financial services.Keywords: SIM card, mobile financial services, cryptography, secure data storage
Procedia PDF Downloads 31224758 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management
Procedia PDF Downloads 1424757 The Inclusive Human Trafficking Checklist: A Dialectical Measurement Methodology
Authors: Maria C. Almario, Pam Remer, Jeff Resse, Kathy Moran, Linda Theander Adam
Abstract:
The identification of victims of human trafficking and consequential service provision is characterized by a significant disconnection between the estimated prevalence of this issue and the number of cases identified. This poses as tremendous problem for human rights advocates as it prevents data collection, information sharing, allocation of resources and opportunities for international dialogues. The current paper introduces the Inclusive Human Trafficking Checklist (IHTC) as a measurement methodology with theoretical underpinnings derived from dialectic theory. The presence of human trafficking in a person’s life is conceptualized as a dynamic and dialectic interaction between vulnerability and exploitation. The current papers explores the operationalization of exploitation and vulnerability, evaluates the metric qualities of the instrument, evaluates whether there are differences in assessment based on the participant’s profession, level of knowledge, and training, and assesses if users of the instrument perceive it as useful. A total of 201 participants were asked to rate three vignettes predetermined by experts to qualify as a either human trafficking case or not. The participants were placed in three conditions: business as usual, utilization of the IHTC with and without training. The results revealed a statistically significant level of agreement between the expert’s diagnostic and the application of the IHTC with an improvement of 40% on identification when compared with the business as usual condition While there was an improvement in identification in the group with training, the difference was found to have a small effect size. Participants who utilized the IHTC showed an increased ability to identify elements of identity-based vulnerabilities as well as elements of fraud, which according to the results, are distinctive variables in cases of human trafficking. In terms of the perceived utility, the results revealed higher mean scores for the groups utilizing the IHTC when compared to the business as usual condition. These findings suggest that the IHTC improves appropriate identification of cases and that it is perceived as a useful instrument. The application of the IHTC as a multidisciplinary instrumentation that can be utilized in legal and human services settings is discussed as a pivotal piece of helping victims restore their sense of dignity, and advocate for legal, physical and psychological reparations. It is noteworthy that this study was conducted with a sample in the United States and later re-tested in Colombia. The implications of the instrument for treatment conceptualization and intervention in human trafficking cases are discussed as opportunities for enhancement of victim well-being, restoration engagement and activism. With the idea that what is personal is also political, we believe that the careful observation and data collection in specific cases can inform new areas of human rights activism.Keywords: exploitation, human trafficking, measurement, vulnerability, screening
Procedia PDF Downloads 33024756 Problems Arising in Visual Perception
Authors: K. A. Tharanga, K. H. H. Damayanthi
Abstract:
Perception is an epistemological concept discussed in Philosophy. Perception, in other word, vision, is one of the ways that human beings get empirical knowledge after five senses. However, we face innumerable problems when achieving knowledge from perception, and therefore the knowledge gained through perception is uncertain. what we see in the external world is not real. These are the major issues that we face when receiving knowledge through perception. Sometimes there is no physical existence of what we really see. In such cases, the perception is relative. The following frames will be taken into consideration when perception is analyzed illusions and delusions, the figure of a physical object, appearance and the reality of a physical object, time factor, and colour of a physical object.seeing and knowing become vary according to the above conceptual frames. We cannot come to a proper conclusion of what we see in the empirical world. Because the things that we see are not really there. Hence the scientific knowledge which is gained from observation is doubtful. All the factors discussed in science remain in the physical world. There is a leap from ones existence to the existence of a world outside his/her mind. Indeed, one can suppose that what he/she takes to be real is just anmassive deception. However, depending on the above facts, if someone begins to doubt about the whole world, it is unavoidable to become his/her view a scepticism or nihilism. This is a certain reality.Keywords: empirical, perception, sceptisism, nihilism
Procedia PDF Downloads 9324755 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: machine learning, imbalanced data, data mining, big data
Procedia PDF Downloads 13024754 Automatic Detection of Traffic Stop Locations Using GPS Data
Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell
Abstract:
Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data
Procedia PDF Downloads 27524753 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 24024752 The Temporal Pattern of Bumble Bees in Plant Visiting
Authors: Zahra Shakoori, Farid Salmanpour
Abstract:
Pollination services are a vital service for the ecosystem to maintain environmental stability. The decline of pollinators can disrupt the ecological balance by affecting components of biodiversity. Bumble bees are crucial pollinators, playing a vital role in maintaining plant diversity. This study investigated the temporal patterns of their visitation to flowers in Kiasar National Park, Iran. Observations were conducted in Jun 2024, totaling 442 person-minutes of observation. Five species of bumble bees were identified. The study revealed that they consistently visited an average of 12-15 flowers per minute, regardless of species. The findings highlight the importance of protecting natural habitats, where their populations are thriving in the absence of human-induced stressors. This study was conducted in Kiasar National Park, located in the southeast of Mazandaran, northern Iran. The surveyed area, at an altitude of 1800-2200 meters, includes both forest and pasture. Bumble bee surveys were carried out on sunny days from June 2024, starting at dawn and ending at sunset. To avoid double-counting, we systematically searched for foraging habitats on low-sloping ridges with high mud density, frequently moving between patches. We recorded bumble bee visits to flowers and plant species per minute using direct observation, a stopwatch, and a pre-prepared form. We used statistical analysis of variance (ANOVA) with a confidence level of 95% to examine potential differences in foraging rates across different bumble bee species, flowers, plant bases, and plant species visited. Bumble bee identification relied on morphological indicators. A total of 442 person-minutes of bumble bee observations were recorded. Five species of bumble bees (Bombus fragrans, Bombus haematurus, Bombus lucorum, Bombus melanurus, Bombus terrestris) were identified during the study. The results of this study showed that the visits of bumble bees to flower sources were not different from each other. In general, bumble bees visit an average of 12-15 flowers every 60 seconds. In addition, at the same time they visit between 3-5 plant bases. Finally, they visit an average of 1 to 3 plant species per minute. While many taxa contribute to pollination, insects—especially bees—are crucial for maintaining plant diversity and ecosystem functions. As plant diversity increases, the stopping rate of pollinating insects rises, which reduces their foraging activity. Bumble bees, therefore, stop more frequently in natural areas than in agricultural fields due to higher plant diversity. Our findings emphasize the need to protect natural habitats like Kiasar National Park, where bumble bees thrive without human-induced stressors like pesticides, livestock grazing, and pollution. With bumble bee populations declining globally, further research is essential to understand their behavior in different environments and develop effective conservation strategies to protect them.Keywords: bumble bees, pollination, pollinator, plant diversity, Iran
Procedia PDF Downloads 2924751 Pricing Effects on Equitable Distribution of Forest Products and Livelihood Improvement in Nepalese Community Forestry
Authors: Laxuman Thakuri
Abstract:
Despite the large number of in-depth case studies focused on policy analysis, institutional arrangement, and collective action of common property resource management; how the local institutions take the pricing decision of forest products in community forest management and what kinds of effects produce it, the answers of these questions are largely silent among the policy-makers and researchers alike. The study examined how the local institutions take the pricing decision of forest products in the lowland community forestry of Nepal and how the decisions affect to equitable distribution of benefits and livelihood improvement which are also objectives of Nepalese community forestry. The study assumes that forest products pricing decisions have multiple effects on equitable distribution and livelihood improvement in the areas having heterogeneous socio-economic conditions. The dissertation was carried out at four community forests of lowland, Nepal that has characteristics of high value species, matured-experience of community forest management and better record-keeping system of forest products production, pricing and distribution. The questionnaire survey, individual to group discussions and direct field observation were applied for data collection from the field, and Lorenz curve, gini-coefficient, χ²-text, and SWOT (Strong, Weak, Opportunity, and Threat) analysis were performed for data analysis and results interpretation. The dissertation demonstrates that the low pricing strategy of high-value forest products was supposed crucial to increase the access of socio-economically weak households, and to and control over the important forest products such as timber, but found counter productive as the strategy increased the access of socio-economically better-off households at higher rate. In addition, the strategy contradicts to collect a large-scale community fund and carry out livelihood improvement activities as per the community forestry objectives. The crucial part of the study is despite the fact of low pricing strategy; the timber alone contributed large part of community fund collection. The results revealed close relation between pricing decisions and livelihood objectives. The action research result shows that positive price discrimination can slightly reduce the prevailing inequality and increase the fund. However, it lacks to harness the full price of forest products and collects a large-scale community fund. For broader outcomes of common property resource management in terms of resource sustainability, equity, and livelihood opportunity, the study suggests local institutions to harness the full price of resource products with respect to the local market.Keywords: community, equitable, forest, livelihood, socioeconomic, Nepal
Procedia PDF Downloads 53624750 A Human Factors Approach to Workload Optimization for On-Screen Review Tasks
Authors: Christina Kirsch, Adam Hatzigiannis
Abstract:
Rail operators and maintainers worldwide are increasingly replacing walking patrols in the rail corridor with mechanized track patrols -essentially data capture on trains- and on-screen reviews of track infrastructure in centralized review facilities. The benefit is that infrastructure workers are less exposed to the dangers of the rail corridor. The impact is a significant change in work design from walking track sections and direct observation in the real world to sedentary jobs in the review facility reviewing captured data on screens. Defects in rail infrastructure can have catastrophic consequences. Reviewer performance regarding accuracy and efficiency of reviews within the available time frame is essential to ensure safety and operational performance. Rail operators must optimize workload and resource loading to transition to on-screen reviews successfully. Therefore, they need to know what workload assessment methodologies will provide reliable and valid data to optimize resourcing for on-screen reviews. This paper compares objective workload measures, including track difficulty ratings and review distance covered per hour, and subjective workload assessments (NASA TLX) and analyses the link between workload and reviewer performance, including sensitivity, precision, and overall accuracy. An experimental study was completed with eight on-screen reviewers, including infrastructure workers and engineers, reviewing track sections with different levels of track difficulty over nine days. Each day the reviewers completed four 90-minute sessions of on-screen inspection of the track infrastructure. Data regarding the speed of review (km/ hour), detected defects, false negatives, and false positives were collected. Additionally, all reviewers completed a subjective workload assessment (NASA TLX) after each 90-minute session and a short employee engagement survey at the end of the study period that captured impacts on job satisfaction and motivation. The results showed that objective measures for tracking difficulty align with subjective mental demand, temporal demand, effort, and frustration in the NASA TLX. Interestingly, review speed correlated with subjective assessments of physical and temporal demand, but to mental demand. Subjective performance ratings correlated with all accuracy measures and review speed. The results showed that subjective NASA TLX workload assessments accurately reflect objective workload. The analysis of the impact of workload on performance showed that subjective mental demand correlated with high precision -accurately detected defects, not false positives. Conversely, high temporal demand was negatively correlated with sensitivity and the percentage of detected existing defects. Review speed was significantly correlated with false negatives. With an increase in review speed, accuracy declined. On the other hand, review speed correlated with subjective performance assessments. Reviewers thought their performance was higher when they reviewed the track sections faster, despite the decline in accuracy. The study results were used to optimize resourcing and ensure that reviewers had enough time to review the allocated track sections to improve defect detection rates in accordance with the efficiency-thoroughness trade-off. Overall, the study showed the importance of a multi-method approach to workload assessment and optimization, combining subjective workload assessments with objective workload and performance measures to ensure that recommendations for work system optimization are evidence-based and reliable.Keywords: automation, efficiency-thoroughness trade-off, human factors, job design, NASA TLX, performance optimization, subjective workload assessment, workload analysis
Procedia PDF Downloads 12124749 Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter
Authors: Razak Zakariya, Fazliana Mustajap, Lenny Sharinee Sakai
Abstract:
A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand.Keywords: sediment type, MBES echo sounder, backscatter, ArcGIS
Procedia PDF Downloads 86