Search results for: spring steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2212

Search results for: spring steel

142 Vibroacoustic Modulation of Wideband Vibrations and its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy productions. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the vibroacoustic modulation are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: vibro-acoustic modulation, detecting of envelope modulation on noise, damage, turbine blades

Procedia PDF Downloads 97
141 A Fresh Approach to Learn Evidence-Based Practice, a Prospective Interventional Study

Authors: Ebtehal Qulisy, Geoffrey Dougherty, Kholoud Hothan, Mylene Dandavino

Abstract:

Background: For more than 200 years, journal clubs (JCs) have been used to teach the fundamentals of critical appraisal and evidence-based practice (EBP). However, JCs curricula face important challenges, including poor sustainability, insufficient time to prepare for and conduct the activities, and lack of trainee skills and self-efficacy with critical appraisal. Andragogy principles and modern technology could help EBP be taught in more relevant, modern, and interactive ways. Method: We propose a fresh educational activity to teach EBP. Educational sessions are designed to encourage collaborative and experiential learning and do not require advanced preparation by the participants. Each session lasts 60 minutes and is adaptable to in-person, virtual, or hybrid contexts. Sessions are structured around a worksheet and include three educational objectives: “1. Identify a Clinical Conundrum”, “2. Compare and Contrast Current Guidelines”, and “3. Choose a Recent Journal Article”. Sessions begin with a short presentation by a facilitator of a clinical scenario highlighting a “grey-zone” in pediatrics. Trainees are placed in groups of two to four (based on the participants’ number) of varied training levels. The first task requires the identification of a clinical conundrum (a situation where there is no clear answer but only a reasonable solution) related to the scenario. For the second task, trainees must identify two or three clinical guidelines. The last task requires trainees to find a journal article published in the last year that reports an update regarding the scenario’s topic. Participants are allowed to use their electronic devices throughout the session. Our university provides full-text access to major journals, which facilitated this exercise. Results: Participants were a convenience sample of trainees in the inpatient services at the Montréal Children’s Hospital, McGill University. Sessions were conducted as a part of an existing weekly academic activity and facilitated by pediatricians with experience in critical appraisal. There were 28 participants in 4 sessions held during Spring 2022. Time was allocated at the end of each session to collect participants’ feedback via a self-administered online survey. There were 22 responses, were 41%(n=9) pediatric residents, 22.7%(n=5) family medicine residents, 31.8%(n=7) medical students, and 4.5%(n=1) nurse practitioner. Four respondents participated in more than one session. The “Satisfied” rates were 94.7% for session format, 100% for topic selection, 89.5% for time allocation, and 84.3% for worksheet structure. 60% of participants felt that including the sessions during the clinical ward rotation was “Feasible.” As per self-efficacy, participants reported being “Confident” for the tasks as follows: 89.5% for the ability to identify a relevant conundrum, 94.8% for the compare and contrast task, and 84.2% for the identification of a published update. The perceived effectiveness to learn EBP was reported as “Agreed” by all participants. All participants would recommend this session for further teaching. Conclusion: We developed a modern approach to teach EBP, enjoyed by all levels of participants, who also felt it was a useful learning experience. Our approach addresses known JCs challenges by being relevant to clinical care, fostering active engagement but not requiring any preparation, using available technology, and being adaptable to hybrid contexts.

Keywords: medical education, journal clubs, post-graduate teaching, andragogy, experiential learning, evidence-based practice

Procedia PDF Downloads 114
140 Flow Boiling Heat Transfer at Low Mass and Heat Fluxes: Heat Transfer Coefficient, Flow Pattern Analysis and Correlation Assessment

Authors: Ernest Gyan Bediako, Petra Dancova, Tomas Vit

Abstract:

Flow boiling heat transfer remains an important area of research due to its relevance in thermal management systems and other applications. Despite the enormous work done in the field of flow boiling heat transfer over the years to understand how flow parameters such as mass flux, heat flux, saturation conditions and tube geometries influence the characteristics of flow boiling heat transfer, there are still many contradictions and lack of agreement on the actual mechanisms controlling heat transfer and how flow parameters impact the heat transfer. This work thus seeks to experimentally investigate the heat transfer characteristics and flow patterns at low mass fluxes, low heat fluxes and low saturation pressure conditions which are of less attention in literature but prevalent in refrigeration, air-conditioning and heat pump applications. In this study, flow boiling experiment was conducted for R134a working fluid in a 5 mm internal diameter stainless steel horizontal smooth tube with mass flux ranging from 80- 100 kg/m2 s, heat fluxes ranging from 3.55kW/m2 - 25.23 kW/m2 and saturation pressure of 460 kPa. Vapor quality ranged from 0 to 1. A well-known flow pattern map created by Wojtan et al. was used to predict the flow patterns noticed during the study. The experimental results were correlated with well-known flow boiling heat transfer correlations in literature. The findings show that, heat transfer coefficient was influenced by both mass flux and heat fluxes. However, for an increasing heat flux, nucleate boiling was observed to be the dominant mechanism controlling the heat transfer especially at low vapor quality region. For an increasing mass flux, convective boiling was the dominant mechanism controlling the heat transfer especially in the high vapor quality region. Also, the study observed an unusual high heat transfer coefficient at low vapor qualities which could be due to periodic wetting of the walls of the tube due to slug flow pattern and stratified wavy flow patterns. The flow patterns predicted by Wojtan et al. flow pattern map were mixture of slug and stratified wavy, purely stratified wavy and dry out. Statistical assessment of the experimental data with various well-known correlations from literature showed that, none of the correlations reported in literature could predicted the experimental data with enough accuracy.

Keywords: flow boiling, heat transfer coefficient, mass flux, heat flux.

Procedia PDF Downloads 115
139 Life Cycle Assessment of an Onshore Wind Turbine in Kuwait

Authors: Badriya Almutairi, Ashraf El-Hamalawi

Abstract:

Wind energy technologies are considered to be among the most promising types of renewable energy sources due to the growing concerns over climate change and energy security. Kuwait is amongst the countries that began realising the consequences of climate change and the long-term economic and energy security situation, considering options when oil runs out. Added to this are the fluctuating oil prices, rapid increase in population, high electricity consumption and protection of the environment It began to make efforts in the direction of greener solutions for energy needs by looking for alternative forms of energy and assessing potential renewable energy resources, including wind and solar. The aim of this paper is to examine wind energy as an alternative renewable energy source in Kuwait, due to its availability and low cost, reducing the dependency on fossil fuels compared to other forms of renewable energy. This paper will present a life cycle assessment of onshore wind turbine systems in Kuwait, comprising 4 stages; goal and scope of the analysis, inventory analysis, impact assessment and interpretation of the results. It will also provide an assessment of potential renewable energy resources and technologies applied for power generation and the environmental benefits for Kuwait. An optimum location for a site (Shagaya) will be recommended for reasons such as high wind speeds, land availability and distance to the next grid connection, and be the focus of this study. The potential environmental impacts and resources used throughout the wind turbine system’s life-cycle are then analysed using a Life Cycle Assessment (LCA). The results show the total carbon dioxide (CO₂) emission for a turbine with steel pile foundations is greater than emissions from a turbine with concrete foundations by 18 %. The analysis also shows the average CO₂ emissions from electricity generated using crude oil is 645gCO₂/kWh and the carbon footprint per functional unit for a wind turbine ranges between 6.6 g/kWh to 10 g/kWh, an increase of 98%, thus providing cost and environmental benefits by creating a wind farm in Kuwait. Using a cost-benefit analysis, it was also found that the electricity produced from wind energy in Kuwait would cost 17.6fils/kWh (0.05834 $/kWh), which is less than the cost of electricity currently being produced using conventional methods at 22 fils/kW (0.07$/kWh), i.e., a reduction of 20%.

Keywords: CO₂ emissions, Kuwait, life cycle assessment, renewable energy, wind energy

Procedia PDF Downloads 301
138 Analysis of the Brazilian Trade Balance in Relation to Mercosur: A Comparison between the Period 1989-1994 and 1994-2012

Authors: Luciana Aparecida Bastos, Tatiana Diair L. F. Rosa, Jesus Creapldi

Abstract:

The idea of Latin American integration occurred from the ideals of Simón Bolívar that, in 1824, called the Ibero-American nations to Amphictyonic Congress of Panama, on June 22, 1826, where he would defend the importance of Latin American unity. However, this congress was frustrating and the idea of Bolívar went no further. It was only after the European Union to start the process, driven by the end of World War II that the subject returned to emerge in Latin America. Thus, in 1960, supported by the European integration process, started in 1957 with the excellent result of the ECSC - European Coal and Steel Community, a result of the Customs Union of the BENELUX (integration between Belgium, the Netherlands and Luxembourg) in 1948, was created in Latin America, LAFTA - Latin American Free Trade Association, in 1960. In 1980, LAFTA was replaced by LAAI- Latin American Association, both with the same goal: to integrate Latin America, it´s economy and its trade. Most researchers in this period agree that the regional market would be expanded through the integration. The creation of one or more economic blocs in the region would provide the union of Latin American countries through a fusion of common interests and by their geographical proximity, which would try to develop common projects to promote mutual growth and economic development, tariff reductions, promotion of increased trade between, among many other goals set together. Thus, taking into account Mercosur, the main Latin-American block, created in 1994, the aim of this paper is to make a brief analysis of the trade balance performance of Brazil (larger economy of the block) in Mercosur in the periods: 1989-1994 and 1994-2012. The choice of this period was because the objective is to compare the period before and after the integration of Brazil in Mercosur. The methodologies used were the literature review and descriptive statistics. The results showed that after the integration of Brazil in Mercosur, the exports and imports grew within the bloc and the country turned out to become the leading importer of other economies of Mercosur after integration, that is, Brazil, after integration to Mercosur, was largely responsible for promoting the expansion of regional trade through the import of products from other members of the block.

Keywords: Brazil, mercosur, integration, trade balance, comparison

Procedia PDF Downloads 323
137 Verification Protocols for the Lightning Protection of a Large Scale Scientific Instrument in Harsh Environments: A Case Study

Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda

Abstract:

This paper is devoted to the study of the most suitable protocols to verify the lightning protection and ground resistance quality in a large-scale scientific facility located in a harsh environment. We illustrate this work by reviewing a case study: the largest telescopes of the Northern Hemisphere Cherenkov Telescope Array, CTA-N. This array hosts sensitive and high-speed optoelectronics instrumentation and sits on a clear, free from obstacle terrain at around 2400 m above sea level. The site offers a top-quality sky but also features challenging conditions for a lightning protection system: the terrain is volcanic and has resistivities well above 1 kOhm·m. In addition, the environment often exhibits humidities well below 5%. On the other hand, the high complexity of a Cherenkov telescope structure does not allow a straightforward application of lightning protection standards. CTA-N has been conceived as an array of fourteen Cherenkov Telescopes of two different sizes, which will be constructed in La Palma Island, Spain. Cherenkov Telescopes can provide valuable information on different astrophysical sources from the gamma rays reaching the Earth’s atmosphere. The largest telescopes of CTA are called LST’s, and the construction of the first one was finished in October 2018. The LST has a shape which resembles a large parabolic antenna, with a 23-meter reflective surface supported by a tubular structure made of carbon fibers and steel tubes. The reflective surface has 400 square meters and is made of an array of segmented mirrors that can be controlled individually by a subsystem of actuators. This surface collects and focuses the Cherenkov photons into the camera, where 1855 photo-sensors convert the light in electrical signals that can be processed by dedicated electronics. We describe here how the risk assessment of direct strike impacts was made and how down conductors and ground system were both tested. The verification protocols which should be applied for the commissioning and operation phases are then explained. We stress our attention on the ground resistance quality assessment.

Keywords: grounding, large scale scientific instrument, lightning risk assessment, lightning standards and safety

Procedia PDF Downloads 122
136 Parameter Fitting of the Discrete Element Method When Modeling the DISAMATIC Process

Authors: E. Hovad, J. H. Walther, P. Larsen, J. Thorborg, J. H. Hattel

Abstract:

In sand casting of metal parts for the automotive industry such as brake disks and engine blocks, the molten metal is poured into a sand mold to get its final shape. The DISAMATIC molding process is a way to construct these sand molds for casting of steel parts and in the present work numerical simulations of this process are presented. During the process green sand is blown into a chamber and subsequently squeezed to finally obtain the sand mould. The sand flow is modelled with the Discrete Element method (DEM) and obtaining the correct material parameters for the simulation is the main goal. Different tests will be used to find or calibrate the DEM parameters needed; Poisson ratio, Young modulus, rolling friction coefficient, sliding friction coefficient and coefficient of restitution (COR). The Young modulus and Poisson ratio are found from compression tests of the bulk material and subsequently used in the DEM model according to the Hertz-Mindlin model. The main focus will be on calibrating the rolling resistance and sliding friction in the DEM model with respect to the behavior of “real” sand piles. More specifically, the surface profile of the “real” sand pile will be compared to the sand pile predicted with the DEM for different values of the rolling and sliding friction coefficients. When the DEM parameters are found for the particle-particle (sand-sand) interaction, the particle-wall interaction parameter values are also found. Here the sliding coefficient will be found from experiments and the rolling resistance is investigated by comparing with observations of how the green sand interacts with the chamber wall during experiments and the DEM simulations will be calibrated accordingly. The coefficient of restitution will be tested with different values in the DEM simulations and compared to video footages of the DISAMATIC process. Energy dissipation will be investigated in these simulations for different particle sizes and coefficient of restitution, where scaling laws will be considered to relate the energy dissipation for these parameters. Finally, the found parameter values are used in the overall discrete element model and compared to the video footage of the DISAMATIC process.

Keywords: discrete element method, physical properties of materials, calibration, granular flow

Procedia PDF Downloads 481
135 Artificial Habitat Mapping in Adriatic Sea

Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi

Abstract:

The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.

Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder

Procedia PDF Downloads 257
134 Fabrication and Characterisation of Additive Manufactured Ti-6Al-4V Parts by Laser Powder Bed Fusion Technique

Authors: Norica Godja, Andreas Schindel, Luka Payrits, Zsolt Pasztor, Bálint Hegedüs, Petr Homola, Jan Horňas, Jiří Běhal, Roman Ruzek, Martin Holzleitner, Sascha Senck

Abstract:

In order to reduce fuel consumption and CO₂ emissions in the aviation sector, innovative solutions are being sought to reduce the weight of aircraft, including additive manufacturing (AM). Of particular importance are the excellent mechanical properties that are required for aircraft structures. Ti6Al4V alloys, with their high mechanical properties in relation to weight, can reduce the weight of aircraft structures compared to structures made of steel and aluminium. Currently, conventional processes such as casting and CNC machining are used to obtain the desired structures, resulting in high raw material removal, which in turn leads to higher costs and impacts the environment. Additive manufacturing (AM) offers advantages in terms of weight, lead time, design, and functionality and enables the realisation of alternative geometric shapes with high mechanical properties. However, there are currently technological shortcomings that have led to AM not being approved for structural components with high safety requirements. An assessment of damage tolerance for AM parts is required, and quality control needs to be improved. Pores and other defects cannot be completely avoided at present, but they should be kept to a minimum during manufacture. The mechanical properties of the manufactured parts can be further improved by various treatments. The influence of different treatment methods (heat treatment, CNC milling, electropolishing, chemical polishing) and operating parameters were investigated by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and measurements with a focused ion beam (FIB), taking into account surface roughness, possible anomalies in the chemical composition of the surface and possible cracks. The results of the characterisation of the constructed and treated samples are discussed and presented in this paper. These results were generated within the framework of the 3TANIUM project, which is financed by EU with the contract number 101007830.

Keywords: Ti6Al4V alloys, laser powder bed fusion, damage tolerance, heat treatment, electropolishing, potential cracking

Procedia PDF Downloads 83
133 Assessment of Airborne PM0.5 Mutagenic and Genotoxic Effects in Five Different Italian Cities: The MAPEC_LIFE Project

Authors: T. Schilirò, S. Bonetta, S. Bonetta, E. Ceretti, D. Feretti, I. Zerbini, V. Romanazzi, S. Levorato, T. Salvatori, S. Vannini, M. Verani, C. Pignata, F. Bagordo, G. Gilli, S. Bonizzoni, A. Bonetti, E. Carraro, U. Gelatti

Abstract:

Air pollution is one of the most important worldwide health concern. In the last years, in both the US and Europe, new directives and regulations supporting more restrictive pollution limits were published. However, the early effects of air pollution occur, especially for the urban population. Several epidemiological and toxicological studies have documented the remarkable effect of particulate matter (PM) in increasing morbidity and mortality for cardiovascular disease, lung cancer and natural cause mortality. The finest fractions of PM (PM with aerodynamic diameter <2.5 µm and less) play a major role in causing chronic diseases. The International Agency for Research on Cancer (IARC) has recently classified air pollution and fine PM as carcinogenic to human (1 Group). The structure and composition of PM influence the biological properties of particles. The chemical composition varies with season and region of sampling, photochemical-meteorological conditions and sources of emissions. The aim of the MAPEC (Monitoring Air Pollution Effects on Children for supporting public health policy) study is to evaluate the associations between air pollution and biomarkers of early biological effects in oral mucosa cells of 6-8 year old children recruited from first grade schools. The study was performed in five Italian towns (Brescia, Torino, Lecce, Perugia and Pisa) characterized by different levels of airborne PM (PM10 annual average from 44 µg/m3 measured in Torino to 20 µg/m3 measured in Lecce). Two to five schools for each town were chosen to evaluate the variability of pollution within the same town. Child exposure to urban air pollution was evaluated by collecting ultrafine PM (PM0.5) in the school area, on the same day of biological sampling. PM samples were collected for 72h using a high-volume gravimetric air sampler and glass fiber filters in two different seasons (winter and spring). Gravimetric analysis of the collected filters was performed; PM0.5 organic extracts were chemically analyzed (PAH, Nitro-PAH) and tested on A549 by the Comet assay and Micronucleus test and on Salmonella strains (TA100, TA98, TA98NR and YG1021) by Ames test. Results showed that PM0.5 represents a high variable PM10 percentage (range 19.6-63%). PM10 concentration were generally lower than 50µg/m3 (EU daily limit). All PM0.5 extracts showed a mutagenic effect with TA98 strain (net revertant/m3 range 0.3-1.5) and suggested the presence of indirect mutagens, while lower effect was observed with TA100 strain. The results with the TA98NR and YG1021 strains showed the presence of nitroaromatic compounds as confirmed by the chemical analysis. No genotoxic or oxidative effect of PM0.5 extracts was observed using the comet assay (with/without Fpg enzyme) and micronucleus test except for some sporadic samples. The low biological effect observed could be related to the low level of air pollution observed in this winter sampling associated to a high atmospheric instability. For a greater understanding of the relationship between PM size, composition and biological effects the results obtained in this study suggest to investigate the biological effect of the other PM fractions and in particular of the PM0.5-1 fraction.

Keywords: airborne PM, ames test, comet assay, micronucleus test

Procedia PDF Downloads 321
132 Production of Bioethanol from Oil PalmTrunk by Cocktail Carbohydrases Enzyme Produced by Thermophilic Bacteria Isolated from Hot spring in West Sumatera, Indonesia

Authors: Yetti Marlida, Syukri Arif, Nadirman Haska

Abstract:

Recently, alcohol fuels have been produced on industrial scales by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane etc. The enzymatic hydrolysis of cellulosic materials to produce fermentable sugars has an enormous potential in meeting global bioenergy demand through the biorefinery concept, since agri-food processes generate millions of tones of waste each year (Xeros and Christakopoulos 2009) such as sugar cane baggase , wheat straw, rice straw, corn cob, and oil palm trunk. In fact oil palm trunk is one of the most abundant lignocellulosic wastes by-products worldwide especially come from Malaysia, Indonesia and Nigeria and provides an alternative substrate to produce useful chemicals such as bioethanol. Usually, from the ages 3 years to 25 years, is the economical life of oil palm and after that, it is cut for replantation. The size of trunk usually is 15-18 meters in length and 46-60 centimeters in diameter. The trunk after cutting is agricultural waste causing problem in elimination but due to the trunk contains about 42% cellulose, 34.4%hemicellulose, 17.1% lignin and 7.3% other compounds,these agricultural wastes could make value added products (Pumiput, 2006).This research was production of bioethanol from oil palm trunk via saccharafication by cocktail carbohydrases enzymes. Enzymatic saccharification of acid treated oil palm trunk was carried out in reaction mixture containing 40 g treated oil palm trunk in 200 ml 0.1 M citrate buffer pH 4.8 with 500 unit/kg amylase for treatment A: Treatment B: Treatment A + 500 unit/kg cellulose; C: treatment B + 500 unit/kgg xylanase: D: treatment D + 500 unit/kg ligninase and E: OPT without treated + 500 unit/kg amylase + 500 unit/kg cellulose + 500 unit/kg xylanase + 500 unit/kg ligninase. The reaction mixture was incubated on a water bath rotary shaker adjusted to 600C and 75 rpm. The samples were withdraw at intervals 12 and 24, 36, 48,60, and 72 hr. For bioethanol production in biofermentor of 5L the hydrolysis product were inoculated a loop of Saccharomyces cerevisiae and then incubated at 34 0C under static conditions. Samples are withdraw after 12, 24, 36, 48 and 72 hr for bioethanol and residual glucose. The results of the enzymatic hidrolysis (Figure1) showed that the treatment B (OPT hydrolyzed with amylase and cellulase) have optimum condition for glucose production, where was both of enzymes can be degraded OPT perfectly. The same results also reported by Primarini et al., (2012) reported the optimum conditions the hydrolysis of OPT was at concentration of 25% (w /v) with 0.3% (w/v) amylase, 0.6% (w /v) glucoamylase and 4% (w/v) cellulase. In the Figure 2 showed that optimum bioethanol produced at 48 hr after incubation,if time increased the biothanol decreased. According Roukas (1996), a decrease in the concentration of ethanol occur at excess glucose as substrate and product inhibition effects. Substrate concentration is too high reduces the amount of dissolved oxygen, although in very small amounts, oxygen is still needed in the fermentation by Saccaromyces cerevisiae to keep life in high cell concentrations (Nowak 2000, Tao et al. 2005). The results of the research can be conluded that the optimum enzymatic hydrolysis occured when the OPT added with amylase and cellulase and optimum bioethanol produced at 48 hr incubation using Saccharomyses cerevicea whereas 18.08 % bioethanol produced from glucose conversion. This work was funded by Directorate General of Higher Education (DGHE), Ministry of Education and Culture, contract no.245/SP2H/DIT.LimtabMas/II/2013

Keywords: oil palm trunk, enzymatic hydrolysis, saccharification

Procedia PDF Downloads 513
131 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies

Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid

Abstract:

Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.

Keywords: climate, renewable energy, R strategies, sustainability

Procedia PDF Downloads 135
130 Seismic Assessment of a Pre-Cast Recycled Concrete Block Arch System

Authors: Amaia Martinez Martinez, Martin Turek, Carlos Ventura, Jay Drew

Abstract:

This study aims to assess the seismic performance of arch and dome structural systems made from easy to assemble precast blocks of recycled concrete. These systems have been developed by Lock Block Ltd. Company from Vancouver, Canada, as an extension of their currently used retaining wall system. The characterization of the seismic behavior of these structures is performed by a combination of experimental static and dynamic testing, and analytical modeling. For the experimental testing, several tilt tests, as well as a program of shake table testing were undertaken using small scale arch models. A suite of earthquakes with different characteristics from important past events are chosen and scaled properly for the dynamic testing. Shake table testing applying the ground motions in just one direction (in the weak direction of the arch) and in the three directions were conducted and compared. The models were tested with increasing intensity until collapse occurred; which determines the failure level for each earthquake. Since the failure intensity varied with type of earthquake, a sensitivity analysis of the different parameters was performed, being impulses the dominant factor. For all cases, the arches exhibited the typical four-hinge failure mechanism, which was also shown in the analytical model. Experimental testing was also performed reinforcing the arches using a steel band over the structures anchored at both ends of the arch. The models were tested with different pretension levels. The bands were instrumented with strain gauges to measure the force produced by the shaking. These forces were used to develop engineering guidelines for the design of the reinforcement needed for these systems. In addition, an analytical discrete element model was created using 3DEC software. The blocks were designed as rigid blocks, assigning all the properties to the joints including also the contribution of the interlocking shear key between blocks. The model is calibrated to the experimental static tests and validated with the obtained results from the dynamic tests. Then the model can be used to scale up the results to the full scale structure and expanding it to different configurations and boundary conditions.

Keywords: arch, discrete element model, seismic assessment, shake-table testing

Procedia PDF Downloads 205
129 Rhizospheric Oxygen Release of Hydroponically Grown Wetland Macrophytes as Passive Source for Cathodic Reduction in Microbial Fuel Cell

Authors: Chabungbam Niranjit Khuman, Makarand Madhao Ghangrekar, Arunabha Mitra

Abstract:

The cost of aeration is one of the limiting factors in the upscaling of microbial fuel cells (MFC) for field-scale applications. Wetland macrophytes have the ability to release oxygen into the water to maintain aerobic conditions in their root zone. In this experiment, the efficacy of rhizospheric oxygen release of wetland macrophytes as a source of oxygen in the cathodic chamber of MFC was conducted. The experiment was conducted in an MFC consisting of a three-liter anodic chamber made of ceramic cylinder and a 27 L cathodic chamber. Untreated carbon felts were used as electrodes (i.e., anode and cathode) and connected to an external load of 100 Ω using stainless steel wire. Wetland macrophytes (Canna indica) were grown in the cathodic chamber of the MFC in a hydroponic fashion using a styrofoam sheet (termed as macrophytes assisted-microbial fuel cell, M-MFC). The catholyte (i.e., water) in the M-MFC had negligible contact with atmospheric air due to the styrofoam sheet used for maintaining the hydroponic condition. There was no mixing of the catholyte in the M-MFC. Sucrose based synthetic wastewater having chemical oxygen demand (COD) of 3000 mg/L was fed into the anodic chamber of the MFC in fed-batch mode with a liquid retention time of four days. The C. indica thrived well throughout the duration of the experiment without much care. The average dissolved oxygen (DO) concentration and pH value in the M-MFC were 3.25 mg/L and 7.07, respectively, in the catholyte. Since the catholyte was not in contact with air, the DO in the catholyte might be considered as solely liberated from the rhizospheric oxygen release of C. indica. The maximum COD removal efficiency of M-MFC observed during the experiment was 76.9%. The inadequacy of terminal electron acceptor in the cathodic chamber in M-MFC might have hampered the electron transfer, which in turn, led to slower specific microbial activity, thereby resulting in lower COD removal efficiency than the traditional MFC with aerated catholyte. The average operating voltage (OV) and open-circuit voltage (OCV) of 294 mV and 594 mV, respectively, were observed in M-MFC. The maximum power density observed during polarization was 381 mW/m³, and the maximum sustainable power density observed during the experiment was 397 mW/m³ in M-MFC. The maximum normalized energy recovery and coulombic efficiency of 38.09 Wh/m³ and 1.27%, respectively, were observed. Therefore, it was evidenced that rhizospheric oxygen release of wetland macrophytes (C. indica) was capable of sustaining the cathodic reaction in MFC for field-scale applications.

Keywords: hydroponic, microbial fuel cell, rhizospheric oxygen release, wetland macrophytes

Procedia PDF Downloads 130
128 Syngas From Polypropylene Gasification in a Fluidized Bed

Authors: Sergio Rapagnà, Alessandro Antonio Papa, Armando Vitale, Andre Di Carlo

Abstract:

In recent years the world population has enormously increased the use of plastic products for their living needs, in particular for transporting and storing consumer goods such as food and beverage. Plastics are widely used in the automotive industry, in construction of electronic equipment, clothing and home furnishings. Over the last 70 years, the annual production of plastic products has increased from 2 million tons to 460 million tons. About 20% of the last quantity is mismanaged as waste. The consequence of this mismanagement is the release of plastic waste into the terrestrial and marine environments which represents a danger to human health and the ecosystem. Recycling all plastics is difficult because they are often made with mixtures of polymers that are incompatible with each other and contain different additives. The products obtained are always of lower quality and after two/three recycling cycles they must be eliminated either by thermal treatment to produce heat or disposed of in landfill. An alternative to these current solutions is to obtain a mixture of gases rich in H₂, CO and CO₂ suitable for being profitably used for the production of chemicals with consequent savings fossil sources. Obtaining a hydrogen-rich syngas can be achieved by gasification process using the fluidized bed reactor, in presence of steam as the fluidization medium. The fluidized bed reactor allows the gasification process of plastics to be carried out at a constant temperature and allows the use of different plastics with different compositions and different grain sizes. Furthermore, during the gasification process the use of steam increase the gasification of char produced by the first pyrolysis/devolatilization process of the plastic particles. The bed inventory can be made with particles having catalytic properties such as olivine, capable to catalyse the steam reforming reactions of heavy hydrocarbons normally called tars, with a consequent increase in the quantity of gases produced. The plant is composed of a fluidized bed reactor made of AISI 310 steel, having an internal diameter of 0.1 m, containing 3 kg of olivine particles as a bed inventory. The reactor is externally heated by an oven up to 1000 °C. The hot producer gases that exit the reactor, after being cooled, are quantified using a mass flow meter. Gas analyzers are present to measure instantly the volumetric composition of H₂, CO, CO₂, CH₄ and NH₃. At the conference, the results obtained from the continuous gasification of polypropylene (PP) particles in a steam atmosphere at temperatures of 840-860 °C will be presented.

Keywords: gasification, fluidized bed, hydrogen, olivine, polypropyle

Procedia PDF Downloads 26
127 Compression and Air Storage Systems for Small Size CAES Plants: Design and Off-Design Analysis

Authors: Coriolano Salvini, Ambra Giovannelli

Abstract:

The use of renewable energy sources for electric power production leads to reduced CO2 emissions and contributes to improving the domestic energy security. On the other hand, the intermittency and unpredictability of their availability poses relevant problems in fulfilling safely and in a cost efficient way the load demand along the time. Significant benefits in terms of “grid system applications”, “end-use applications” and “renewable applications” can be achieved by introducing energy storage systems. Among the currently available solutions, CAES (Compressed Air Energy Storage) shows favorable features. Small-medium size plants equipped with artificial air reservoirs can constitute an interesting option to get efficient and cost-effective distributed energy storage systems. The present paper is addressed to the design and off-design analysis of the compression system of small size CAES plants suited to absorb electric power in the range of hundreds of kilowatt. The system of interest is constituted by an intercooled (in case aftercooled) multi-stage reciprocating compressor and a man-made reservoir obtained by connecting large diameter steel pipe sections. A specific methodology for the system preliminary sizing and off-design modeling has been developed. Since during the charging phase the electric power absorbed along the time has to change according to the peculiar CAES requirements and the pressure ratio increases continuously during the filling of the reservoir, the compressor has to work at variable mass flow rate. In order to ensure an appropriately wide range of operations, particular attention has been paid to the selection of the most suitable compressor capacity control device. Given the capacity regulation margin of the compressor and the actual level of charge of the reservoir, the proposed approach allows the instant-by-instant evaluation of minimum and maximum electric power absorbable from the grid. The developed tool gives useful information to appropriately size the compression system and to manage it in the most effective way. Various cases characterized by different system requirements are analysed. Results are given and widely discussed.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), compressor design, compression system management.

Procedia PDF Downloads 226
126 In vitro Evaluation of Capsaicin Patches for Transdermal Drug Delivery

Authors: Alija Uzunovic, Sasa Pilipovic, Aida Sapcanin, Zahida Ademovic, Berina Pilipović

Abstract:

Capsaicin is a naturally occurring alkaloid extracted from capsicum fruit extracts of different of Capsicum species. It has been employed topically to treat many diseases such as rheumatoid arthritis, osteoarthritis, cancer pain and nerve pain in diabetes. The high degree of pre-systemic metabolism of intragastrical capsaicin and the short half-life of capsaicin by intravenous administration made topical application of capsaicin advantageous. In this study, we have evaluated differences in the dissolution characteristics of capsaicin patch 11 mg (purchased from market) at different dissolution rotation speed. The proposed patch area is 308 cm2 (22 cm x 14 cm; it contains 36 µg of capsaicin per square centimeter of adhesive). USP Apparatus 5 (Paddle Over Disc) is used for transdermal patch testing. The dissolution study was conducted using USP apparatus 5 (n=6), ERWEKA DT800 dissolution tester (paddle-type) with addition of a disc. The fabricated patch of 308 cm2 is to be cut into 9 cm2 was placed against a disc (delivery side up) retained with the stainless-steel screen and exposed to 500 mL of phosphate buffer solution pH 7.4. All dissolution studies were carried out at 32 ± 0.5 °C and different rotation speed (50± 5; 100± 5 and 150± 5 rpm). 5 ml aliquots of samples were withdrawn at various time intervals (1, 4, 8 and 12 hours) and replaced with 5 ml of dissolution medium. Withdrawn were appropriately diluted and analyzed by reversed-phase liquid chromatography (RP-LC). A Reversed Phase Liquid Chromatography (RP-LC) method has been developed, optimized and validated for the separation and quantitation of capsaicin in a transdermal patch. The method uses a ProntoSIL 120-3-C18 AQ 125 x 4,0 mm (3 μm) column maintained at 600C. The mobile phase consisted of acetonitrile: water (50:50 v/v), the flow rate of 0.9 mL/min, the injection volume 10 μL and the detection wavelength 222 nm. The used RP-LC method is simple, sensitive and accurate and can be applied for fast (total chromatographic run time was 4.0 minutes) and simultaneous analysis of capsaicin and dihydrocapsaicin in a transdermal patch. According to the results obtained in this study, we can conclude that the relative difference of dissolution rate of capsaicin after 12 hours was elevated by increase of dissolution rotation speed (100 rpm vs 50 rpm: 84.9± 11.3% and 150 rpm vs 100 rpm: 39.8± 8.3%). Although several apparatus and procedures (USP apparatus 5, 6, 7 and a paddle over extraction cell method) have been used to study in vitro release characteristics of transdermal patches, USP Apparatus 5 (Paddle Over Disc) could be considered as a discriminatory test. would be able to point out the differences in the dissolution rate of capsaicin at different rotation speed.

Keywords: capsaicin, in vitro, patch, RP-LC, transdermal

Procedia PDF Downloads 224
125 Understanding the Effect of Material and Deformation Conditions on the “Wear Mode Diagram”: A Numerical Study

Authors: A. Mostaani, M. P. Pereira, B. F. Rolfe

Abstract:

The increasing application of Advanced High Strength Steel (AHSS) in the automotive industry to fulfill crash requirements has introduced higher levels of wear in stamping dies and parts. Therefore, understanding wear behaviour in sheet metal forming is of great importance as it can help to reduce the high costs currently associated with tool wear. At the contact between the die and the sheet, the tips of hard tool asperities interact with the softer sheet material. Understanding the deformation that occurs during this interaction is important for our overall understanding of the wear mechanisms. For these reasons, the scratching of a perfectly plastic material by a rigid indenter has been widely examined in the literature; with finite element modelling (FEM) used in recent years to further understand the behaviour. The ‘wear mode diagram’ has been commonly used to classify the deformation regime of the soft work-piece during scratching, into three modes: ploughing, wedge formation, and cutting. This diagram, which is based on 2D slip line theory and upper bound method for perfectly plastic work-piece and rigid indenter, relates different wear modes to attack angle and interfacial strength. This diagram has been the basis for many wear studies and wear models to date. Additionally, it has been concluded that galling is most likely to occur during the wedge formation mode. However, there has been little analysis in the literature of how the material behaviour and deformation conditions associated with metal forming processes influence the wear behaviour. Therefore, the first aim of this work is first to use a commercial FEM package (Abaqus/Explicit) to build a 3D model to capture wear modes during scratching with indenters with different attack angles and different interfacial strengths. The second goal is to utilise the developed model to understand how wear modes might change in the presence of bulk deformation of the work-piece material as a result of the metal forming operation. Finally, the effect of the work-piece material properties, including strain hardening, will be examined to understand how these influence the wear modes and wear behaviour. The results show that both strain hardening and substrate deformation can change the critical attack angle at which the wedge formation regime is activated.

Keywords: finite element, pile-up, scratch test, wear mode

Procedia PDF Downloads 327
124 Structural Performance of Mechanically Connected Stone Panels under Cyclic Loading: Application to Aesthetic and Environmental Building Skin Design

Authors: Michel Soto Chalhoub

Abstract:

Building designers in the Mediterranean region and other parts of the world utilize natural stone panels on the exterior façades as skin cover. This type of finishing is not only intended for aesthetic reasons but also environmental. The stone, since the earliest ages of civilization, has been used in construction and to-date some of the most appealing buildings owe their beauty to stone finishing. The stone also provides warmth in winter and freshness in summer as it moderates heat transfer and absorbs radiation. However, as structural codes became increasingly stringent about the dynamic performance of buildings, it became essential to study the performance of stone panels under cyclic loading – a condition that arises under the building is subjected to wind or earthquakes. The present paper studies the performance of stone panels using mechanical connectors when subjected to load reversal. In this paper, we present a theoretical model that addresses modes of failure in the steel connectors, by yield, and modes of failure in the stone, by fracture. Then we provide an experimental set-up and test results for rectangular stone panels of varying thickness. When the building is subjected to an earthquake, its rectangular panels within the structural system are subjected to shear deformations, which in turn impart stress into the stone cover. Rectangular stone panels, which typically range from 40cmx80cm to 60cmx120cm, need to be designed to withstand transverse loading from the direct application of lateral loads, and to withstand simultaneously in-plane loading (membrane stress) caused by inter-story drift and overall building lateral deflection. Results show correlation between the theoretical model which we derive from solid mechanics fundamentals and the experimental results, and lead to practical design recommendations. We find that for panel thickness below a certain threshold, it is more advantageous to utilize structural adhesive materials to connect stone panels to the main structural system of the building. For larger panel thicknesses, it is recommended to utilize mechanical connectors with special detailing to ensure a minimum level of ductility and energy dissipation.

Keywords: solid mechanics, cyclic loading, mechanical connectors, natural stone, seismic, wind, building skin

Procedia PDF Downloads 254
123 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes

Authors: H. Ishii, S. Araki, H. Yamamoto

Abstract:

In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.

Keywords: membrane, perovskite structure, dual-phase, carbonate

Procedia PDF Downloads 364
122 Scrutinizing the Effective Parameters on Cuttings Movement in Deviated Wells: Experimental Study

Authors: Siyamak Sarafraz, Reza Esmaeil Pour, Saeed Jamshidi, Asghar Molaei Dehkordi

Abstract:

Cutting transport is one of the major problems in directional and extended reach oil and gas wells. Lack of sufficient attention to this issue may bring some troubles such as casing running, stuck pipe, excessive torque and drag, hole pack off, bit wear, decreased the rate of penetration (ROP), increased equivalent circulation density (ECD) and logging. Since it is practically impossible to directly observe the behavior of deep wells, a test setup was designed to investigate cutting transport phenomena. This experimental work carried out to scrutiny behavior of the effective variables in cutting transport. The test setup contained a test section with 17 feet long that made of a 3.28 feet long transparent glass pipe with 3 inch diameter, a storage tank with 100 liters capacity, drill pipe rotation which made of stainless steel with 1.25 inches diameter, pump to circulate drilling fluid, valve to adjust flow rate, bit and a camera to record all events which then converted to RGB images via the Image Processing Toolbox. After preparation of test process, each test performed separately, and weights of the output particles were measured and compared with each other. Observation charts were plotted to assess the behavior of viscosity, flow rate and RPM in inclinations of 0°, 30°, 60° and 90°. RPM was explored with other variables such as flow rate and viscosity in different angles. Also, effect of different flow rate was investigated in directional conditions. To access the precise results, captured image were analyzed to find out bed thickening and particles behave in the annulus. The results of this experimental study demonstrate that drill string rotation helps particles to be suspension and reduce the particle deposition cutting movement increased significantly. By raising fluid velocity, laminar flow converted to turbulence flow in the annulus. Increases in flow rate in horizontal section by considering a lower range of viscosity is more effective and improved cuttings transport performance.

Keywords: cutting transport, directional drilling, flow rate, hole cleaning, pipe rotation

Procedia PDF Downloads 284
121 Assessing the Feasibility of Italian Hydrogen Targets with the Open-Source Energy System Optimization Model TEMOA - Italy

Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

Hydrogen is expected to become a game changer in the energy transition, especially enabling sector coupling possibilities and the decarbonization of hard-to-abate end-uses. The Italian National Recovery and Resilience Plan identifies hydrogen as one of the key elements of the ecologic transition to meet international decarbonization objectives, also including it in several pilot projects for the early development in Italy. This matches the European energy strategy, which aims to make hydrogen a leading energy carrier of the future, setting ambitious goals to be accomplished by 2030. The huge efforts needed to achieve the announced targets require to carefully investigate of their feasibility in terms of economic expenditures and technical aspects. In order to quantitatively assess the hydrogen potential within the Italian context and the feasibility of the planned investments and projects, this work uses the TEMOA-Italy energy system model to study pathways to meet the strict objectives above cited. The possible hydrogen development has been studied both in the supply-side and demand-side of the energy system, also including storage options and distribution chains. The assessment comprehends alternative hydrogen production technologies involved in a competition market, reflecting the several possible investments declined by the Italian National Recovery and Resilience Plan to boost the development and spread of this infrastructure, including the sector coupling potential with natural gas through the currently existing infrastructure and CO2 capture for the production of synfuels. On the other hand, the hydrogen end-uses phase covers a wide range of consumption alternatives, from fuel-cell vehicles, for which both road and non-road transport categories are considered, to steel, and chemical industries uses and cogeneration for residential and commercial buildings. The model includes both high and low TRL technologies in order to provide a consistent outcome for the future decades as it does for the present day, and since it is developed through the use of an open-source code instance and database, transparency and accessibility are fully granted.

Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA

Procedia PDF Downloads 100
120 The Evaporation Study of 1-ethyl-3-methylimidazolium chloride

Authors: Kirill D. Semavin, Norbert S. Chilingarov, Eugene.V. Skokan

Abstract:

The ionic liquids (ILs) based on imidazolium cation are well known nowadays. The changing anions and substituents in imidazolium ring may lead to different physical and chemical properties of ILs. It is important that such ILs with halogen as anion are characterized by a low thermal stability. The data about thermal stability of 1-ethyl-3-methylimidazolium chloride are ambiguous. In the works of last years, thermal stability of this IL was investigated by thermogravimetric analysis and obtained results are contradictory. Moreover, in the last study, it was shown that the observed temperature of the beginning of decomposition significantly depends on the experimental conditions, for example, the heating rate of the sample. The vapor pressure of this IL is not presented at the literature. In this study, the vapor pressure of 1-ethyl-3-methylimidazolium chloride was obtained by Knudsen effusion mass-spectrometry (KEMS). The samples of [ЕMIm]Cl (purity > 98%) were supplied by Sigma–Aldrich and were additionally dried at dynamic vacuum (T = 60 0C). Preliminary procedures with Il were derived into glove box. The evaporation studies of [ЕMIm]Cl were carried out by KEMS with using original research equipment based on commercial MI1201 magnetic mass spectrometer. The stainless steel effusion cell had an effective evaporation/effusion area ratio of more than 6000. The cell temperature, measured by a Pt/Pt−Rh (10%) thermocouple, was controlled by a Termodat 128K5 device with an accuracy of ±1 K. In first step of this study, the optimal temperature of experiment and heating rate of samples were customized: 449 K and 5 K/min, respectively. In these conditions the sample is decomposed, but the experimental measurements of the vapor pressures are possible. The thermodynamic activity of [ЕMIm]Cl is close to 1 and products of decomposition don’t affect it at firstly 50 hours of experiment. Therefore, it lets to determine the saturated vapor pressure of IL. The electronic ionization mass-spectra shows that the decomposition of [ЕMIm]Cl proceeds with two ways. Nonetheless, the MALDI mass spectra of the starting sample and residue in the cell were similar. It means that the main decomposition products are gaseous under experimental conditions. This result allows us to obtain information about the kinetics of [ЕMIm]Cl decomposition. Thus, the original KEMS-based procedure made it possible to determine the IL vapor pressure under decomposition conditions. Also, the loss of sample mass due to the evaporation was obtained.

Keywords: ionic liquids, Knudsen effusion mass spectrometry, thermal stability, vapor pressure

Procedia PDF Downloads 186
119 Corrosion Study of Magnetically Driven Components in Spinal Implants by Immersion Testing in Simulated Body Fluids

Authors: Benjawan Saengwichian, Alasdair E. Charles, Philip J. Hyde

Abstract:

Magnetically controlled growing rods (MCGRs) have been used to stabilise and correct spinal curvature in children to support non-invasive scoliosis adjustment. Although the encapsulated driving components are intended to be isolated from body fluid contact, in vivo corrosion was observed on these components due to sealing mechanism damage. Consequently, a corrosion circuit is created with the body fluids, resulting in malfunction of the lengthening mechanism. Particularly, the chloride ions in blood plasma or cerebrospinal fluid (CSF) may corrode the MCGR alloys, possibly resulting in metal ion release in long-term use. However, there is no data available on the corrosion resistance of spinal implant alloys in CSF. In this study, an in vitro immersion configuration was designed to simulate in vivo corrosion of 440C SS-Ti6Al4V couples. The 440C stainless steel (SS) was heat-treated to investigate the effect of tempering temperature on intergranular corrosion (IGC), while crevice and galvanic corrosion were studied by limiting the clearance of dissimilar couples. Tests were carried out in a neutral artificial cerebrospinal fluid (ACSF) and phosphate-buffered saline (PBS) under aeration and deaeration for 2 months. The composition of the passive films and metal ion release were analysed. The effect of galvanic coupling, pH, dissolved oxygen and anion species on corrosion rates and corrosion mechanisms are discussed based on quantitative and qualitative measurements. The results suggest that ACSF is more aggressive than PBS due to the combination of aggressive chlorides and sulphate anions, while phosphate in PBS acts as an inhibitor to delay corrosion. The presence of Vivianite on the SS surface in PBS lowered the corrosion rate (CR) more than 5 times for aeration and nearly 2 times for deaeration, compared with ACSF. The CR of 440C is dependent on passive film properties varied by tempering temperature and anion species. Although the CR of Ti6Al4V is insignificant, it tends to release more Ti ions in deaerated ACSF than under aeration, about 6 µg/L. It seems the crevice-like design has more effect on macroscopic corrosion than combining the dissimilar couple, whereas IGC is dominantly observed on sensitized microstructure.

Keywords: cerebrospinal fluid, crevice corrosion, intergranular corrosion, magnetically controlled growing rods

Procedia PDF Downloads 128
118 Investigation of Mechanical and Tribological Property of Graphene Reinforced SS-316L Matrix Composite Prepared by Selective Laser Melting

Authors: Ajay Mandal, Jitendar Kumar Tiwari, N. Sathish, A. K. Srivastava

Abstract:

A fundamental investigation is performed on the development of graphene (Gr) reinforced stainless steel 316L (SS 316L) metal matrix composite via selective laser melting (SLM) in order to improve specific strength and wear resistance property of SS 316L. Firstly, SS 316L powder and graphene were mixed in a fixed ratio using low energy planetary ball milling. The milled powder is then subjected to the SLM process to fabricate composite samples at a laser power of 320 W and exposure time of 100 µs. The prepared composite was mechanically tested (hardness and tensile test) at ambient temperature, and obtained results indicate that the properties of the composite increased significantly with the addition of 0.2 wt. % Gr. Increment of about 25% (from 194 to 242 HV) and 70% (from 502 to 850 MPa) is obtained in hardness and yield strength of composite, respectively. Raman mapping and XRD were performed to see the distribution of Gr in the matrix and its effect on the formation of carbide, respectively. Results of Raman mapping show the uniform distribution of graphene inside the matrix. Electron back scatter diffraction (EBSD) map of the prepared composite was analyzed under FESEM in order to understand the microstructure and grain orientation. Due to thermal gradient, elongated grains were observed along the building direction, and grains get finer with the addition of Gr. Most of the mechanical components are subjected to several types of wear conditions. Therefore, it is very necessary to improve the wear property of the component, and hence apart from strength and hardness, a tribological property of composite was also measured under dry sliding condition. Solid lubrication property of Gr plays an important role during the sliding process due to which the wear rate of composite reduces up to 58%. Also, the surface roughness of worn surface reduces up to 70% as measured by 3D surface profilometry. Finally, it can be concluded that SLM is an efficient method of fabricating cutting edge metal matrix nano-composite having Gr like reinforcement, which was very difficult to fabricate through conventional manufacturing techniques. Prepared composite has superior mechanical and tribological properties and can be used for a wide variety of engineering applications. However, due to the unavailability of a considerable amount of literature in a similar domain, more experimental works need to perform, such as thermal property analysis, and is a part of ongoing study.

Keywords: selective laser melting, graphene, composite, mechanical property, tribological property

Procedia PDF Downloads 135
117 Biotech Processes to Recover Valuable Fraction from Buffalo Whey Usable in Probiotic Growth, Cosmeceutical, Nutraceutical and Food Industries

Authors: Alberto Alfano, Sergio D’ambrosio, Darshankumar Parecha, Donatella Cimini, Chiara Schiraldi.

Abstract:

The main objective of this study regards the setup of an efficient small-scale platform for the conversion of local renewable waste materials, such as whey, into added-value products, thereby reducing environmental impact and costs deriving from the disposal of processing waste products. The buffalo milk whey derived from the cheese-making process, called second cheese whey, is the main by-product of the dairy industry. Whey is the main and most polluting by-product obtained from cheese manufacturing consisting of lactose, lactic acid, proteins, and salts, making whey an added-value product. In Italy, and in particular, in the Campania region, soft cheese production needs a large volume of liquid waste, especially during late spring and summer. This project is part of a circular economy perspective focused on the conversion of potentially polluting and difficult to purify waste into a resource to be exploited, and it embodies the concept of the three “R”: reduce, recycle, and reuse. Special focus was paid to the production of health-promoting biomolecules and biopolymers, which may be exploited in different segments of the food and pharmaceutical industries. These biomolecules may be recovered through appropriate processes and reused in an attempt to obtain added value products. So, ultrafiltration and nanofiltration processes were performed to fractionate bioactive components starting from buffalo milk whey. In this direction, the present study focused on the implementation of a downstream process that converts waste generated from food and food processing industries into added value products with potential applications. Owing to innovative downstream and biotechnological processes, rather than a waste product may be considered a resource to obtain high added value products, such as food supplements (probiotics), cosmeceuticals, biopolymers, and recyclable purified water. Besides targeting gastrointestinal disorders, probiotics such as Lactobacilli have been reported to improve immunomodulation and protection of the host against infections caused by viral and bacterial pathogens. Interestingly, also inactivated microbial (probiotic) cells and their metabolic products, indicated as parabiotic and postbiotics, respectively, have a crucial role and act as mediators in the modulation of the host’s immune function. To boost the production of biomass (both viable and/or heat inactivated cells) and/or the synthesis of growth-related postbiotics, such as EPS, efficient and sustainable fermentation processes are necessary. Based on a “zero-waste” approach, wastes generated from local industries can be recovered and recycled to develop sustainable biotechnological processes to obtain probiotics as well as post and parabiotic, to be tested as bioactive compounds against gastrointestinal disorders. The results have shown it was possible to recover an ultrafiltration retentate with suitable characteristics to be used in skin dehydration, to perform films (i.e., packaging for food industries), or as a wound repair agent and a nanofiltration retentate to recover lactic acid and carbon sources (e.g., lactose, glucose..) used for microbial cultivation. On the side, the last goal is to obtain purified water that can be reused throughout the process. In fact, water reclamation and reuse provide a unique and viable opportunity to augment traditional water supplies, a key issue nowadays.

Keywords: biotech process, downstream process, probiotic growth, from waste to product, buffalo whey

Procedia PDF Downloads 66
116 CO2 Capture in Porous Silica Assisted by Lithium

Authors: Lucero Gonzalez, Salvador Alfaro

Abstract:

Carbon dioxide (CO2) and methane (CH4) are considered as the compounds with higher abundance among the greenhouse gases (CO2, NOx, SOx, CxHx, etc.), due to its higher concentration, this two gases have a greater impact in the environment pollution and provokes global warming. So, recovery, disposal and subsequent reuse, are of great interest, especially from the ecological and health perspective. By one hand, porous inorganic materials are good candidates to capture gases, because these type of materials are higher stability from the point view of thermal, chemical and mechanical under adsorption gas processes. By another hand, during the design and the synthetic preparation of the porous materials is possible add other intrinsic properties (physicochemical and structural) by adding chemical compounds as dopants or using structured directed agents or surfactants to improve the porous structure, the above features allow to have alternative materials for separation, capture and storage of greenhouse gases. In this work, ordered mesoporous materials base silica were prepared using Surfynol as surfactant. The surfactant micelles are commonly used as self-assembly templates for the development of new structure porous silica’s, adding a variety of textures and structures. By another hand, the Surfynol is a commercial surfactant, is non-ionic, for that is necessary determine its critical micelles concentration (cmc) by the pyrene I1/I3 ratio method, before to prepare silica particles. One time known the CMC, a precursor gel was prepared via sol-gel process at room temperature using TEOS as silica precursor, NH4OH as catalyst, Surfynol as template and H2O as solvent. Then, the gel precursor was treatment hydrothermally in a Teflon-lined stainless steel autoclave with a volume of 100 mL and kept at 100 ºC for 24 h under static conditions in a convection oven. After that, the porous silica particles obtained were impregnated with lithium to improve the CO2 adsorption capacity. Then the silica particles were characterized physicochemical, morphology and structurally, by XRD, FTIR, BET and SEM techniques. The thermal stability and the CO2 adsorption capacity was evaluated by thermogravimetric analysis (TGA). According the results, we found that the Surfynol is a good candidate to prepare silica particles with an ordered structure. Also the TGA analysis shown that the particles has a good thermal stability in the range of 250 °C and 800 °C. The best materials had, the capacity to adsorbing 70 and 90 mg per gram of silica particles and its CO2 adsorption capacity depends on the way to thermal pretreatment of the porous silica before of the adsorption experiments and of the concentration of surfactant used during the synthesis of silica particles. Acknowledgments: This work was supported by SIP-IPN through project SIP-20161862.

Keywords: CO2 adsorption, lithium as dopant, porous silica, surfynol as surfactant, thermogravimetric analysis

Procedia PDF Downloads 265
115 Dynamics of Bacterial Contamination and Oral Health Risks Associated with Currency Notes and Coins Circulating in Kampala City

Authors: Abdul Walusansa

Abstract:

In this paper, paper notes and coins were collected from general public in Kampala City where ready-to-eat food can be served, in order to survey for bacterial contamination. The total bacterial number and potentially pathogenic organisms loading on currency were tested. All isolated potential pathogens were also tested for antibiotic resistance against four most commonly prescribed antibiotics. 1. The bacterial counts on one hundred paper notes sample were ranging between 6~10918/cm cm-2,the median was 141/ cm-2, according to the data it was much higher than credit cards and Australian notes which were made of polymer. The bacterial counts on sixty coin samples were ranging between 2~380/cm-2, much less than paper notes. 2. Coliform (65.6%), E. coli (45.9%), S. aureus (41.7%), B. cereus (67.7%), Salmonella (19.8%) were isolated on one hundred paper notes. Coliform (22.4%), E. coli (5.2%), S. aureus (24.1%), B. cereus (34.5%), Salmonella (10.3%) were isolated from sixty coin samples. These results suggested a high rate of potential pathogens contamination of paper notes than coins. 3. Antibiotic resistances are commonly in most of the pathogens isolated on currency. Ampicillin resistance was found in 60%of Staphylococcus aureus isolated on currency, as well as 76.6% of E. coil and 40% of Salmonella. Erythromycin resistance was detected in 56.6% of S. aureus and in 80.0% of E. coli. All the pathogens isolated were sensitive to Norfloxacin, Salmonella and S. aureus also sensitive to Cefaclor. In this paper, we also studied the antimicrobial capability of metal coins, coins collected from different countries were tested for the ability to inhibit the growth of E. sakazakii, S. aureus, E. coli, L. monocytogenes and S. typhimurium. 1) E. sakazakii appeared very sensitive to metal coins, the second is S. aureus, but E. coli, L. monocytogenes and S. typhimurium are more resistant to these metal coin samples. 2) Coins made of Nickel-brass alloy and Copper-nickel alloy showed a better effect in anti-microbe than other metal coins, especially the ability to inhibited the growth of E. sakazakii and S. aureus, all the inhibition zones produced on nutrient agar are more than 20.6 mm. Aluminium-bronze alloy revealed weak anti-microbe activity to S. aureus and no effect to kill other pathogens. Coins made of stainless steel also can’t resist bacteria growth. 3) Surprisingly, one cent coins of USA which were made of 97.5% Zinc and 2.5% Cu showed a significant antimicrobial capability, the average inhibition zone of these five pathogens is 45.5 mm.

Keywords: antibiotic sensitivity, bacteria, currency, coins, parasites

Procedia PDF Downloads 328
114 A Methodology to Virtualize Technical Engineering Laboratories: MastrLAB-VR

Authors: Ivana Scidà, Francesco Alotto, Anna Osello

Abstract:

Due to the importance given today to innovation, the education sector is evolving thanks digital technologies. Virtual Reality (VR) can be a potential teaching tool offering many advantages in the field of training and education, as it allows to acquire theoretical knowledge and practical skills using an immersive experience in less time than the traditional educational process. These assumptions allow to lay the foundations for a new educational environment, involving and stimulating for students. Starting from the objective of strengthening the innovative teaching offer and the learning processes, the case study of the research concerns the digitalization of MastrLAB, High Quality Laboratory (HQL) belonging to the Department of Structural, Building and Geotechnical Engineering (DISEG) of the Polytechnic of Turin, a center specialized in experimental mechanical tests on traditional and innovative building materials and on the structures made with them. The MastrLAB-VR has been developed, a revolutionary innovative training tool designed with the aim of educating the class in total safety on the techniques of use of machinery, thus reducing the dangers arising from the performance of potentially dangerous activities. The virtual laboratory, dedicated to the students of the Building and Civil Engineering Courses of the Polytechnic of Turin, has been projected to simulate in an absolutely realistic way the experimental approach to the structural tests foreseen in their courses of study: from the tensile tests to the relaxation tests, from the steel qualification tests to the resilience tests on elements at environmental conditions or at characterizing temperatures. The research work proposes a methodology for the virtualization of technical laboratories through the application of Building Information Modelling (BIM), starting from the creation of a digital model. The process includes the creation of an independent application, which with Oculus Rift technology will allow the user to explore the environment and interact with objects through the use of joypads. The application has been tested in prototype way on volunteers, obtaining results related to the acquisition of the educational notions exposed in the experience through a virtual quiz with multiple answers, achieving an overall evaluation report. The results have shown that MastrLAB-VR is suitable for both beginners and experts and will be adopted experimentally for other laboratories of the University departments.

Keywords: building information modelling, digital learning, education, virtual laboratory, virtual reality

Procedia PDF Downloads 129
113 Long Term Survival after a First Transient Ischemic Attack in England: A Case-Control Study

Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski

Abstract:

Transient ischaemic attacks (TIAs) are warning signs for future strokes. TIA patients are at increased risk of stroke and cardio-vascular events after a first episode. A majority of studies on TIA focused on the occurrence of these ancillary events after a TIA. Long-term mortality after TIA received only limited attention. We undertook this study to determine the long-term hazards of all-cause mortality following a first episode of a TIA using anonymised electronic health records (EHRs). We used a retrospective case-control study using electronic primary health care records from The Health Improvement Network (THIN) database. Patients born prior to or in year 1960, resident in England, with a first diagnosis of TIA between January 1986 and January 2017 were matched to three controls on age, sex and general medical practice. The primary outcome was all-cause mortality. The hazards of all-cause mortality were estimated using a time-varying Weibull-Cox survival model which included both scale and shape effects and a random frailty effect of GP practice. 20,633 cases and 58,634 controls were included. Cases aged 39 to 60 years at the first TIA event had the highest hazard ratio (HR) of mortality compared to matched controls (HR = 3.04, 95% CI (2.91 - 3.18)). The HRs for cases aged 61-70 years, 71-76 years and 77+ years were 1.98 (1.55 - 2.30), 1.79 (1.20 - 2.07) and 1.52 (1.15 - 1.97) compared to matched controls. Aspirin provided long-term survival benefits to cases. Cases aged 39-60 years on aspirin had HR of 0.93 (0.84 - 1.00), 0.90 (0.82 - 0.98) and 0.88 (0.80 - 0.96) at 5 years, 10 years and 15 years, respectively, compared to cases in the same age group who were not on antiplatelets. Similar beneficial effects of aspirin were observed in other age groups. There were no significant survival benefits with other antiplatelet options. No survival benefits of antiplatelet drugs were observed in controls. Our study highlights the excess long-term risk of death of TIA patients and cautions that TIA should not be treated as a benign condition. The study further recommends aspirin as the better option for secondary prevention for TIA patients compared to clopidogrel recommended by NICE guidelines. Management of risk factors and treatment strategies should be important challenges to reduce the burden of disease.

Keywords: dual antiplatelet therapy (DAPT), General Practice, Multiple Imputation, The Health Improvement Network(THIN), hazard ratio (HR), Weibull-Cox model

Procedia PDF Downloads 144