Search results for: spatial metrics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3007

Search results for: spatial metrics

937 High-Speed Imaging and Acoustic Measurements of Dual-frequency Ultrasonic Processing of Graphite in Water

Authors: Justin Morton, Mohammad Khavari, Abhinav Priyadarshi, Nicole Grobert, Dmitry G. Eskin, Jiawei Mi, Kriakos Porfyrakis, Paul Prentice

Abstract:

Ultrasonic cavitation is used for various processes and applications. Recently, ultrasonic assisted liquid phase exfoliation has been implemented to produce two dimensional nanomaterials. Depending on parameters such as input transducer power and the operational frequency used to induce the cavitation, bubble dynamics can be controlled and optimised. Using ultra-high-speed imagining and acoustic pressure measurements, a dual-frequency systemand its effect on bubble dynamics was investigated. A high frequency transducer (1.174 MHz) showed that bubble fragments and satellite bubbles induced from a low frequency transducer (24 kHz) were able to extend their lifecycle. In addition, this combination of ultrasonic frequencies generated higher acoustic emissions (∼24%) than the sum of the individual transducers. The dual-frequency system also produced an increase in cavitation zone size of∼3 times compared to the low frequency sonotrode. Furthermore, the high frequency induced cavitation bubbleswere shown to rapidly oscillate, although remained stable and did not transiently collapse, even in the presence of a low pressure field. Finally, the spatial distribution of satellite and fragment bubbles from the sonotrode were shown to increase, extending the active cavitation zone. These observations elucidated the benefits of using a dual-frequency system for generating nanomaterials with the aid of ultrasound, in deionised water.

Keywords: dual-frequency, cavitation, bubble dynamics, graphene

Procedia PDF Downloads 195
936 Kinoform Optimisation Using Gerchberg- Saxton Iterative Algorithm

Authors: M. Al-Shamery, R. Young, P. Birch, C. Chatwin

Abstract:

Computer Generated Holography (CGH) is employed to create digitally defined coherent wavefronts. A CGH can be created by using different techniques such as by using a detour-phase technique or by direct phase modulation to create a kinoform. The detour-phase technique was one of the first techniques that was used to generate holograms digitally. The disadvantage of this technique is that the reconstructed image often has poor quality due to the limited dynamic range it is possible to record using a medium with reasonable spatial resolution.. The kinoform (phase-only hologram) is an alternative technique. In this method, the phase of the original wavefront is recorded but the amplitude is constrained to be constant. The original object does not need to exist physically and so the kinoform can be used to reconstruct an almost arbitrary wavefront. However, the image reconstructed by this technique contains high levels of noise and is not identical to the reference image. To improve the reconstruction quality of the kinoform, iterative techniques such as the Gerchberg-Saxton algorithm (GS) are employed. In this paper the GS algorithm is described for the optimisation of a kinoform used for the reconstruction of a complex wavefront. Iterations of the GS algorithm are applied to determine the phase at a plane (with known amplitude distribution which is often taken as uniform), that satisfies given phase and amplitude constraints in a corresponding Fourier plane. The GS algorithm can be used in this way to enhance the reconstruction quality of the kinoform. Different images are employed as the reference object and their kinoform is synthesised using the GS algorithm. The quality of the reconstructed images is quantified to demonstrate the enhanced reconstruction quality achieved by using this method.

Keywords: computer generated holography, digital holography, Gerchberg-Saxton algorithm, kinoform

Procedia PDF Downloads 533
935 Modeling of Combustion Process in the Piston Aircraft Engine Using a MCFM-3Z Model

Authors: Marcin Szlachetka, Konrad Pietrykowski

Abstract:

Modeling of a combustion process in a 9-cylinder aircraft engine is presented. The simulations of the combustion process in the IC engine have provided the information on the spatial and time distributions of selected quantities within the combustion chamber of the engine. The numerical analysis results have been compared with the results of indication process of the engine on the test stand. Modeling of combustion process an auto-ignited IC engine in the AVL Fire was carried out within the study. For the calculations, a ECFM-3Z model was used. Verification of simulation results was carried out by comparison of the pressure in the cylinder. The courses of indicated pressure, obtained from the simulations and during the engine tests mounted on a test stand were compared. The engine was braked by the propeller, which results in an adequate external power characteristics. The test object is a modified ASz-62IR engine with the injection system. The engine was running at take-off power. To check the optimum ignition timing regarding power, calculations, tests were performed for 7 different moments of ignition. The analyses of temperature distribution in the cylinder depending on the moments of ignition were carried out. Additional the course of pressure in the cylinder at different angles of ignition delays of the second spark plug were examined. The swirling of the mixture in the combustion chamber was also analysed. It has been shown that the largest vortexes occur in the middle of the chamber, and gets smaller, closer to the combustion chamber walls. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, internal combustion engine, aircraft engine

Procedia PDF Downloads 372
934 Modeling Local Warming Trend: An Application of Remote Sensing Technique

Authors: Khan R. Rahaman, Quazi K. Hassan

Abstract:

Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).

Keywords: local warming, climate change, urban area, Alberta, Canada

Procedia PDF Downloads 346
933 Art, Nature, and City in the Construction of Contemporary Public Space

Authors: Rodrigo Coelho

Abstract:

We believe that in the majority of the “recent production of public space", the overvaluation of the "image", of the "ephemeral" and of the "objectual", has come to determine the configuration of banal and (more or less) arbitrary "public spaces", mostly linked to a problem of “outdoor decoration”, reflecting a clear sign of uncertainty and arbitrariness about the meaning, the role and shape of public space and public art.This "inconsistency" which is essentially linked to the loss of urban, but also social, cultural and political, vocation of the disciplines that “shape” the urban space (but is also linked to the lack of urban and technical culture of techinicians and policy makers) converted a significant set of the recently built "public space" and “urban art” into diffuse and multi-referenced pieces, which generally shares the inability of confering to the urban space, civic, aesthetic, social and symbolic meanings. In this sense we consider it is essential to undertake a theoretical reflection on the values, the meaning(s) and the shape(s) that open space, and urban art may (or must) take in the current urban and cultural context, in order to redeem for public space its status of significant physical reference, able to embody a spatial and urban identity, and simultaneously enable the collective accession and appropriation of public space. Taking as reference public space interventions built in the last decade on the European context, we will seek to explore and defend the need of considering public space as a true place of exception, an exceptional support where the emphasis is placed on the quality of the experience, especially by the relations public space/urban art can established with the city, with nature and geography in a broad sense, referring us back to a close and inseparable and timeless relationship between nature and culture.

Keywords: art, city, nature, public space

Procedia PDF Downloads 449
932 Urban Renewal from the Perspective of Industrial Heritage Protection: Taking the Qiaokou District of Wuhan as an Example

Authors: Yue Sun, Yuan Wang

Abstract:

Most of the earliest national industries in Wuhan are located along the Hanjiang River, and Qiaokou is considered to be a gathering place for Dahankou old industrial base. Zongguan Waterworks, Pacific Soap Factory, Fuxin Flour Factory, Nanyang Tobacco Factory and other hundred-year-old factories are located along Hanjiang River in Qiaokou District, especially the Gutian Industrial Zone, which was listed as one of 156 national restoration projects at the beginning of the founding of the People’s Republic of China. After decades of development, Qiaokou has become the gathering place of the chemical industry and secondary industry, causing damage to the city and serious pollution, becoming a marginalized area forgotten by the central city. In recent years, with the accelerated pace of urban renewal, Qiaokou has been constantly reforming and innovating, and has begun drastic changes in the transformation of old cities and the development of new districts. These factories have been listed as key reconstruction projects, and a large number of industrial heritage with historical value and full urban memory have been relocated, demolished and reformed, with only a few factory buildings preserved. Through the methods of industrial archaeology, image analysis, typology and field investigation, this paper analyzes and summarizes the spatial characteristics of industrial heritage in Qiaokou District, explores urban renewal from the perspective of industrial heritage protection, and provides design strategies for the regeneration of urban industrial sites and industrial heritage.

Keywords: industrial heritage, urban renewal, protection, urban memory

Procedia PDF Downloads 145
931 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
930 Essential Elements and Trace Metals on a Continuously Cultivated and Fertilised Field

Authors: Pholosho M. Kgopa, Phatu W. Mashela

Abstract:

Due to high incidents of marginal land in Limpopo Province, South Africa, and increasing demand for arable land, small-holder farmers tend to continuously cultivate the same fields and at the same time, applying fertilisers to improve yields for meeting local food security. These practices might have an impact on the distribution of trace and essential elements. Therefore, the objective of this investigation was to assess the distribution of essential elements and trace metals in a continuously cultivated and fertilised field, at the University of Limpopo Experimental Farm. Three fields, 3 ha each were identified as continuously cultivated (CC), moderately cultivated (MC) and virgin fields (VF). Each field was divided into 12 equal grids of 50 m × 50 m for sampling. A soil profile was opened in each grid, where soil samples were collected from 0-20; 20-40 and 40-60; 60-80 and 80-100 cm depths for analysis. Samples were analysed for soil texture, pH, electrical conductivity, organic matter content, selected essential elements (Ca, P and Mg), Na and trace elements (Cu, Fe, Ni, and Zn). Results suggested that most of the variables were vertically different, with high concentrations of the test elements except for magnesium. Soil pH in depth 0-20 cm was high (6.44) in CC when compared to that in VF (5.29), but lower than that of MC (7.84). There were no distinctive vertical trends of the variables, except for Mg, Na, and K which displayed a declining trend at 40-60 cm depth when compared to the 0-20 cm depth. Concentrations of Fe, Cu, Zn, and Ni were generally low which might be due to their indirect relationship with soil pH. Continuous cultivation and fertilisation altered soil chemical properties; which could explain the unproductivity of such fields.

Keywords: over-cultivation, soil chemical properties, vertical distribution, spatial distribution

Procedia PDF Downloads 188
929 Horizontal Development of Built-up Area and Its Impacts on the Agricultural Land of Peshawar City District (1991-2014)

Authors: Pukhtoon Yar

Abstract:

Peshawar City is experiencing a rapid spatial urban growth primarily as a result of high rate of urbanization along with economic development. This paper was designed to understand the impacts of urbanization on agriculture land use change by particularly focusing on land use change trajectories from the past (1991-2014). We used Landsat imageries (30 meters) for1991along with Spot images (2.5 meters) for year 2014. . The ground truthing of the satellite data was performed by collecting information from Peshawar Development Authority, revenue department, real estate agents and interviews with the officials of city administration. The temporal satellite images were processed by applying supervised maximum likelihood classification technique in ArcGIS 9.3. The procedure resulted into five main classes of land use i.e. built-up area, farmland, barren land, cultivable-wasteland and water bodies. The analysis revealed that, in Peshawar City the built-up environment has been doubled from 8.1 percent in 1991 to over 18.2 percent in 2014 by predominantly encroaching land producing food. Furthermore, the CA-Markov Model predicted that the area under impervious surfaces would continue to flourish during the next three decades. This rapid increase in built-up area is accredited to the lack of proper land use planning and management, which has caused chaotic urban sprawl with detrimental social and environmental consequences.

Keywords: Urban Expansion, Land use, GIS, Remote Sensing, Markov Model, Peshawar City

Procedia PDF Downloads 186
928 Study and Conservation of Cultural and Natural Heritages with the Use of Laser Scanner and Processing System for 3D Modeling Spatial Data

Authors: Julia Desiree Velastegui Caceres, Luis Alejandro Velastegui Caceres, Oswaldo Padilla, Eduardo Kirby, Francisco Guerrero, Theofilos Toulkeridis

Abstract:

It is fundamental to conserve sites of natural and cultural heritage with any available technique or existing methodology of preservation in order to sustain them for the following generations. We propose a further skill to protect the actual view of such sites, in which with high technology instrumentation we are able to digitally preserve natural and cultural heritages applied in Ecuador. In this project the use of laser technology is presented for three-dimensional models, with high accuracy in a relatively short period of time. In Ecuador so far, there are not any records on the use and processing of data obtained by this new technological trend. The importance of the project is the description of the methodology of the laser scanner system using the Faro Laser Scanner Focus 3D 120, the method for 3D modeling of geospatial data and the development of virtual environments in the areas of Cultural and Natural Heritage. In order to inform users this trend in technology in which three-dimensional models are generated, the use of such tools has been developed to be able to be displayed in all kinds of digitally formats. The results of the obtained 3D models allows to demonstrate that this technology is extremely useful in these areas, but also indicating that each data campaign needs an individual slightly different proceeding starting with the data capture and processing to obtain finally the chosen virtual environments.

Keywords: laser scanner system, 3D model, cultural heritage, natural heritage

Procedia PDF Downloads 306
927 Assessing the Feasibility of Incorporating Green Infrastructure into Colonial-Era Buildings in the Caribbean

Authors: Luz-Marina Roberts, Ancil Kirk, Aisha Donaldson, Anya Seepaul, Jade Lakhan, Shianna Tikasingh

Abstract:

Climate change has produced a crisis that particularly threatens small island states in the Caribbean. Developers and climate enthusiasts alike are now forced to find new and sustainable ways of building. Focus on existing buildings is particularly needed in Trinidad and Tobago, like other islands, especially as these countries are vulnerable to climate threats and geographic locations with close proximity to a hurricane. Additionally, since many colonial-era style buildings still exist, the idea that they are energy inefficient is at the forefront of the work of policy-makers. The question that remains is can these buildings be retrofitted to reflect the modern era while considering climate resilience. This paper aims to investigate the energy efficiency of colonial-era buildings in Port of Spain and whether these buildings in Trinidad and Tobago, if found to be energy inefficient, can be more energy efficient and sustainable. This involves collecting surveys from building management in colonial-era buildings and researching literature on colonial architecture in the Caribbean and modern innovations in green building designs. Additionally, the data and experiences from the Town and Country Planning Division in the Ministry of Planning and Development of Trinidad and Tobago will inform the paper. This research will aid in re-envisioning how green infrastructure can be applied to urban environments with older buildings and help inform planning policy as it relates to sustainability and energy efficiency.

Keywords: spatial planning, climate resilience, energy efficiency, sustainable development

Procedia PDF Downloads 68
926 Investigating the Socio-ecological Impacts of Sea Level Rise on Coastal Rural Communities in Ghana

Authors: Benjamin Ankomah-Asare, Richard Adade

Abstract:

Sea level rise (SLR) poses a significant threat to coastal communities globally. Ghana has over the years implemented protective measures such as the construction of groynes and revetment to serve as barriers to sea waves in major cities and towns to prevent sea erosion and flooding. For vulnerable rural coastal communities, the planned retreat is often proposed; however, relocation costs are often underestimated as losses of future social and cultural value are not always adequately taken into account. Through a mixed-methods approach combining qualitative interviews, surveys, and spatial analysis, the study examined the experiences of coastal rural communities in Ghana and assess the effectiveness of relocation strategies in addressing the socio-economic and environmental challenges posed by sea level rise. The study revealed the devastating consequences of sea level rise on these communities, including increased flooding, erosion, and saltwater intrusion into freshwater sources. Moreover, it highlights the adaptive capacities within these communities and how factors such as infrastructure, economic activities, cultural heritage, and governance structures shape their resilience in the face of environmental change. While relocation can be an effective strategy in reducing the risks associated with sea level rise, the study recommends that proper implementation of this adaptation strategy can be achieved when coupled with community-led planning, participatory decision-making, and targeted support for vulnerable groups.

Keywords: sea level rise, relocation, socio-ecological impacts, rural communities

Procedia PDF Downloads 48
925 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 7
924 The History of Sambipitu Formation Temperature during the Early Miocene Epooch at Kali Ngalang, Nglipar, Gunung Kidul Regency

Authors: R. Harman Dwi, Ryan Avirsa, P. Abraham Ivan

Abstract:

Understanding of temperatures in the past, present, and future temperatures can be possible to do by analysis abundance of fossil foraminifera. This research was conducted in Sambipitu Formation, Ngalang River, Nglipar, Gunung Kidul Regency. The research method is divided into 3 stages: 1) study of literature, research based on previous researchers, 2) spatial, observation and sampling every 5-10 meters, 3) descriptive, analyzing samples consisting of a 10-gram sample weight, washing sample using 30% peroxide, biostratigraphy analysis, paleotemperature analysis using abundance of fossil, diversity analysis using Simpson diversity index method, and comparing current temperature data. There are two phases based on the appearance of Globorotalia menardii and Pulleniatina obliqueculata pointed to Phase Tropical Area, and the appearance of fossil Globigerinoides ruber and Orbulina universa fossil shows the phase of Subtropical Area. Paleotemperatur based on the appearance of Globorotalia menardii, Globigerinoides trilobus, Globigerinoides ruber, Orbulina universa, and Pulleniatina obliqueculata pointed to Warm Water Area and Warm Water Area (average surface water approximate 25°C).

Keywords: abundance, biostratigraphy, Simpson diversity index method, paleotemperature

Procedia PDF Downloads 172
923 Coastal Adaptation to Climate Change: A Review of EU Tools, Legislation, National Strategies and Projects in the Mediterranean Basin

Authors: Dimitris Kokkinos, Panagiotis Prinos

Abstract:

In the last three decades, climate change has been studied extensively from scientific community, and its consequences are more than clear all around the world. Most countries have carried out a great effort to reduce global warming rates with the ratification and implementation of several international treaties. Moreover, many of them have already adopted national plans in order to adapt to climate change effects and mitigate human and economic losses. Coastal environments, with their inherent physical sensitivity, will face important challenges as a result of projected changes in climate conditions and hundreds of millions of people will be affected. Coastal zones are of high social and economic value and this research focuses on the Mediterranean basin, which is a densely populated and highly urbanized area. With 40% of its land used for human activity and the inevitability of the impacts of the climate change, it is obvious that some form of adaptation measures will be necessary. In this regard, the EU tools, policies and legislation concerning adaptation to climate change are presented. Additionally, the National Adaptation Strategies of State members of the Mediterranean basin are compared and analyzed concerning the coastal areas, along with an overview of projects and programs results focused on coastal issues at different spatial scales. The purpose of this research is to stress the differences between Mediterranean State members at methodologies implemented, to highlight the possible gaps in co-ordination and to emphasize on research initiatives that EU can build upon moving towards an integrated adaptation planning on a region-wide basis.

Keywords: coastal adaptation, Mediterranean Basin, climate change, coastal environments

Procedia PDF Downloads 308
922 High-Dimensional Single-Cell Imaging Maps Inflammatory Cell Types in Pulmonary Arterial Hypertension

Authors: Selena Ferrian, Erin Mccaffrey, Toshie Saito, Aiqin Cao, Noah Greenwald, Mark Robert Nicolls, Trevor Bruce, Roham T. Zamanian, Patricia Del Rosario, Marlene Rabinovitch, Michael Angelo

Abstract:

Recent experimental and clinical observations are advancing immunotherapies to clinical trials in pulmonary arterial hypertension (PAH). However, comprehensive mapping of the immune landscape in pulmonary arteries (PAs) is necessary to understand how immune cell subsets interact to induce pulmonary vascular pathology. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to interrogate the immune landscape in PAs from idiopathic (IPAH) and hereditary (HPAH) PAH patients. Massive immune infiltration in I/HPAH was observed with intramural infiltration linked to PA occlusive changes. The spatial context of CD11c+DCs expressing SAMHD1, TIM-3 and IDO-1 within immune-enriched microenvironments and neutrophils were associated with greater immune activation in HPAH. Furthermore, CD11c-DC3s (mo-DC-like cells) within a smooth muscle cell (SMC) enriched microenvironment were linked to vessel score, proliferating SMCs, and inflamed endothelial cells. Experimental data in cultured cells reinforced a causal relationship between neutrophils and mo-DCs in mediating pulmonary arterial SMC proliferation. These findings merit consideration in developing effective immunotherapies for PAH.

Keywords: pulmonary arterial hypertension, vascular remodeling, indoleamine 2-3-dioxygenase 1 (IDO-1), neutrophils, monocyte-derived dendritic cells, BMPR2 mutation, interferon gamma (IFN-γ)

Procedia PDF Downloads 173
921 Modelling the Impacts of Geophysical Parameters on Deforestation and Forest Degradation in Pre and Post Ban Logging Periods in Hindu Kush Himalayas

Authors: Alam Zeb, Glen W. Armstrong, Muhammad Qasim

Abstract:

Loss of forest cover is one of the most important land cover changes and has been of great concern to policy makers. This study quantified forest cover changes over pre logging ban (1973-1993) and post logging ban (1993-2015) to examine the role of geophysical factors and spatial attributes of land in the two periods. We show that despite a complete ban on green felling, forest cover decreased by 28% and mostly converted to rangeland. Nevertheless, the logging ban was completely effective in controlling agriculture expansion. The binary logistic regression revealed that the south facing aspects at low elevation witnessed more deforestation in the pre-ban period compared to post-ban. Opposite to deforestation, forest degradation was more prominent on the northern aspects at higher elevation during the policy period. Agriculture expansion was widespread in the low elevation flat areas with gentle slope, while during the policy period agriculture contraction in the form of regeneration was observed on the low elevation areas of north facing slopes. All proximity variables, except distance to administrative boundary, showed a similar trend across the two periods and were important explanatory variables in understanding forest and agriculture expansion. The changes in determinants of forest and agriculture expansion and contraction over the two periods might be attributed to the influence of policy and a general decrease in resource availability.

Keywords: forest conservation , wood harvesting ban, logistic regression, deforestation, forest degradation, agriculture expansion, Chitral, Pakistan

Procedia PDF Downloads 230
920 Complex Network Analysis of Seismicity and Applications to Short-Term Earthquake Forecasting

Authors: Kahlil Fredrick Cui, Marissa Pastor

Abstract:

Earthquakes are complex phenomena, exhibiting complex correlations in space, time, and magnitude. Recently, the concept of complex networks has been used to shed light on the statistical and dynamical characteristics of regional seismicity. In this work, we study the relationships and interactions of seismic regions in Chile, Japan, and the Philippines through weighted and directed complex network analysis. Geographical areas are digitized into cells of fixed dimensions which in turn become the nodes of the network when an earthquake has occurred therein. Nodes are linked if a correlation exists between them as determined and measured by a correlation metric. The networks are found to be scale-free, exhibiting power-law behavior in the distributions of their different centrality measures: the in- and out-degree and the in- and out-strength. The evidence is also found of preferential interaction between seismically active regions through their degree-degree correlations suggesting that seismicity is dictated by the activity of a few active regions. The importance of a seismic region to the overall seismicity is measured using a generalized centrality metric taken to be an indicator of its activity or passivity. The spatial distribution of earthquake activity indicates the areas where strong earthquakes have occurred in the past while the passivity distribution points toward the likely locations an earthquake would occur whenever another one happens elsewhere. Finally, we propose a method that would project the location of the next possible earthquake using the generalized centralities coupled with correlations calculated between the latest earthquakes and a geographical point in the future.

Keywords: complex networks, correlations, earthquake, hazard assessment

Procedia PDF Downloads 212
919 GIS Based Public Transport Accessibility of Lahore using PTALs Model

Authors: Naveed Chughtai, Salman Atif, Azhar Ali Taj, Murtaza Asghar Bukhari

Abstract:

Accessible transport systems play a crucial role in infrastructure management and ease of access to destinations. Thus, the necessity of knowledge of service coverage and service deprived areas is a prerequisite for devising policies. Integration of PTALs model with GIS network analysis models (Service Area Analysis, Closest Facility Analysis) facilitates the analysis of deprived areas. In this research, models presented determine the accessibility. The empirical evidence suggests that current bus network system caters only 18.5% of whole population. Using network analysis results as inputs for PTALs, it is seen that excellent accessibility indexed bands cover a limited areas, while 78.8% of area is totally deprived of any service. To cater the unserved catchment, new route alignments are proposed while keeping in focus the Socio-economic characteristics, land-use type and net population density of the deprived area. Change in accessibility with proposed routes show a 10% increment in service delivery and enhancement in terms of served population is up to 20.4%. PTALs result shows a decrement of 60 Km2 in unserved band. The result of this study can be used for planning, transport infrastructure management, allocation of new route alignments in combination with future land-use development and for adequate spatial distribution of service access points.

Keywords: GIS, public transport accessibility, PTALs, accessibility index, service area analysis, closest facility analysis

Procedia PDF Downloads 438
918 A Novel Approach for the Analysis of Ground Water Quality by Using Classification Rules and Water Quality Index

Authors: Kamakshaiah Kolli, R. Seshadri

Abstract:

Water is a key resource in all economic activities ranging from agriculture to industry. Only a tiny fraction of the planet's abundant water is available to us as fresh water. Assessment of water quality has always been paramount in the field of environmental quality management. It is the foundation for health, hygiene, progress and prosperity. With ever increasing pressure of human population, there is severe stress on water resources. Therefore efficient water management is essential to civil society for betterment of quality of life. The present study emphasizes on the groundwater quality, sources of ground water contamination, variation of groundwater quality and its spatial distribution. The bases for groundwater quality assessment are groundwater bodies and representative monitoring network enabling determination of chemical status of groundwater body. For this study, water samples were collected from various areas of the entire corporation area of Guntur. Water is required for all living organisms of which 1.7% is available as ground water. Water has no calories or any nutrients, but essential for various metabolic activities in our body. Chemical and physical parameters can be tested for identifying the portability of ground water. Electrical conductivity, pH, alkalinity, Total Alkalinity, TDS, Calcium, Magnesium, Sodium, Potassium, Chloride, and Sulphate of the ground water from Guntur district: Different areas of the District were analyzed. Our aim is to check, if the ground water from the above areas are potable or not. As multivariate are present, Data mining technique using JRIP rules was employed for classifying the ground water.

Keywords: groundwater, water quality standards, potability, data mining, JRIP, PCA, classification

Procedia PDF Downloads 430
917 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 69
916 Explaining the Steps of Designing and Calculating the Content Validity Ratio Index of the Screening Checklist of Preschool Students (5 to 7 Years Old) Exposed to Learning Difficulties

Authors: Sajed Yaghoubnezhad, Sedygheh Rezai

Abstract:

Background and Aim: Since currently in Iran, students with learning disabilities are identified after entering school, and with the approach to the gap between IQ and academic achievement, the purpose of this study is to design and calculate the content validity of the pre-school screening checklist (5-7) exposed to learning difficulties. Methods: This research is a fundamental study, and in terms of data collection method, it is quantitative research with a descriptive approach. In order to design this checklist, after reviewing the research background and theoretical foundations, cognitive abilities (visual processing, auditory processing, phonological awareness, executive functions, spatial visual working memory and fine motor skills) are considered the basic variables of school learning. The basic items and worksheets of the screening checklist of pre-school students 5 to 7 years old with learning difficulties were compiled based on the mentioned abilities and were provided to the specialists in order to calculate the content validity ratio index. Results: Based on the results of the table, the validity of the CVR index of the background information checklist is equal to 0.9, and the CVR index of the performance checklist of preschool children (5 to7 years) is equal to 0.78. In general, the CVR index of this checklist is reported to be 0.84. The results of this study provide good evidence for the validity of the pre-school sieve screening checklist (5-7) exposed to learning difficulties.

Keywords: checklist, screening, preschoolers, learning difficulties

Procedia PDF Downloads 102
915 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria

Authors: Amina Naidja, Zedira Khammar, Ines Soltani

Abstract:

This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.

Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception

Procedia PDF Downloads 41
914 Brain-Computer Interface Based Real-Time Control of Fixed Wing and Multi-Rotor Unmanned Aerial Vehicles

Authors: Ravi Vishwanath, Saumya Kumaar, S. N. Omkar

Abstract:

Brain-computer interfacing (BCI) is a technology that is almost four decades old, and it was developed solely for the purpose of developing and enhancing the impact of neuroprosthetics. However, in the recent times, with the commercialization of non-invasive electroencephalogram (EEG) headsets, the technology has seen a wide variety of applications like home automation, wheelchair control, vehicle steering, etc. One of the latest developed applications is the mind-controlled quadrotor unmanned aerial vehicle. These applications, however, do not require a very high-speed response and give satisfactory results when standard classification methods like Support Vector Machine (SVM) and Multi-Layer Perceptron (MLPC). Issues are faced when there is a requirement for high-speed control in the case of fixed-wing unmanned aerial vehicles where such methods are rendered unreliable due to the low speed of classification. Such an application requires the system to classify data at high speeds in order to retain the controllability of the vehicle. This paper proposes a novel method of classification which uses a combination of Common Spatial Paradigm and Linear Discriminant Analysis that provides an improved classification accuracy in real time. A non-linear SVM based classification technique has also been discussed. Further, this paper discusses the implementation of the proposed method on a fixed-wing and VTOL unmanned aerial vehicles.

Keywords: brain-computer interface, classification, machine learning, unmanned aerial vehicles

Procedia PDF Downloads 283
913 Compact LWIR Borescope Sensor for Surface Temperature of Engine Components

Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandr, Subodh Adhikari, Paul S. Hsu

Abstract:

The durability of a combustor in gas-turbine enginesrequiresa good control of its component temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system is significantly important to elongatethe lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate 2D surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement, such as thermocouples, thermal wall paints, pyrometry, and phosphors, have shown disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve two-dimensional high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of combustor in gas-turbine engines.

Keywords: borescope, engine, long-wave-infrared, sensor

Procedia PDF Downloads 135
912 Study on the Governance of Riverside Public Space in Mountainous Cities from the Perspective of Health and Safety

Authors: Chenxu Fang, Qikai Guan

Abstract:

Riverside public space in mountainous cities has unique scenic resources and humanistic connotations and is an important place indispensable to the activities of urban residents. In recent years, with the continuous development of society and the expansion of the city, the public space along the riverside has been affected to a certain extent. Based on this, this study is based on the concept of health and safety through the study of riverfront space in the local section of Jialing River in Chongqing City; according to the actual use function of riverfront public space, the riverfront public space in mountainous cities is categorized into leisure and recreational riverfront space, ecological conservation waterfront space, and composite function waterfront space. Starting from the health and safety elements affecting the environment in the riverfront public space, the health and safety influencing factors of the riverfront public space are categorized into three major categories, namely, material, non-material, and social, and through the field research and questionnaire collection, combined with the analysis of the Likert scale, the important levels of the health and safety influencing factors of different types of the riverfront public space of the mountainous cities are clarified. We summarize the factors affecting the health and safety of mountainous riverside spaces, map their importance levels to the design of different types of riverside spaces, and put forward three representative paths for the governance of the safety and health of mountainous riverside public space.

Keywords: health and safety, mountain city, riverfront public space, spatial governance, Chongqing Jialing River

Procedia PDF Downloads 47
911 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 244
910 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 38
909 Quantifying and Prioritizing Agricultural Residue Biomass Energy Potential in Ethiopia

Authors: Angesom Gebrezgabiher Tesfay, Afafaw Hailesilasie Tesfay, Muyiwa Samuel Adaramola

Abstract:

The energy demand boost in Ethiopia urges sustainable fuel options while it is mainly supplemented by traditional biomass and imported conventional fuels. To satisfy the deficiency it has to be sourced from all renewables. Thus identifying resources and estimating potential is vital to the sector. This study aims at an in-depth assessment to quantify, prioritize, and analyze agricultural residue biomass energy and related characteristic forms. Biomass use management and modernization seeks successive information and a clue about the resource quantity and characteristic. Five years of crop yield data for thirteen crops were collected. Conversion factors for their 20 residues are surveyed from the literature. Then residues amount potentially available for energy and their energy is estimated regional, crop-wise, residue-wise, and shares compared. Their potential value for energy is analyzed from two perspectives and prioritized. The gross potential is estimated to be 495PJ, equivalent to 12/17 million tons of oil/coal. At 30% collection efficiency, it is the same as conventional fuel import in 2018. Maize and sorghum potential and spatial availability are preeminent. Cotton and maize presented the highest potential values for energy from application and resource perspectives. Oromia and Amhara regions' contributions are the highest. The resource collection and application trends are required for future management that implicates a prospective study.

Keywords: crop residue, biomass potential, biomass resource, Ethiopian energy

Procedia PDF Downloads 124
908 Creating Sustainable Human Settlements: An Analysis of Planning Intervention in Addressing Informal Settlements in South Africa

Authors: Takudzwa C. Taruza, Carel B. Schoeman, Ilse M. Schoeman

Abstract:

The proliferation of informal settlements remains one of the major planning challenges in democratic South Africa. In spite of the various local, national and international initiatives to promote the creation of sustainable human settlements, informal settlements continue to exist as spatially marginalised societies characterised by poverty, unemployment, squalor conditions and disaster risks. It is argued that, in practice, intervention is mainly directed at achieving set quantitative targets and goals rather than improving the lives of the inhabitants. The relevant planning instruments do not adequately address the integration of informal settlements into the broader planning framework. This paper is based on the analysis of the informal settlement intervention within the North West Province. Financial constraints, bureaucracy in housing delivery and lack of horizontal and vertical integration in spatial planning and programme implementation are amongst the major factors that caused stagnation in some of the upgrading programmes which in turn hindered the attainment of the target set as part of the Outcome 8 Delivery Agreement. Moreover, the absence of distinct indicators for the assessment of the qualitative progress of upgrading programmes indicates shortcomings in the intervention policies and programmes to promote the creation of sustainable human settlements. Thus, this paper seeks to proffer an assessment toolkit as well as a framework for the implementation of a Sustainable Informal Settlement Programme.

Keywords: formalization of informal settlements, planning intervention, sustainable formalization indicators, sustainable human settlements

Procedia PDF Downloads 254