Search results for: QDMR evaluation metrics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6914

Search results for: QDMR evaluation metrics

4844 Impact of Hybrid Optical Amplifiers on 16 Channel Wavelength Division Multiplexed System

Authors: Inderpreet Kaur, Ravinder Pal Singh, Kamal Kant Sharma

Abstract:

This paper addresses the different configurations used of optical amplifiers with 16 channels in Wavelength Division Multiplexed system. The systems with 16 channels have been simulated for evaluation of various parameters; Bit Error Rate, Quality Factor, for threshold values for a range of wavelength from 1471 nm to 1611 nm. Comparison of various combination of configurations have been analyzed with EDFA and FRA but EDFA-FRA configuration performance has been found satisfactory in terms of performance indices and stable region. The paper also compared various parameters quantized with different configurations individually. It has been found that Q factor has high value with less value of BER and high resolution for EDFA-FRA configuration.

Keywords: EDFA, FRA, WDM, Q factor, BER

Procedia PDF Downloads 354
4843 Towards a Standardization in Scheduling Models: Assessing the Variety of Homonyms

Authors: Marcel Rojahn, Edzard Weber, Norbert Gronau

Abstract:

Terminology is a critical instrument for each researcher. Different terminologies for the same research object may arise in different research communities. By this inconsistency, many synergistic effects get lost. Theories and models will be more understandable and reusable if a common terminology is applied. This paper examines the terminological (in) consistency for the research field of job-shop scheduling through a literature review. There is an enormous variety in the choice of terms and mathematical notation for the same concept. The comparability, reusability, and combinability of scheduling methods are unnecessarily hampered by the arbitrary use of homonyms and synonyms. The acceptance in the community of used variables and notation forms is shown by means of a compliance quotient. This is proven by the evaluation of 240 scientific publications on planning methods.

Keywords: job-shop scheduling, terminology, notation, standardization

Procedia PDF Downloads 110
4842 Online Early Childhood Monitoring and Evaluation of Systems in Underprivileged Communities: Tracking Growth and Progress in Young Children's Ability Levels

Authors: Lauren Kathryn Stretch

Abstract:

A study was conducted in the underprivileged setting of Nelson Mandela Bay, South Africa in order to monitor the progress of learners whose teachers receive training through the Early Inspiration Training Programme. Through tracking children’s growth & development, the effectiveness of the practitioner-training programme, which focuses on empowering women from underprivileged communities in South Africa, was analyzed. The aim was to identify impact & reach and to assess the effectiveness of this intervention programme through identifying impact on children’s growth and development. A Pre- and Post-Test was administered on about 850 young children in Pre-Grade R and Grade R classes in order to understand children’s ability level & the growth that would be evident as a result of effective teacher training. A pre-test evaluated the level of each child’s abilities, including physical-motor development, language, and speech development, cognitive development including visual perceptual skills, social-emotional development & play development. This was followed by a random selection of the classes of children into experimental and control groups. The experimental group’s teachers (practitioners) received 8-months of training & intervention, as well as mentorship & support. After the 8-month training programme, children from the experimental & control groups underwent post-assessment. The results indicate that the impact of effective practitioner training and enhancing a deep understanding of stimulation on young children, that this understanding is implemented in the classroom, highlighting the areas of growth & development in the children whose teachers received additional training & support, as compared to those who did not receive additional training. Monitoring & Evaluation systems not only track children’s ability levels, but also have a core focus on reporting systems, mentorship and providing ongoing support. As a result of the study, an Online Application (for Apple or Android Devices) was developed which is used to track children’s growth via age-appropriate assessments. The data is then statistically analysed to provide direction for relevant & impactful intervention. The App also focuses on effective reporting strategies, structures, and implementation to support organizations working with young children & maximize on outcomes.

Keywords: early childhood development, developmental child assessments, online application, monitoring and evaluating online

Procedia PDF Downloads 195
4841 Evaluation of Mixtures of Recycled Concrete Aggregate and Reclaimed Asphalt Pavement Aggregate in Road Subbases

Authors: Vahid Ayan, Joshua R Omer, Alireza Khavandi, Mukesh C Limbachiya

Abstract:

In Iran, utilization of reclaimed asphalt pavement (RAP) aggregate has become a common practice in pavement rehabilitation during the last ten years. Such developments in highway engineering have necessitated several studies to clarify the technical and environmental feasibility of other alternative materials in road rehabilitation and maintenance. The use of recycled concrete aggregates (RCA) in asphalt pavements is one of the major goals of municipality of Tehran. Nevertheless little research has been done to examine the potential benefits of local RCA. The objective of this study is laboratory investigation of incorporating RCA into RAP for use in unbound subbase application. Laboratory investigation showed that 50%RCA+50%RAP is both technically and economically appropriate for subbase use.

Keywords: Roads & highways, Sustainability, Recycling & reuse of materials

Procedia PDF Downloads 494
4840 Facial Expression Recognition Using Sparse Gaussian Conditional Random Field

Authors: Mohammadamin Abbasnejad

Abstract:

The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition.

Keywords: Gaussian Conditional Random Field, ADMM, convergence, gradient descent

Procedia PDF Downloads 357
4839 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 44
4838 Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons

Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda

Abstract:

This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.

Keywords: adsorption, mathematical modeling, nanocarbons, numerical analysis

Procedia PDF Downloads 269
4837 Implementation and Validation of a Damage-Friction Constitutive Model for Concrete

Authors: L. Madouni, M. Ould Ouali, N. E. Hannachi

Abstract:

Two constitutive models for concrete are available in ABAQUS/Explicit, the Brittle Cracking Model and the Concrete Damaged Plasticity Model, and their suitability and limitations are well known. The aim of the present paper is to implement a damage-friction concrete constitutive model and to evaluate the performance of this model by comparing the predicted response with experimental data. The constitutive formulation of this material model is reviewed. In order to have consistent results, the parameter identification and calibration for the model have been performed. Several numerical simulations are presented in this paper, whose results allow for validating the capability of the proposed model for reproducing the typical nonlinear performances of concrete structures under different monotonic and cyclic load conditions. The results of the evaluation will be used for recommendations concerning the application and further improvements of the investigated model.

Keywords: Abaqus, concrete, constitutive model, numerical simulation

Procedia PDF Downloads 365
4836 Evaluation of Advanced Architectures for Commercial Refrigeration Systems Using Low Global Warming Potential Refrigerants

Authors: Fabrizio Codella, Chris Parker, Samer Saab

Abstract:

The Kigali Amendment is driving the adoption of low Global Warming Potential refrigerants in commercial refrigeration systems in over a hundred countries. Several refrigeration systems for the small and large retail stores at mild and hot ambient temperature climates have been compared for hydrofluorocarbons (HFC), hydrofluoroolefins (HFO), transcritical CO₂ and propane, in typical and advanced system architectures. The results of system performance, emissions and lifetime cost have been compared. The greatest benefits were found to be obtained by low global warming potential HFO advanced systems.

Keywords: commercial refrigeration, CO₂, emissions, HFO, lifetime cost, performance

Procedia PDF Downloads 154
4835 Effect of Formulation Compositions and Freezing Rates on the Conformational Changes of Influenza Virus Haemagglutinin (HA)

Authors: Thanh Phuong Doan, Narueporn Sutanthavibul

Abstract:

The influence of freezing cycle on influenza haemagglutinin (HA) conformational stability was investigated in terms of freezing rates and formulation compositions. The results showed that appropriate HA conformation could be evaluated using circular dichroism (CD) spectroscopy with HA concentration of greater than 0.09 mg/ml. The intermediate freezing rate of approximately 1.0oC/min preserved the original HA conformation better than at slow freezing rate (0.5oC/min) and rapid freezing rate (2.6oC/min). The changes in CD spectra of the secondary HA structure were more pronounced than those of the tertiary HA structure during the evaluation. Additionally, the formulations, which resulted in the highest conformational stability were found to have sucrose present in the composition. As opposed to when only glycine was used, the stability of HA conformation was poor.

Keywords: freezing, haemagglutinin, influenza, circular dichroism

Procedia PDF Downloads 395
4834 Hydrogen Induced Fatigue Crack Growth in Pipeline Steel API 5L X65: A Combined Experimental and Modelling Approach

Authors: H. M. Ferreira, H. Cockings, D. F. Gordon

Abstract:

Climate change is driving a transition in the energy sector, with low-carbon energy sources such as hydrogen (H2) emerging as an alternative to fossil fuels. However, the successful implementation of a hydrogen economy requires an expansion of hydrogen production, transportation and storage capacity. The costs associated with this transition are high but can be partly mitigated by adapting the current oil and natural gas networks, such as pipeline, an important component of the hydrogen infrastructure, to transport pure or blended hydrogen. Steel pipelines are designed to withstand fatigue, one of the most common causes of pipeline failure. However, it is well established that some materials, such as steel, can fail prematurely in service when exposed to hydrogen-rich environments. Therefore, it is imperative to evaluate how defects (e.g. inclusions, dents, and pre-existing cracks) will interact with hydrogen under cyclic loading and, ultimately, to what extent hydrogen induced failure will limit the service conditions of steel pipelines. This presentation will explore how the exposure of API 5L X65 to a hydrogen-rich environment and cyclic loads will influence its susceptibility to hydrogen induced failure. That evaluation will be performed by a combination of several techniques such as hydrogen permeation testing (ISO 17081:2014), fatigue crack growth (FCG) testing (ISO 12108:2018 and AFGROW modelling), combined with microstructural and fractographic analysis. The development of a FCG test setup coupled with an electrochemical cell will be discussed, along with the advantages and challenges of measuring crack growth rates in electrolytic hydrogen environments. A detailed assessment of several electrolytic charging conditions will also be presented, using hydrogen permeation testing as a method to correlate the different charging settings to equivalent hydrogen concentrations and effective diffusivity coefficients, not only on the base material but also on the heat affected zone and weld of the pipelines. The experimental work is being complemented with AFGROW, a useful FCG modelling software that has helped inform testing parameters and which will also be developed to ultimately help industry experts perform structural integrity analysis and remnant life characterisation of pipeline steels under representative conditions. The results from this research will allow to conclude if there is an acceleration of the crack growth rate of API 5L X65 under the influence of a hydrogen-rich environment, an important aspect that needs to be rectified instandards and codes of practice on pipeline integrity evaluation and maintenance.

Keywords: AFGROW, electrolytic hydrogen charging, fatigue crack growth, hydrogen, pipeline, steel

Procedia PDF Downloads 106
4833 Spatial Evaluations of Haskoy: The Emperial Village

Authors: Yasemin Filiz-Kuruel, Emine Koseoglu

Abstract:

This study aims to evaluate Haskoy district of Beyoglu town of Istanbul. Haskoy is located in Halic region, between Kasimpasa district and Kagithane district. After the conquest of Istanbul, Fatih Sultan Mehmet (the Conqueror) set up his tent here. Therefore, the area gets its name as Haskoy, 'imperial village' that means a village which is special for Sultan. Today, there are shipyard and ateliers in variable sizes in Haskoy. In this study, the legibility of Haskoy streets is investigated comparatively. As a research method, semantic differential scale is used. The photos of the streets, which contain specific criteria, are chosen. The questionnaire is directed to first and third grade architecture students. The spatial evaluation of Haskoy streets is done through the survey.

Keywords: Haskoy, legibility, semantic differential scale, urban streets

Procedia PDF Downloads 567
4832 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 165
4831 Satisfaction on English Language Learning with Online System

Authors: Suwaree Yordchim

Abstract:

The objective is to study the satisfaction on English with an online learning. Online learning system mainly consists of English lessons, exercises, tests, web boards, and supplementary lessons for language practice. The sample groups are 80 Thai students studying English for Business Communication, majoring in Hotel and Lodging Management. The data are analyzed by mean, standard deviation (S.D.) value from the questionnaires. The results were found that the most average of satisfaction on academic aspects are technological searching tool through E-learning system that support the students’ learning (4.51), knowledge evaluation on prepost learning and teaching (4.45), and change for project selections according to their interest, subject contents including practice in the real situations (4.45), respectively.

Keywords: English language learning, online system, online learning, supplementary lessons

Procedia PDF Downloads 466
4830 Identification of Potent and Selective SIRT7 Anti-Cancer Inhibitor via Structure-Based Virtual Screening and Molecular Dynamics Simulation

Authors: Md. Fazlul Karim, Ashik Sharfaraz, Aysha Ferdoushi

Abstract:

Background: Computational medicinal chemistry approaches are used for designing and identifying new drug-like molecules, predicting properties and pharmacological activities, and optimizing lead compounds in drug development. SIRT7, a nicotinamide adenine dinucleotide (NAD+)-dependent deacylase which regulates aging, is an emerging target for cancer therapy with mounting evidence that SIRT7 downregulation plays important roles in reversing cancer phenotypes and suppressing tumor growth. Activation or altered expression of SIRT7 is associated with the progression and invasion of various cancers, including liver, breast, gastric, prostate, and non-small cell lung cancer. Objectives: The goal of this work was to identify potent and selective bioactive candidate inhibitors of SIRT7 by in silico screening of small molecule compounds obtained from Nigella sativa (N. sativa). Methods: SIRT7 structure was retrieved from The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), and its active site was identified using CASTp and metaPocket. Molecular docking simulation was performed with PyRx 0.8 virtual screening software. Drug-likeness properties were tested using SwissADME and pkCSM. In silico toxicity was evaluated by Osiris Property Explorer. Bioactivity was predicted by Molinspiration software. Antitumor activity was screened for Prediction of Activity Spectra for Substances (PASS) using Way2Drug web server. Molecular dynamics (MD) simulation was carried out by Desmond v3.6 package. Results: A total of 159 bioactive compounds from the N. Sativa were screened against the SIRT7 enzyme. Five bioactive compounds: chrysin (CID:5281607), pinocembrin (CID:68071), nigellidine (CID:136828302), nigellicine (CID:11402337), and epicatechin (CID:72276) were identified as potent SIRT7 anti-cancer candidates after docking score evaluation and applying Lipinski's Rule of Five. Finally, MD simulation identified Chrysin as the top SIRT7 anti-cancer candidate molecule. Conclusion: Chrysin, which shows a potential inhibitory effect against SIRT7, can act as a possible anti-cancer drug candidate. This inhibitor warrants further evaluation to check its pharmacokinetics and pharmacodynamics properties both in vitro and in vivo.

Keywords: SIRT7, antitumor, molecular docking, molecular dynamics simulation

Procedia PDF Downloads 81
4829 Performance Evaluation of Content Based Image Retrieval Using Indexed Views

Authors: Tahir Iqbal, Mumtaz Ali, Syed Wajahat Kareem, Muhammad Harris

Abstract:

Digital information is expanding in exponential order in our life. Information that is residing online and offline are stored in huge repositories relating to every aspect of our lives. Getting the required information is a task of retrieval systems. Content based image retrieval (CBIR) is a retrieval system that retrieves the required information from repositories on the basis of the contents of the image. Time is a critical factor in retrieval system and using indexed views with CBIR system improves the time efficiency of retrieved results.

Keywords: content based image retrieval (CBIR), indexed view, color, image retrieval, cross correlation

Procedia PDF Downloads 470
4828 Behavior of Composite Timber-Concrete Beam with CFRP Reinforcement

Authors: O. Vlcek

Abstract:

The paper deals with current issues in the research of advanced methods to increase the reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with the additional concrete slab in combination with externally bonded fibre-reinforced polymer. The study evaluates deflection of a selected group of timber beams with concrete slab and additional CFRP reinforcement using different calculating methods and observes differences in results from different calculating methods. An elastic calculation method and evaluation with FEM analysis software were used.

Keywords: timber-concrete composite, strengthening, fibre-reinforced polymer, theoretical analysis

Procedia PDF Downloads 316
4827 The Magnitude Scale Evaluation of Cross-Platform Internet Public Opinion

Authors: Yi Wang, Xun Liang

Abstract:

This paper introduces a model of internet public opinion waves, which describes the message propagation and measures the influence of a detected event. We collect data on public opinion propagation from different platforms on the internet, including micro-blogs and news. Then, we compare the spread of public opinion to the seismic waves and correspondently define the P-wave and S-wave and other essential attributes and characteristics in the process. Further, a model is established to evaluate the magnitude scale of the events. In the end, a practical example is used to analyze the influence of network public opinion and test the reasonability and effectiveness of the proposed model.

Keywords: internet public opinion waves (IPOW), magnitude scale, cross-platform, information propagation

Procedia PDF Downloads 289
4826 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images

Authors: Sung-Suk Oh, Bong-Keun Kang, Sang-Wook Park, Hui-Jin Joo, Jong-Ryul Choi, Seong-Jun Lee, Jeong-Woo Sohn

Abstract:

The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated.

Keywords: imaging phantom, MRI (Magnetic Resonance Imaging), PET / CT (Positron Emission Tomography / Computed Tomography), 3D printing

Procedia PDF Downloads 580
4825 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 232
4824 Evaluation of an Integrated Supersonic System for Inertial Extraction of CO₂ in Post-Combustion Streams of Fossil Fuel Operating Power Plants

Authors: Zarina Chokparova, Ighor Uzhinsky

Abstract:

Carbon dioxide emissions resulting from burning of the fossil fuels on large scales, such as oil industry or power plants, leads to a plenty of severe implications including global temperature raise, air pollution and other adverse impacts on the environment. Besides some precarious and costly ways for the alleviation of CO₂ emissions detriment in industrial scales (such as liquefaction of CO₂ and its deep-water treatment, application of adsorbents and membranes, which require careful consideration of drawback effects and their mitigation), one physically and commercially available technology for its capture and disposal is supersonic system for inertial extraction of CO₂ in after-combustion streams. Due to the flue gas with a carbon dioxide concentration of 10-15 volume percent being emitted from the combustion system, the waste stream represents a rather diluted condition at low pressure. The supersonic system induces a flue gas mixture stream to expand using a converge-and-diverge operating nozzle; the flow velocity increases to the supersonic ranges resulting in rapid drop of temperature and pressure. Thus, conversion of potential energy into the kinetic power causes a desublimation of CO₂. Solidified carbon dioxide can be sent to the separate vessel for further disposal. The major advantages of the current solution are its economic efficiency, physical stability, and compactness of the system, as well as needlessness of addition any chemical media. However, there are several challenges yet to be regarded to optimize the system: the way for increasing the size of separated CO₂ particles (as they are represented on a micrometers scale of effective diameter), reduction of the concomitant gas separated together with carbon dioxide and provision of CO₂ downstream flow purity. Moreover, determination of thermodynamic conditions of the vapor-solid mixture including specification of the valid and accurate equation of state remains to be an essential goal. Due to high speeds and temperatures reached during the process, the influence of the emitted heat should be considered, and the applicable solution model for the compressible flow need to be determined. In this report, a brief overview of the current technology status will be presented and a program for further evaluation of this approach is going to be proposed.

Keywords: CO₂ sequestration, converging diverging nozzle, fossil fuel power plant emissions, inertial CO₂ extraction, supersonic post-combustion carbon dioxide capture

Procedia PDF Downloads 141
4823 Effect of Different Irrigation Intervals on Protein and Gel Production of Aloe Vera (Aloe Barbadensis M.) in Iran

Authors: Seyed Mohammad Hosein Al Omrani Nejad, Ali Rezvani Aghdam

Abstract:

This study was done in order to evaluation different irrigation intervals on amount of protein, and gel production in Aloe vera, a traditional medicinal plant. Plants was plnted in Greenhouse and irrigated according to Accumulative Pan Evaporation(APE). The treatments were included 20, 40, 60, 80, 100, 120, 140, 160, 180, and 200 mm APE which has been showed W1,W2, W3, W4, W5, W6, W7, W8,W9 and W10 respectively.The amount of protein and gel production was measured seperately. Results showed that highest protein and fresh weight of gel obtained plants which irrigated W6 and W7 respectively. According to these results can recomend which if plant irrigatedwhen APE reached 120 and 140 mm by Class A Evaporation Pan method gel production and protein would besuitable in north of khozestan province in limited irrigation conditions.

Keywords: irrigation, protein, gel, aloe vera, Iran

Procedia PDF Downloads 389
4822 Use of Satellite Altimetry and Moderate Resolution Imaging Technology of Flood Extent to Support Seasonal Outlooks of Nuisance Flood Risk along United States Coastlines and Managed Areas

Authors: Varis Ransibrahmanakul, Doug Pirhalla, Scott Sheridan, Cameron Lee

Abstract:

U.S. coastal areas and ecosystems are facing multiple sea level rise threats and effects: heavy rain events, cyclones, and changing wind and weather patterns all influence coastal flooding, sedimentation, and erosion along critical barrier islands and can strongly impact habitat resiliency and water quality in protected habitats. These impacts are increasing over time and have accelerated the need for new tracking techniques, models and tools of flood risk to support enhanced preparedness for coastal management and mitigation. To address this issue, NOAA National Ocean Service (NOS) evaluated new metrics from satellite altimetry AVISO/Copernicus and MODIS IR flood extents to isolate nodes atmospheric variability indicative of elevated sea level and nuisance flood events. Using de-trended time series of cross-shelf sea surface heights (SSH), we identified specific Self Organizing Maps (SOM) nodes and transitions having a strongest regional association with oceanic spatial patterns (e.g., heightened downwelling favorable wind-stress and enhanced southward coastal transport) indicative of elevated coastal sea levels. Results show the impacts of the inverted barometer effect as well as the effects of surface wind forcing; Ekman-induced transport along broad expanses of the U.S. eastern coastline. Higher sea levels and corresponding localized flooding are associated with either pattern indicative of enhanced on-shore flow, deepening cyclones, or local- scale winds, generally coupled with an increased local to regional precipitation. These findings will support an integration of satellite products and will inform seasonal outlook model development supported through NOAAs Climate Program Office and NOS office of Center for Operational Oceanographic Products and Services (CO-OPS). Overall results will prioritize ecological areas and coastal lab facilities at risk based on numbers of nuisance flood projected and inform coastal management of flood risk around low lying areas subjected to bank erosion.

Keywords: AVISO satellite altimetry SSHA, MODIS IR flood map, nuisance flood, remote sensing of flood

Procedia PDF Downloads 145
4821 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 12
4820 Performance Evaluation of DSR and OLSR Routing Protocols in MANET Using Varying Pause Time

Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi

Abstract:

MANET for Mobile Ad hoc NETwork is a collection of wireless mobile nodes that communicates with each other without using any existing infrastructure, access point or centralized administration, due to the higher mobility and limited radio transmission range, routing is an important issue in ad hoc network, so in order to ensure reliable and efficient route between to communicating nodes quickly, an appropriate routing protocol is needed. In this paper, we present the performance analysis of two mobile ad hoc network routing protocols namely DSR and OLSR using NS2.34, the performance is determined on the basis of packet delivery ratio, throughput, average jitter and end to end delay with varying pause time.

Keywords: DSR, OLSR, quality of service, routing protocols, MANET

Procedia PDF Downloads 552
4819 Using Convergent and Divergent Thinking in Creative Problem Solving in Mathematics

Authors: Keng Keh Lim, Zaleha Ismail, Yudariah Mohammad Yusof

Abstract:

This paper aims to find out how students using convergent and divergent thinking in creative problem solving to solve mathematical problems creatively. Eight engineering undergraduates in a local university took part in this study. They were divided into two groups. They solved the mathematical problems with the use of creative problem solving skills. Their solutions were collected and analyzed to reveal all the processes of problem solving, namely: problem definition, ideas generation, ideas evaluation, ideas judgment, and solution implementation. The result showed that the students were able to solve the mathematical problem with the use of creative problem solving skills.

Keywords: convergent thinking, divergent thinking, creative problem solving, creativity

Procedia PDF Downloads 351
4818 Cord Blood Hematopoietic Stem Cell Expansion Ability of Mesenchymal Stem Cells Isolated From Different Sources

Authors: Ana M. Lara, Manuela Llano, Felipe Gaitán, Rosa H. Bustos, Ana Maria Perdomo-Arciniegas, Ximena Bonilla

Abstract:

Umbilical cord blood is used as a source of progenitor and stem cells for the regeneration of the hematopoietic and immune system to treat patients with different hematological or non-hematological diseases. This stem cell source represents an advantage over the use of bone marrow or mobilized peripheral blood because it has a lower incidence rate of graft-versus-host disease, probably due to fewer immunological compatibility restrictions. However, its low cellular dose limits its use in pediatric patients. This work proposes the standardization of a cell expansion technique to compensate for the dose of infused cells through the ex-vivo manipulation of hematopoietic progenitor cells from umbilical cord blood before transplantation. The expansion model is carried out through co-cultures with mesenchymal stem cells (MSC) from bone marrow (BM) and less explored fetal tissues such as Wharton's jelly (WJ) and umbilical cord blood (UCB). Initially, a master cell bank of primary mesenchymal stem cells isolated from different sources was established and characterized following International Society of Cell Therapies (ISCT) indications. Additionally, we assessed the effect of a short 25 Gy cycle of gamma irradiation on cell cycle arrest of mesenchymal cells over the support capacity for the expansion of hematopoietic stem cells from umbilical cord blood was evaluated. The results show that co-cultures with MSC from WJ and UCB allow the cellular dose of HSPC to be maximized between 5 and 16 times having a similar support capacity as BM. In addition, was evaluated the hematopoietic stem progenitor cell's HSPC functionality through the evaluation of migration capacity, their differentiation capacity during culture time by flow cytometry to evaluate the expression of membrane markers associated with lineage-committed progenitors, their clonogenic potential, and the evaluation of secretome profile in the expansion process was evaluated. So far, the treatment with gamma irradiation maintains the hematopoietic support capacity of mesenchymal stem cells from the three sources studied compared to treatments without irradiation, favoring the use of fetal tissues that are generally waste to obtain mesenchymal cell lines for ex-vivo expansion systems. With the results obtained, a standardized protocol that will contribute to the development of ex-vivo expansion with MSC on a larger scale will be achieved, enabling its clinical use and expanding its application in adults.

Keywords: ex-vivo expansion, hematopoietic stem cells, hematopoietic stem cell transplantation, mesenchymal stem cells, umbilical cord blood

Procedia PDF Downloads 115
4817 Cement Mortar Lining as a Potential Source of Water Contamination

Authors: M. Zielina, W. Dabrowski, E. Radziszewska-Zielina

Abstract:

Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation.

Keywords: concrete corrosion, hydrogen sulfide, odors, reinforced concrete sewers, sewerage

Procedia PDF Downloads 209
4816 Promoting Patients' Adherence to Home-Based Rehabilitation: A Randomised Controlled Trial of a Theory-Driven Mobile Application

Authors: Derwin K. C. Chan, Alfred S. Y. Lee

Abstract:

The integrated model of self-determination theory and the theory of planned behaviour has been successfully applied to explain individuals’ adherence to health behaviours, including behavioural adherence toward rehabilitation. This study was a randomised controlled trial that examined the effectiveness of an mHealth intervention (i.e., mobile application) developed based on this integrated model in promoting treatment adherence of patients of anterior cruciate ligament rupture during their post-surgery home-based rehabilitation period. Subjects were 67 outpatients (aged between 18 and 60) who undertook anterior cruciate ligament (ACL) reconstruction surgery for less than 2 months for this study. Participants were randomly assigned either into the treatment group (who received the smartphone application; N = 32) and control group (who receive standard treatment only; N = 35), and completed psychological measures relating to the theories (e.g., motivations, social cognitive factors, and behavioural adherence) and clinical outcome measures (e.g., subjective knee function (IKDC), laxity (KT-1000), muscle strength (Biodex)) relating to ACL recovery at baseline, 2-month, and 4-month. Generalise estimating equation showed the interaction between group and time was significant on intention was only significant for intention (Wald x² = 5.23, p = .02), that of perceived behavioural control (Wald x² = 3.19, p = .07), behavioural adherence (Wald x² = 3.08, p = .08, and subjective knee evaluation (Wald x² = 2.97, p = .09) were marginally significant. Post-hoc between-subject analysis showed that control group had significant drop of perceived behavioural control (p < .01), subjective norm (p < .01) and intention (p < .01), behavioural adherence (p < .01) from baseline to 4-month, but such pattern was not observed in the treatment group. The treatment group had a significant decrease of behavioural adherence (p < .05) in the 2-month, but such a decrease was not observed in 4-month (p > .05). Although the subjective knee evaluation in both group significantly improved at 2-month and 4-month from the baseline (p < .05), and the improvements in the control group (mean improvement at 4-month = 40.18) were slightly stronger than the treatment group (mean improvement at 4-month = 34.52). In conclusion, the findings showed that the theory driven mobile application ameliorated the decline of treatment intention of home-based rehabilitation. Patients in the treatment group also reported better muscle strength than control group at 4-month follow-up. Overall, the mobile application has shown promises on tackling the problem of orthopaedics outpatients’ non-adherence to medical treatment.

Keywords: self-determination theory, theory of planned behaviour, mobile health, orthopaedic patients

Procedia PDF Downloads 200
4815 Rheological Evaluation of Various Indigenous Gums

Authors: Yogita Weikey, Shobha Lata Sinha, Satish Kumar Dewangan

Abstract:

In the present investigation, rheology of the three different natural gums has been evaluated experimentally using MCR 102 rheometer. Various samples based on the variation of the concentration of the solid gum powder have been prepared. Their non-Newtonian behavior has been observed by the consistency plots and viscosity variation plots with respect to different solid concentration. The viscosity-shear rate curves of gums are similar and the behavior is shear thinning. Gums are showing pseudoplastic behavior. The value of k and n are calculated by using various models. Results show that the Herschel–Bulkley rheological model is reliable to describe the relationship of shear stress as a function of shear rate. R² values are also calculated to support the choice of gum selection.

Keywords: bentonite, Indian gum, non-Newtonian model, rheology

Procedia PDF Downloads 310