Search results for: transformer winding connections
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 938

Search results for: transformer winding connections

758 Application of Improved Semantic Communication Technology in Remote Sensing Data Transmission

Authors: Tingwei Shu, Dong Zhou, Chengjun Guo

Abstract:

Semantic communication is an emerging form of communication that realize intelligent communication by extracting semantic information of data at the source and transmitting it, and recovering the data at the receiving end. It can effectively solve the problem of data transmission under the situation of large data volume, low SNR and restricted bandwidth. With the development of Deep Learning, semantic communication further matures and is gradually applied in the fields of the Internet of Things, Uumanned Air Vehicle cluster communication, remote sensing scenarios, etc. We propose an improved semantic communication system for the situation where the data volume is huge and the spectrum resources are limited during the transmission of remote sensing images. At the transmitting, we need to extract the semantic information of remote sensing images, but there are some problems. The traditional semantic communication system based on Convolutional Neural Network cannot take into account the global semantic information and local semantic information of the image, which results in less-than-ideal image recovery at the receiving end. Therefore, we adopt the improved vision-Transformer-based structure as the semantic encoder instead of the mainstream one using CNN to extract the image semantic features. In this paper, we first perform pre-processing operations on remote sensing images to improve the resolution of the images in order to obtain images with more semantic information. We use wavelet transform to decompose the image into high-frequency and low-frequency components, perform bilinear interpolation on the high-frequency components and bicubic interpolation on the low-frequency components, and finally perform wavelet inverse transform to obtain the preprocessed image. We adopt the improved Vision-Transformer structure as the semantic coder to extract and transmit the semantic information of remote sensing images. The Vision-Transformer structure can better train the huge data volume and extract better image semantic features, and adopt the multi-layer self-attention mechanism to better capture the correlation between semantic features and reduce redundant features. Secondly, to improve the coding efficiency, we reduce the quadratic complexity of the self-attentive mechanism itself to linear so as to improve the image data processing speed of the model. We conducted experimental simulations on the RSOD dataset and compared the designed system with a semantic communication system based on CNN and image coding methods such as BGP and JPEG to verify that the method can effectively alleviate the problem of excessive data volume and improve the performance of image data communication.

Keywords: semantic communication, transformer, wavelet transform, data processing

Procedia PDF Downloads 78
757 Circle Work as a Relational Praxis to Facilitate Collaborative Learning within Higher Education: A Decolonial Pedagogical Framework for Teaching and Learning in the Virtual Classroom

Authors: Jennifer Nutton, Gayle Ployer, Ky Scott, Jenny Morgan

Abstract:

Working in a circle within higher education creates a decolonial space of mutual respect, responsibility, and reciprocity that facilitates collaborative learning and deep connections among learners and instructors. This approach is beyond simply facilitating a group in a circle but opens the door to creating a sacred space connecting each member to the land, to the Indigenous peoples who have taken care of the lands since time immemorial, to one another, and to one’s own positionality. These deep connections not only center human knowledges and relationships but also acknowledges responsibilities to land. Working in a circle as a relational pedagogical praxis also disrupts institutional power dynamics by creating a space of collaborative learning and deep connections in the classroom. Inherent within circle work is to facilitate connections not just academically but emotionally, physically, culturally, and spiritually. Recent literature supports the use of online talking circles, finding that it can offer a more relational and experiential learning environment, which is often absent in the virtual world and has been made more evident and necessary since the pandemic. These deeper experiences of learning and connection, rooted in both knowledge and the land, can then be shared with openness and vulnerability with one another, facilitating growth and change. This process of beginning with the land is critical to ensure we have the grounding to obstruct the ongoing realities of colonialism. The authors, who identify as both Indigenous and non-Indigenous, as both educators and learners, reflect on their teaching and learning experiences in circle. They share a relational pedagogical praxis framework that has been successful in educating future social workers, environmental activists, and leaders in social and human services, health, legal and political fields.

Keywords: circle work, relational pedagogies, decolonization, distance education

Procedia PDF Downloads 76
756 The Impact of Corporate Social Responsibility on Brand Equity of the Telecommunication Industry in South Africa

Authors: Keitumetse Gaesirwe

Abstract:

This study investigated the effect of corporate social responsibility (CSR) on brand equity. Specific objectives include examining the connections between ethics and philanthropic constructs of CSR and brand loyalty in the telecommunication industry in South Africa. A convenience sampling technique was used, and closed-ended questionnaires were administered to 800 research participants across the nine provinces of South Africa. Data collected from the field was analyzed using inferential statistics (Ordinary Least Squares regression and correlation analysis) as well as descriptive statistics. Findings show positive and significant connections between the constructs of CSR and brand loyalty. The implications of the findings indicate that keeping ethical and philanthropy standards can be a source of competitive advantage and guarantee brand loyalty for telecommunication companies in South Africa.

Keywords: CSR, brand awareness, telecommunication industry, COVID-19, South Africa

Procedia PDF Downloads 120
755 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 127
754 Analyzing Current Transformers Saturation Characteristics for Different Connected Burden Using LabVIEW Data Acquisition Tool

Authors: D. Subedi, S. Pradhan

Abstract:

Current transformers are an integral part of power system because it provides a proportional safe amount of current for protection and measurement applications. However when the power system experiences an abnormal situation leading to huge current flow, then this huge current is proportionally injected to the protection and metering circuit. Since the protection and metering equipment’s are designed to withstand only certain amount of current with respect to time, these high currents pose a risk to man and equipment. Therefore during such instances, the CT saturation characteristics have a huge influence on the safety of both man and equipment and also on the reliability of the protection and metering system. This paper shows the effect of burden on the Accuracy Limiting factor/ Instrument security factor of current transformers and also the change in saturation characteristics of the CT’s. The response of the CT to varying levels of overcurrent at different connected burden will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer saturation characteristics with changes in burden will be discussed.

Keywords: accuracy limiting factor, burden, current transformer, instrument security factor, saturation characteristics

Procedia PDF Downloads 415
753 GIS-Based Identification of Overloaded Distribution Transformers and Calculation of Technical Electric Power Losses

Authors: Awais Ahmed, Javed Iqbal

Abstract:

Pakistan has been for many years facing extreme challenges in energy deficit due to the shortage of power generation compared to increasing demand. A part of this energy deficit is also contributed by the power lost in transmission and distribution network. Unfortunately, distribution companies are not equipped with modern technologies and methods to identify and eliminate these losses. According to estimate, total energy lost in early 2000 was between 20 to 26 percent. To address this issue the present research study was designed with the objectives of developing a standalone GIS application for distribution companies having the capability of loss calculation as well as identification of overloaded transformers. For this purpose, Hilal Road feeder in Faisalabad Electric Supply Company (FESCO) was selected as study area. An extensive GPS survey was conducted to identify each consumer, linking it to the secondary pole of the transformer, geo-referencing equipment and documenting conductor sizes. To identify overloaded transformer, accumulative kWH reading of consumer on transformer was compared with threshold kWH. Technical losses of 11kV and 220V lines were calculated using the data from substation and resistance of the network calculated from the geo-database. To automate the process a standalone GIS application was developed using ArcObjects with engineering analysis capabilities. The application uses GIS database developed for 11kV and 220V lines to display and query spatial data and present results in the form of graphs. The result shows that about 14% of the technical loss on both high tension (HT) and low tension (LT) network while about 4 out of 15 general duty transformers were found overloaded. The study shows that GIS can be a very effective tool for distribution companies in management and planning of their distribution network.

Keywords: geographical information system, GIS, power distribution, distribution transformers, technical losses, GPS, SDSS, spatial decision support system

Procedia PDF Downloads 376
752 Determination of Failure Modes of Screwed Connections in Cold-Formed Steel Structures

Authors: Mahyar Maali, Merve Sagiroglu

Abstract:

Steel, which is one of the base materials we prefer in the building construction, is the material with the highest ratio to weight of carrying capacity. Due to the carrying capacity, lighter and better quality steel in smaller sections and sizes has recently been used as a frame system in cold-formed steel structures. While light steel elements used as secondary frame elements during the past, they have nowadays started to be preferred as the main frame in low/middle story buildings and detached houses with advantages such as quick and easy installation, time-saving, and small amount of scrap. It is also economically ideal because the weight of structure is lighter than other steel profiles. Structural performances and failure modes of cold-formed structures are different from conventional ones due to their thin-walled structures. One of the most important elements of light steel structures to ensure stability is the connection. The screwed connections, which have self-drilling properties with special drilling tools, are widely used in the installation of cold-formed profiles. The length of the screw is selected according to the total thickness of the elements after the screw thickness is determined according to the elements of connections. The thickness of the material depends on the length of the drilling portion at the end of the screw. The shear tests of plates connected with self-drilling screws are carried out depending on the screw length, and their failure modes were evaluated in this study.

Keywords: cold-formed steel, screwed connection, connection, screw length

Procedia PDF Downloads 177
751 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plain-sided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the need for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: grouted connection, numerical model, offshore structure, wear, wind energy

Procedia PDF Downloads 453
750 The Advancements of Transformer Models in Part-of-Speech Tagging System for Low-Resource Tigrinya Language

Authors: Shamm Kidane, Ibrahim Abdella, Fitsum Gaim, Simon Mulugeta, Sirak Asmerom, Natnael Ambasager, Yoel Ghebrihiwot

Abstract:

The call for natural language processing (NLP) systems for low-resource languages has become more apparent than ever in the past few years, with the arduous challenges still present in preparing such systems. This paper presents an improved dataset version of the Nagaoka Tigrinya Corpus for Parts-of-Speech (POS) classification system in the Tigrinya language. The size of the initial Nagaoka dataset was incremented, totaling the new tagged corpus to 118K tokens, which comprised the 12 basic POS annotations used previously. The additional content was also annotated manually in a stringent manner, followed similar rules to the former dataset and was formatted in CONLL format. The system made use of the novel approach in NLP tasks and use of the monolingually pre-trained TiELECTRA, TiBERT and TiRoBERTa transformer models. The highest achieved score is an impressive weighted F1-score of 94.2%, which surpassed the previous systems by a significant measure. The system will prove useful in the progress of NLP-related tasks for Tigrinya and similarly related low-resource languages with room for cross-referencing higher-resource languages.

Keywords: Tigrinya POS corpus, TiBERT, TiRoBERTa, conditional random fields

Procedia PDF Downloads 103
749 Hypergraph Models of Metabolism

Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova

Abstract:

In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterize a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.

Keywords: complexity, hypergraphs, reciprocity, metabolism

Procedia PDF Downloads 297
748 Improved Multilevel Inverter with Hybrid Power Selector and Solar Panel Cleaner in a Solar System

Authors: S. Oladoyinbo, A. A. Tijani

Abstract:

Multilevel inverters (MLI) are used at high power application based on their operation. There are 3 main types of multilevel inverters (MLI); diode clamped, flying capacitor and cascaded MLI. A cascaded MLI requires the least number of components to achieve same number of voltage levels when compared to other types of MLI while the flying capacitor has the minimum harmonic distortion. However, maximizing the advantage of cascaded H-bridge MLI and flying capacitor MLI, an improved MLI can be achieved with fewer components and better performance. In this paper an improved MLI is presented by asymmetrically integrating a flying capacitor to a cascaded H-bridge MLI also integrating an auxiliary transformer to the main transformer to decrease the total harmonics distortion (THD) with increased number of output voltage levels. Furthermore, the system is incorporated with a hybrid time and climate based solar panel cleaner and power selector which intelligently manage the input of the MLI and clean the solar panel weekly ensuring the environmental factor effect on the panel is reduced to minimum.

Keywords: multilevel inverter, total harmonics distortion, cascaded h-bridge inverter, flying capacitor

Procedia PDF Downloads 366
747 Trace Network: A Probabilistic Relevant Pattern Recognition Approach to Attribution Trace Analysis

Authors: Jian Xu, Xiaochun Yun, Yongzheng Zhang, Yafei Sang, Zhenyu Cheng

Abstract:

Network attack prevention is a critical research area of information security. Network attack would be oppressed if attribution techniques are capable to trace back to the attackers after the hacking event. Therefore attributing these attacks to a particular identification becomes one of the important tasks when analysts attempt to differentiate and profile the attacker behind a piece of attack trace. To assist analysts in expose attackers behind the scenes, this paper researches on the connections between attribution traces and proposes probabilistic relevance based attribution patterns. This method facilitates the evaluation of the plausibility relevance between different traceable identifications. Furthermore, through analyzing the connections among traces, it could confirm the existence probability of a certain organization as well as discover its affinitive partners by the means of drawing relevance matrix from attribution traces.

Keywords: attribution trace, probabilistic relevance, network attack, attacker identification

Procedia PDF Downloads 366
746 Evaluating the Seismic Stress Distribution in the High-Rise Structures Connections with Optimal Bracing System

Authors: H. R. Vosoughifar, Seyedeh Zeinab. Hosseininejad, Nahid Shabazi, Seyed Mohialdin Hosseininejad

Abstract:

In recent years, structure designers advocate further application of energy absorption devices for lateral loads damping. The Un-bonded Braced Frame (UBF) system is one of the efficient damping systems, which is made of a smart combination of steel and concrete or mortar. In this system, steel bears the earthquake-induced axial force as compressive or tension forces without loss of strength. Concrete or mortar around the steel core acts as a constraint for brace and prevents brace buckling during seismic axial load. In this study, the optimal bracing system in the high-rise structures has been evaluated considering the seismic stress distribution in the connections. An actual 18-story structure was modeled using the proper Finite Element (FE) software where braced with UBF, Eccentrically Braced Frames (EBF) and Concentrically Braced Frame (CBF) systems. Nonlinear static pushover and time-history analyses are then performed so that the acquired results demonstrate that the UBF system reduces drift values in the high-rise buildings. Further statistical analyses show that there is a significant difference between the drift values of UBF system compared with those resulted from the EBF and CBF systems. Hence, the seismic stress distribution in the connections of the proposed structure which braced with UBF system was investigated.

Keywords: optimal bracing system, high-rise structure, finite element analysis (FEA), seismic stress

Procedia PDF Downloads 429
745 Quantitative, Preservative Methodology for Review of Interview Transcripts Using Natural Language Processing

Authors: Rowan P. Martnishn

Abstract:

During the execution of a National Endowment of the Arts grant, approximately 55 interviews were collected from professionals across various fields. These interviews were used to create deliverables – historical connections for creations that began as art and evolved entirely into computing technology. With dozens of hours’ worth of transcripts to be analyzed by qualitative coders, a quantitative methodology was created to sift through the documents. The initial step was to both clean and format all the data. First, a basic spelling and grammar check was applied, as well as a Python script for normalized formatting which used an open-source grammatical formatter to make the data as coherent as possible. 10 documents were randomly selected to manually review, where words often incorrectly translated during the transcription were recorded and replaced throughout all other documents. Then, to remove all banter and side comments, the transcripts were spliced into paragraphs (separated by change in speaker) and all paragraphs with less than 300 characters were removed. Secondly, a keyword extractor, a form of natural language processing where significant words in a document are selected, was run on each paragraph for all interviews. Every proper noun was put into a data structure corresponding to that respective interview. From there, a Bidirectional and Auto-Regressive Transformer (B.A.R.T.) summary model was then applied to each paragraph that included any of the proper nouns selected from the interview. At this stage the information to review had been sent from about 60 hours’ worth of data to 20. The data was further processed through light, manual observation – any summaries which proved to fit the criteria of the proposed deliverable were selected, as well their locations within the document. This narrowed that data down to about 5 hours’ worth of processing. The qualitative researchers were then able to find 8 more connections in addition to our previous 4, exceeding our minimum quota of 3 to satisfy the grant. Major findings of the study and subsequent curation of this methodology raised a conceptual finding crucial to working with qualitative data of this magnitude. In the use of artificial intelligence there is a general trade off in a model between breadth of knowledge and specificity. If the model has too much knowledge, the user risks leaving out important data (too general). If the tool is too specific, it has not seen enough data to be useful. Thus, this methodology proposes a solution to this tradeoff. The data is never altered outside of grammatical and spelling checks. Instead, the important information is marked, creating an indicator of where the significant data is without compromising the purity of it. Secondly, the data is chunked into smaller paragraphs, giving specificity, and then cross-referenced with the keywords (allowing generalization over the whole document). This way, no data is harmed, and qualitative experts can go over the raw data instead of using highly manipulated results. Given the success in deliverable creation as well as the circumvention of this tradeoff, this methodology should stand as a model for synthesizing qualitative data while maintaining its original form.

Keywords: B.A.R.T.model, keyword extractor, natural language processing, qualitative coding

Procedia PDF Downloads 28
744 CTHTC: A Convolution-Backed Transformer Architecture for Temporal Knowledge Graph Embedding with Periodicity Recognition

Authors: Xinyuan Chen, Mohd Nizam Husen, Zhongmei Zhou, Gongde Guo, Wei Gao

Abstract:

Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention for its enormous value; however, existing models lack capabilities to capture both local interactions and global dependencies simultaneously with evolutionary dynamics, while the latest achievements in convolutions and Transformers haven't been employed in this area. What’s more, periodic patterns in TKGs haven’t been fully explored either. To this end, a multi-stage hybrid architecture with convolution-backed Transformers is introduced in TKGC tasks for the first time combining the Hawkes process to model evolving event sequences in a continuous-time domain. In addition, the seasonal-trend decomposition is adopted to identify periodic patterns. Experiments on six public datasets are conducted to verify model effectiveness against state-of-the-art (SOTA) methods. An extensive ablation study is carried out accordingly to evaluate architecture variants as well as the contributions of independent components in addition, paving the way for further potential exploitation. Besides complexity analysis, input sensitivity and safety challenges are also thoroughly discussed for comprehensiveness with novel methods.

Keywords: temporal knowledge graph completion, convolution, transformer, Hawkes process, periodicity

Procedia PDF Downloads 78
743 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources

Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha

Abstract:

Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.

Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models

Procedia PDF Downloads 211
742 Integration of Design Management in the Product Development Process in SME's

Authors: Vitor Carneiro, Augusto Barata Da Rocha, Barbara Rangel, Jorge Lino Alves

Abstract:

In the European Union countries, Small and Medium-Sized Enterprises (SME’s) have an important contribution to economic activity and to the Gross Domestic Product (GDP). The implementation of design practices in SME’s is often a difficult task due to resources limitations. Unlike large companies, their product development and innovation processes frequentlylack adequate planning and systematic procedures. Design management interest has grown exponentially in recent years, but as it is a recent topic there is an absence of systematic methodologies to implement design management in SME’s with little or no design experience. This work presents a contribution to improve and optimize the process of design integration and management in SME’s. A review analysis is presented to select relevant articles on the subject, review and classify the main published contributions. Based on the selected articles content it was possible to identify five main themes related to the subject under analysis: Design Function Organization, Design Management Integration, Design Management Capabilities, Managing Design Projects, and Tools and Methods. Design management is discussed from different perspectives depending on the focus on which it is placed, whether in a design or management perspective, leading to different visions and definitions: from a more upstream strand at the intersection of design and the organization's strategic management (strategic design management) to a more downstream strand related to project management and design process (design management operational). The review analysis of the selected articles allowed the identification of a high level of complexity of connections and parameters in the design management during the product development process in the context of SME’s. Within each group of the five main themes, several sub-themes, directly or indirectly related, should be considered.Sub-connections also occur between sub-themes of different themes creating a complex and intricate web of connections. This complexity of connections is often the main obstacle to conduct design management and product development efficiently. This work proposes a formulation of a systematic methodological approach to optimize the integrated project and the management and control of the product development process among SME's. The implementation of this formulation will improve the integration of design management in the product development and innovation process in SME’s.

Keywords: design management, product development, product innovation, SME’s.

Procedia PDF Downloads 222
741 A Study of Human Communication in an Internet Community

Authors: Andrew Laghos

Abstract:

The Internet is a big part of our everyday lives. People can now access the internet from a variety of places including home, college, and work. Many airports, hotels, restaurants and cafeterias, provide free wireless internet to their visitors. Using technologies like computers, tablets, and mobile phones, we spend a lot of our time online getting entertained, getting informed, and communicating with each other. This study deals with the latter part, namely, human communication through the Internet. People can communicate with each other using social media, social network sites (SNS), e-mail, messengers, chatrooms, and so on. By connecting with each other they form virtual communities. Regarding SNS, types of connections that can be studied include friendships and cliques. Analyzing these connections is important to help us understand online user behavior. The method of Social Network Analysis (SNA) was used on a case study, and results revealed the existence of some useful patterns of interactivity between the participants. The study ends with implications of the results and ideas for future research.

Keywords: human communication, internet communities, online user behavior, psychology

Procedia PDF Downloads 496
740 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7

Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam

Abstract:

Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.

Keywords: joint shear strength, reversed cyclic loading, seismic vulnerability, wide beam-column joints

Procedia PDF Downloads 323
739 Fight the Burnout: Phase Two of a NICU Nurse Wellness Bundle

Authors: Megan Weisbart

Abstract:

Background/Significance: The Intensive Care Unit (ICU) environment contributes to nurse burnout. Burnout costs include decreased employee compassion, missed workdays, worse patient outcomes, diminished job performance, high turnover, and higher organizational cost. Meaningful recognition, nurturing of interpersonal connections, and mindfulness-based interventions are associated with decreased burnout. The purpose of this quality improvement project was to decrease Neonatal ICU (NICU) nurse burnout using a Wellness Bundle that fosters meaningful recognition, interpersonal connections and includes mindfulness-based interventions. Methods: The Professional Quality of Life Scale Version 5 (ProQOL5) was used to measure burnout before Wellness Bundle implementation, after six months, and will be given yearly for three years. Meaningful recognition bundle items include Online submission and posting of staff shoutouts, recognition events, Nurses Week and Unit Practice Council member gifts, and an employee recognition program. Fostering of interpersonal connections bundle items include: Monthly staff games with prizes, social events, raffle fundraisers, unit blog, unit wellness basket, and a wellness resource sheet. Quick coherence techniques were implemented at staff meetings and huddles as a mindfulness-based intervention. Findings: The mean baseline burnout score of 14 NICU nurses was 20.71 (low burnout). The baseline range was 13-28, with 11 nurses experiencing low burnout, three nurses experiencing moderate burnout, and zero nurses experiencing high burnout. After six months of the Wellness Bundle Implementation, the mean burnout score of 39 NICU nurses was 22.28 (low burnout). The range was 14-31, with 22 nurses experiencing low burnout, 17 nurses experiencing moderate burnout, and zero nurses experiencing high burnout. Conclusion: A NICU Wellness Bundle that incorporated meaningful recognition, fostering of interpersonal connections, and mindfulness-based activities was implemented to improve work environments and decrease nurse burnout. Participation bias and low baseline response rate may have affected the reliability of the data and necessitate another comparative measure of burnout in one year.

Keywords: burnout, NICU, nurse, wellness

Procedia PDF Downloads 86
738 Experimental Model of the Behaviour of Bolted Angles Connections with Stiffeners

Authors: Abdulkadir Cuneyt Aydin, Mahyar Maali, Mahmut Kılıç, Merve Sağıroğlu

Abstract:

The moment-rotation curves of semi-rigid connections are the visual expressions of the actual behaviour discovered in beam-to-column connections experiments. This research was to determine the behaviour of the connection using full-scale experiments under statically loaded. The stiffeners which are typically attached to beams web or flanges to control local buckling and to increase shear capacity in a beam web are almost always used in modern designs. They must also provide sufficient moment of inertia to control out of plane deformations. This study was undertaken to analyse the influence of stiffeners in the angles and beams on the behaviour of the beam-to-column joints. In addition, the aim was to provide necessary data to improve the Eurocode 3. The main parameters observed are the evolution of the resistance, the stiffness, the rotation capacity, the ductility of a joint and the Energy Dissipation. Experimental tests show that the plastic flexural resistance and the energy dissipation increased when thickness of stiffener beam, thickness of stiffener angles were increased in the test specimens. And also, while stiffness of joints, the bending moment capacity and the maximum bending moment increased with the increasing thickness of stiffener beam, these values decreased with the increasing thickness of stiffener angles. So, it is observed that the beam stiffener of angles are important in improving resistance moment of beam-to-column semi-rigid joints.

Keywords: bolted angles connection, semi-rigid joints, ductility of a joint, angles and beams stiffeners

Procedia PDF Downloads 460
737 Connections among Personality, Teacher-Student Relationship, Belief in a Just World for Others and Teacher Bullying

Authors: Hui-Yu Peng, Hsiu-I Hsueh, Li-Ming Chen

Abstract:

Most studies focused on bullying behaviors among students, however few research concerns about teachers’ bullying behaviors against students. In order to have more understandings and reduce teacher bullying, it is important to examine what factors may affect teachers’ bullying behaviors. This study aimed to explore the connections between different psychological variables and teacher bullying. Four variables, neuroticism, extraversion, teacher-student relationship, and belief in a just world for others (BJW-others), were selected in this study. Four hundred and five elementary and secondary school teachers in Taiwan endorsed the self-reported surveys. Multiple regression method was used to analyze data. Results revealed that teachers’ BJW-others and extraversion did not have significant correlations with teacher bullying scores. However, closed teacher-student relationship and neuroticism can negatively and positively predict teachers’ bullying behaviors against students, respectively. Implications for preventing teacher bullying were discussed at the end of this study.

Keywords: belief in a just world for others, big five personality traits, teacher bullying, teacher-student relationship

Procedia PDF Downloads 213
736 Preliminary Composite Overwrapped Pressure Vessel Design for Hydrogen Storage Using Netting Analysis and American Society of Mechanical Engineers Section X

Authors: Natasha Botha, Gary Corderely, Helen M. Inglis

Abstract:

With the move to cleaner energy applications the transport industry is working towards on-board hydrogen, or compressed natural gas-fuelled vehicles. A popular method for storage is to use composite overwrapped pressure vessels (COPV) because of their high strength to weight ratios. The proper design of these COPVs are according to international standards; this study aims to provide a preliminary design for a 350 Bar Type IV COPV (i.e. a polymer liner with a composite overwrap). Netting analysis, a popular analytical approach, is used as a first step to generate an initial design concept for the composite winding. This design is further improved upon by following the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel standards, Section X: Fibre-reinforced composite pressure vessels. A design program based on these two approaches is developed using Python. A numerical model of a burst test simulation is developed based on the two approaches and compared. The results indicate that the netting analysis provides a good preliminary design, while the ASME-based design is more robust and accurate as it includes a better approximation of the material behaviour. Netting analysis is an easy method to follow when considering an initial concept design for the composite winding when not all the material characteristics are known. Once these characteristics have been fully defined with experimental testing, an ASME-based design should always be followed to ensure that all designs conform to international standards and practices. Future work entails more detailed numerical testing of the design for improvement, this will include the boss design. Once finalised prototype manufacturing and experimental testing will be conducted, and the results used to improve on the COPV design.

Keywords: composite overwrapped pressure vessel, netting analysis, design, American Society of Mechanical Engineers section x, fiber-reinforced, hydrogen storage

Procedia PDF Downloads 247
735 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 59
734 Exploring Sense of Belonging in Toronto: A Multigenerational Perspective and Social Sustainability

Authors: Homa Hedayat

Abstract:

In the dynamic urban landscape of Toronto, the concept of belonging assumes paramount importance. As global challenges—such as the pandemic, financial instability, and geopolitical shifts—reshape our world, understanding how different generations of immigrants establish connections within this multicultural metropolis becomes increasingly vital. Our research delves into forming a sense of belonging in urban spaces, specifically focusing on the experiences of Iranian immigrants residing in Toronto. By examining their perceptions of public places, attachment to residential neighborhoods, and the impact of the urban environment, we contribute to a more holistic understanding of social sustainability and community well-being. We unravel the intricate interplay between individual characteristics, housing context, and neighborhood dynamics through qualitative interviews and a quantitative survey. This research presents a study of the perception of public places and sense of belonging in residential neighbourhoods by younger and older Iranian immigrants living in the Toronto metropolitan area. Few works in the existing literature have investigated the relationship immigrants develop with the shared spaces of the city and their residential environment and how that relationship can impact the development of a ‘sense of belonging’ in the city. Ultimately, our findings pave the way for inclusive and cohesive urban environments, fostering connections across generations and enhancing Toronto’s resilience and harmony. As Toronto continues to evolve, nurturing a sense of belonging becomes paramount. Our research emphasizes the importance of social cohesion and community well-being. By fostering connections across generations, we pave the way for a more resilient and harmonious city.

Keywords: sense of belonging, multigenerational, urban spaces, social sustainability

Procedia PDF Downloads 59
733 Probability Fuzzy Aggregation Operators in Vehicle Routing Problem

Authors: Anna Sikharulidze, Gia Sirbiladze

Abstract:

For the evaluation of unreliability levels of movement on the closed routes in the vehicle routing problem, the fuzzy operators family is constructed. The interactions between routing factors in extreme conditions on the roads are considered. A multi-criteria decision-making model (MCDM) is constructed. Constructed aggregations are based on the Choquet integral and the associated probability class of a fuzzy measure. Propositions on the correctness of the extension are proved. Connections between the operators and the compositions of dual triangular norms are described. The conjugate connections between the constructed operators are shown. Operators reflect interactions among all the combinations of the factors in the fuzzy MCDM process. Several variants of constructed operators are used in the decision-making problem regarding the assessment of unreliability and possibility levels of movement on closed routes.

Keywords: vehicle routing problem, associated probabilities of a fuzzy measure, choquet integral, fuzzy aggregation operator

Procedia PDF Downloads 326
732 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 61
731 A Transformer-Based Question Answering Framework for Software Contract Risk Assessment

Authors: Qisheng Hu, Jianglei Han, Yue Yang, My Hoa Ha

Abstract:

When a company is considering purchasing software for commercial use, contract risk assessment is critical to identify risks to mitigate the potential adverse business impact, e.g., security, financial and regulatory risks. Contract risk assessment requires reviewers with specialized knowledge and time to evaluate the legal documents manually. Specifically, validating contracts for a software vendor requires the following steps: manual screening, interpreting legal documents, and extracting risk-prone segments. To automate the process, we proposed a framework to assist legal contract document risk identification, leveraging pre-trained deep learning models and natural language processing techniques. Given a set of pre-defined risk evaluation problems, our framework utilizes the pre-trained transformer-based models for question-answering to identify risk-prone sections in a contract. Furthermore, the question-answering model encodes the concatenated question-contract text and predicts the start and end position for clause extraction. Due to the limited labelled dataset for training, we leveraged transfer learning by fine-tuning the models with the CUAD dataset to enhance the model. On a dataset comprising 287 contract documents and 2000 labelled samples, our best model achieved an F1 score of 0.687.

Keywords: contract risk assessment, NLP, transfer learning, question answering

Procedia PDF Downloads 129
730 A Methodology of Testing Beam to Column Connection under Lateral Impact Load

Authors: A. Al-Rifaie, Z. W. Guan, S. W. Jones

Abstract:

Beam to column connection can be considered as the most important structural part that affects the response of buildings to progressive collapse. However, many studies were conducted to investigate the beam to column connection under accidental loads such as fire, blast and impact load to investigate the connection response. The study is a part of a PhD plan to investigate different types of connections under lateral impact load. The conventional test setups, such as cruciform setup, were designed to apply shear forces and bending moment on the connection, whilst, in the lateral impact case, the connection is subjected to combined tension and moment. Hence, a review is presented to introduce the previous test setup that is used to investigate the connection behaviour. Then, the design and fabrication of the novel test setup is presented. Finally, some trial test results to investigate the efficiency of the proposed setup are discussed. The final results indicate that the setup was efficient in terms of the simplicity and strength.

Keywords: connections, impact load, drop hammer, testing methods

Procedia PDF Downloads 298
729 Enhancing Neural Connections through Music and tDCS: Insights from an fNIRS Study

Authors: Dileep G., Akash Singh, Dalchand Ahirwar, Arkadeep Ghosh, Ashutosh Purohit, Gaurav Guleria, Kshatriya Om Prashant, Pushkar Patel, Saksham Kumar, Vanshaj Nathani, Vikas Dangi, Shubhajit Roy Chowdhury, Varun Dutt

Abstract:

Transcranial direct current stimulation (tDCS) has shown promise as a novel approach to enhance cognitive performance and provide therapeutic benefits for various brain disorders. However, the exact underlying brain mechanisms are not fully understood. We conducted a study to examine the brain's functional changes when subjected to simultaneous tDCS and music (Indian classical raga). During the study, participants in the experimental group underwent a 20-minute session of tDCS at two mA while listening to music (raga) for a duration of seven days. In contrast, the control group received a sham stimulation for two minutes at two mA over the same seven-day period. The objective was to examine whether repetitive tDCS could lead to the formation of additional functional connections between the medial prefrontal cortex (the stimulated area) and the auditory cortex in comparison to a sham stimulation group. In this study, 26 participants (5 female) underwent pre- and post-intervention scans, where changes were compared after one week of either tDCS or sham stimulation in conjunction with music. The study revealed significant effects of tDCS on functional connectivity between the stimulated area and the auditory cortex. The combination of tDCS applied over the mPFC and music resulted in newly formed connections. Based on our findings, it can be inferred that applying anodal tDCS over the mPFC enhances functional connectivity between the stimulated area and the auditory cortex when compared to the effects observed with sham stimulation.

Keywords: fNIRS, tDCS, neuroplasticity, music

Procedia PDF Downloads 71