Search results for: proton flow battery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5548

Search results for: proton flow battery

5368 Flow Behavior and Performances of Centrifugal Compressor Stage Vaneless Diffusers

Authors: Y.Galerkin, O. Solovieva

Abstract:

Flow parameters are calculated in vaneless diffusers with relative width 0,014 – 0,10 constant along radii. Inlet flow angles and similarity criteria were varied. Information about flow structure is presented – meridian streamlines configuration, information on flow full development, flow separation. Polytrophic efficiency, loss and recovery coefficient are used to compare diffusers’ effectiveness. The sample of narrow diffuser optimization by conical walls application is presented. Three tampered variants of a wide diffuser are compared too. The work is made in the R&D laboratory “Gas dynamics of turbo machines” of the TU SPb.

Keywords: vaneless diffuser, relative width, flow angle, flow separation, loss coefficient, similarity criteria

Procedia PDF Downloads 490
5367 Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks

Authors: Tadashi Watanabe, Jinya Katsuyama, Akihiro Mano

Abstract:

The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.

Keywords: crack, critical flow, leak, roughness

Procedia PDF Downloads 180
5366 Hypersonic Flow of CO2-N2 Mixture around a Spacecraft during the Atmospheric Reentry

Authors: Zineddine Bouyahiaoui, Rabah Haoui

Abstract:

The aim of this work is to analyze a flow around the axisymmetric blunt body taken into account the chemical and vibrational nonequilibrium flow. This work concerns the entry of spacecraft in the atmosphere of the planet Mars. Since the equations involved are non-linear partial derivatives, the volume method is the only way to solve this problem. The choice of the mesh and the CFL is a condition for the convergence to have the stationary solution.

Keywords: blunt body, finite volume, hypersonic flow, viscous flow

Procedia PDF Downloads 234
5365 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates

Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery

Abstract:

Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.

Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop

Procedia PDF Downloads 95
5364 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider

Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf

Abstract:

We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approach

Keywords: top tagger, multivariate, deep learning, LHC, single top

Procedia PDF Downloads 111
5363 An Experimental Study on the Temperature Reduction of Exhaust Gas at a Snorkeling of Submarine

Authors: Seok-Tae Yoon, Jae-Yeong Choi, Gyu-Mok Jeon, Yong-Jin Cho, Jong-Chun Park

Abstract:

Conventional submarines obtain propulsive force by using an electric propulsion system consisting of a diesel generator, battery, motor, and propeller. In the underwater, the submarine uses the electric power stored in the battery. After that, when a certain amount of electric power is consumed, the submarine floats near the sea water surface and recharges the electric power by using the diesel generator. The voyage carried out while charging the power is called a snorkel, and the high-temperature exhaust gas from the diesel generator forms a heat distribution on the sea water surface. The heat distribution is detected by weapon system equipped with thermo-detector and that is the main cause of reducing the survivability of the submarine. In this paper, an experimental study was carried out to establish optimal operating conditions of a submarine for reduction of infrared signature radiated from the sea water surface. For this, a hot gas generating system and a round acrylic water tank with adjustable water level were made. The control variables of the experiment were set as the mass flow rate, the temperature difference between the water and the hot gas in the water tank, and the water level difference between the air outlet and the water surface. The experimental instrumentation used a thermocouple of T-type to measure the released air temperature on the surface of the water, and a thermography system to measure the thermal energy distribution on the water surface. As a result of the experiment study, we analyzed the correlation between the final released temperature of the exhaust pipe exit in a submarine and the depth of the snorkel, and presented reasonable operating conditions for the infrared signature reduction of submarine.

Keywords: experiment study, flow rate, infrared signature, snorkeling, thermography

Procedia PDF Downloads 351
5362 CFD Simulation Approach for Developing New Powder Dispensing Device

Authors: Revanth Rallapalli

Abstract:

Manually dispensing powders can be difficult as it requires gradually pouring and checking the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in the development of such devices saving time and money by reducing the number of prototypes and testing. This paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in the air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to the trocar’s end side is done by rotation of the screw conveyor. The performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and the effective area within a quick turnaround time frame.

Keywords: multiphase flow, screw conveyor, transient, dense discrete phase model (DDPM), kinetic theory of granular flow (KTGF)

Procedia PDF Downloads 146
5361 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery

Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén

Abstract:

A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.

Keywords: Computational Fluid Dynamics (CFD), modeling, multi-phase, transport phenomena, lithium-air battery

Procedia PDF Downloads 451
5360 Electrochemical Studies of Si, Si-Ge- and Ge-Air Batteries

Authors: R. C. Sharma, Rishabh Bansal, Prajwal Menon, Manoj K. Sharma

Abstract:

Silicon-air battery is highly promising for electric vehicles due to its high theoretical energy density (8470 Whkg⁻¹) and its discharge products are non-toxic. For the first time, pure silicon and germanium powders are used as anode material. Nickel wire meshes embedded with charcoal and manganese dioxide powder as cathode and concentrated potassium hydroxide is used as electrolyte. Voltage-time curves have been presented in this study for pure silicon and germanium powder and 5% and 10% germanium with silicon powder. Silicon powder cell assembly gives a stable voltage of 0.88 V for ~20 minutes while Si-Ge provides cell voltage of 0.80-0.76 V for ~10-12 minutes, and pure germanium cell provides cell voltage 0.80-0.76 V for ~30 minutes. The cell voltage is higher for concentrated (10%) sodium hydroxide solution (1.08 V) and it is stable for ~40 minutes. A sharp decrease in cell voltage beyond 40 min may be due to rapid corrosion.

Keywords: Silicon-air battery, Germanium-air battery, voltage-time curve, open circuit voltage, Anodic corrosion

Procedia PDF Downloads 237
5359 Gene Expressions in Left Ventricle Heart Tissue of Rat after 150 Mev Proton Irradiation

Authors: R. Fardid, R. Coppes

Abstract:

Introduction: In mediastinal radiotherapy and to a lesser extend also in total-body irradiation (TBI) radiation exposure may lead to development of cardiac diseases. Radiation-induced heart disease is dose-dependent and it is characterized by a loss of cardiac function, associated with progressive heart cells degeneration. We aimed to determine the in-vivo radiation effects on fibronectin, ColaA1, ColaA2, galectin and TGFb1 gene expression levels in left ventricle heart tissues of rats after irradiation. Material and method: Four non-treatment adult Wistar rats as control group (group A) were selected. In group B, 4 adult Wistar rats irradiated to 20 Gy single dose of 150 Mev proton beam locally in heart only. In heart plus lung irradiate group (group C) 4 adult rats was irradiated by 50% of lung laterally plus heart radiation that mentioned in before group. At 8 weeks after radiation animals sacrificed and left ventricle heart dropped in liquid nitrogen for RNA extraction by Absolutely RNA® Miniprep Kit (Stratagen, Cat no. 400800). cDNA was synthesized using M-MLV reverse transcriptase (Life Technologies, Cat no. 28025-013). We used Bio-Rad machine (Bio Rad iQ5 Real Time PCR) for QPCR testing by relative standard curve method. Results: We found that gene expression of fibronectin in group C significantly increased compared to control group, but it was not showed significant change in group B compared to group A. The levels of gene expressions of Cola1 and Cola2 in mRNA did not show any significant changes between normal and radiation groups. Changes of expression of galectin target significantly increased only in group C compared to group A. TGFb1 expressions in group C more than group B showed significant enhancement compared to group A. Conclusion: In summary we can say that 20 Gy of proton exposure of heart tissue may lead to detectable damages in heart cells and may distribute function of them as a component of heart tissue structure in molecular level.

Keywords: gene expression, heart damage, proton irradiation, radiotherapy

Procedia PDF Downloads 489
5358 Flow Visualization around a Rotationally Oscillating Cylinder

Authors: Cemre Polat, Mustafa Soyler, Bulent Yaniktepe, Coskun Ozalp

Abstract:

In this study, it was aimed to control the flow actively by giving an oscillating rotational motion to a vertically placed cylinder, and flow characteristics were determined. In the study, firstly, the flow structure around the flat cylinder was investigated with dye experiments, and then the cylinders with different oscillation angles (θ = 60°, θ = 120°, and θ = 180°) and different rotation speeds (15 rpm and 30 rpm) the flow structure around it was examined. Thus, the effectiveness of oscillation and rotation speed in flow control has been investigated. In the dye experiments, the dye/water mixture obtained by mixing Rhodamine 6G in powder form with water, which shines under laser light and allows detailed observation of the flow structure, was used. During the experiments, the dye was injected into the flow with the help of a thin needle at a distance that would not affect the flow from the front of the cylinder. In dye experiments, 100 frames per second were taken with a Canon brand EOS M50 (24MP) digital mirrorless camera at a resolution of 1280 * 720 pixels. Then, the images taken were analyzed, and the pictures representing the flow structure for each experiment were obtained. As a result of the study, it was observed that no separation points were formed at 180° swing angle at 15 rpm speed, 120° and 180° swing angle at 30 rpm, and the flow was controlled according to the fixed cylinder.

Keywords: active flow control, cylinder, flow visualization rotationally oscillating

Procedia PDF Downloads 175
5357 Evaluating the Durability and Safety of Lithium-Ion Batterie in High-Temperature Desert Climates

Authors: Kenza Maher, Yahya Zakaria, Noora S. Al-Jaidah

Abstract:

Temperature is a critical parameter for lithium-ion battery performance, life, and safety. In this study, four commercially available 18650 lithium-ion cells from four different manufacturers are subjected to accelerated cycle aging for up to 500 cycles at two different temperatures (25°C and 45°C). The cells are also calendar-aged at the same temperatures in both charged and discharged states for 6 months to investigate the effect of aging and temperature on capacity fade and state of health. The results showed that all battery cells demonstrated good cyclability and had a good state of health at both temperatures. However, the capacity loss and state of health of these cells are found to be dependent on the cell chemistry and aging conditions, including temperature. Specifically, the capacity loss is found to be higher at the higher aging temperature, indicating the significant impact of temperature on the aging of lithium-ion batteries.

Keywords: lithium-ion battery, aging mechanisms, cycle aging, calendar aging.

Procedia PDF Downloads 99
5356 Reactive Power Control with Plug-In Electric Vehicles

Authors: Mostafa Dastori, Sirus Mohammadi

Abstract:

While plug-in electric vehicles (PEVs) potentially have the capability to fulfill the energy storage needs of the electric grid, the degradation on the battery during this operation makes it less preferable by the auto manufacturers and consumers. On the other hand, the on-board chargers can also supply energy storage system applications such as reactive power compensation, voltage regulation, and power factor correction without the need of engaging the battery with the grid and thereby preserving its lifetime. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac–dc topology are discussed to shed light on their suit- ability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and in- creased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

Keywords: energy storage system, battery unit, cost, optimal sizing, plug-in electric vehicles (PEVs), smart grid

Procedia PDF Downloads 343
5355 Investigating the Influence of Potassium Ion Doping on Lithium-Ion Battery Performance

Authors: Liyew Yizengaw Yitayih

Abstract:

This nanotechnology study focuses on how potassium ions (K+) affect lithium-ion (Li-ion) battery performance. By adding potassium ions (K+) to the lithium tin oxide (LiSnO) anode and employing styrene-butadiene rubber (SBR) as a binder, the doping of K+ was specifically studied. The methods employed in this study include computer modeling and simulation, material fabrication, and electrochemical characterization. The potassium ions (Li+) were successfully doped into the LiSnO lattice during charge/discharge cycles, which increased the lithium-ion diffusivity and electrical conductivity within the anode. However, it was found that internal doping of potassium ions (K+) into the LiSnO lattice occurred at high potassium ion concentrations (>16.6%), which hampered lithium ion transfer because of repulsion and physical blockage. The electrochemical efficiency of lithium-ion batteries was improved by this comprehensive study's presentation of potassium ions' (K+) potential advantages when present in the appropriate concentrations in electrode materials.

Keywords: lithium-ion battery, LiSnO anode, potassium doping, lithium-ion diffusivity, electronic conductivity

Procedia PDF Downloads 65
5354 Analysis of the Detachment of Water Droplets from a Porous Fibrous Surface

Authors: Ibrahim Rassoul, E-K. Si Ahmed

Abstract:

The growth, deformation, and detachment of fluid droplets adherent to solid substrates is a problem of fundamental interest with numerous practical applications. Specific interest in this proposal is the problem of a droplet on a fibrous, hydrophobic substrate subjected to body or external forces (gravity, convection). The past decade has seen tremendous advances in proton exchange membrane fuel cell (PEMFC) technology. However, there remain many challenges to bring commercially viable stationary PEMFC products to the market. PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On the one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause 'flooding' (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The aim of this work is to investigate the stability of a liquid water droplet emerging form a GDL pore, to gain fundamental insight into the instability process leading to detachment. The approach will combine analytical and numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, water droplet, gas diffusion layer, contact angle, surface tension

Procedia PDF Downloads 251
5353 Hydrological Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil

Authors: Mehdi Fuladipanah, Mehdi Jorabloo

Abstract:

Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of the river ecosystem. Then, it is severe to determine ecosystem flow requirement. In this paper, Flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude was determined as 1-day, 3-day, 7-day, and 30 days. According to the second method, hydraulic alteration indices often had low and medium range. To maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m^3.s^-1.

Keywords: Gharasou River, water flow management, non-uniformity distribution, ecosystem flow requirement, hydraulic alteration

Procedia PDF Downloads 335
5352 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test

Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany

Abstract:

Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.

Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution

Procedia PDF Downloads 168
5351 Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells

Authors: Yingjeng James Li, Lung-Yu Sung, Huan-Jyun Ciou

Abstract:

Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA / cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV / hr. Accelerated mode was carried out by switching the voltage of the single cell between OCV and 0.2V. The durations held at OCV and 0.2V were 20 and 40 seconds, respectively, meaning one minute per cycle. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.

Keywords: durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells

Procedia PDF Downloads 589
5350 Numerical Investigation of Flow Behaviour Across a Trapezoidal Bluff Body at Low Reynolds Number

Authors: Zaaraoui Abdelkader, Kerfah Rabeh, Noura Belkheir, Matene Elhacene

Abstract:

The trapezoidal bluff body is a typical configuration of vortex shedding bodies. The aim of this work is to study flow behaviour over a trapezoidal cylinder at low Reynolds number. The geometry was constructed from a prototype device for measuring the volumetric flow-rate by counting vortices. Simulations were run for this geometry under steady and unsteady flow conditions using finite volume discretization. Laminar flow was investigated in this model with rigid walls and homogeneous incompressible Newtonian fluid. Calculations were performed for Reynolds number range 5 ≤ Re ≤ 180 and several flow parameters were documented. The present computations are in good agreement with the experimental observations and the numerical calculations by several investigators.

Keywords: bluff body, confined flow, numerical calculations, steady and unsteady flow, vortex shedding flow meter

Procedia PDF Downloads 287
5349 HCl-Based Hydrometallurgical Recycling Route for Metal Recovery from Li-Ion Battery Wastes

Authors: Claudia Schier, Arvid Biallas, Bernd Friedrich

Abstract:

The demand for Li-ion-batteries owing to their benefits, such as; fast charging time, high energy density, low weight, large temperature range, and a long service life performance is increasing compared to other battery systems. These characteristics are substantial not only for battery-operated portable devices but also in the growing field of electromobility where high-performance energy storage systems in the form of batteries are highly requested. Due to the sharp rising production, there is a tremendous interest to recycle spent Li-Ion batteries in a closed-loop manner owed to the high content of valuable metals such as cobalt, manganese, and lithium as well as regarding the increasing demand for those scarce applied metals. Currently, there are just a few industrial processes using hydrometallurgical methods to recover valuable metals from Li-ion-battery waste. In this study, the extraction of valuable metals from spent Li-ion-batteries is investigated by pretreated and subsequently leached battery wastes using different precipitation methods in a comparative manner. For the extraction of lithium, cobalt, and other valuable metals, pelletized battery wastes with an initial Li content of 2.24 wt. % and cobalt of 22 wt. % is used. Hydrochloric acid with 4 mol/L is applied with 1:50 solid to liquid (s/l) ratio to generate pregnant leach solution for subsequent precipitation steps. In order to obtain pure precipitates, two different pathways (pathway 1 and pathway 2) are investigated, which differ from each other with regard to the precipitation steps carried out. While lithium carbonate recovery is the final process step in pathway 1, pathway 2 requires a preliminary removal of lithium from the process. The aim is to evaluate both processes in terms of purity and yield of the products obtained. ICP-OES is used to determine the chemical content of leach liquor as well as of the solid residue.

Keywords: hydrochloric acid, hydrometallurgy, Li-ion-batteries, metal recovery

Procedia PDF Downloads 171
5348 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply

Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan

Abstract:

Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.

Keywords: ZigBee, Li-ion battery, solar panel, CC2530

Procedia PDF Downloads 374
5347 Impact of Alternative Fuel Feeding on Fuel Cell Performance and Durability

Authors: S. Rodosik, J. P. Poirot-Crouvezier, Y. Bultel

Abstract:

With the expansion of the hydrogen economy, Proton Exchange Membrane Fuel Cell (PEMFC) systems are often presented as promising energy converters suitable for transport applications. However, reaching a durability of 5000 h recommended by the U.S. Department of Energy and decreasing system cost are still major hurdles to their development. In order to increase the system efficiency and simplify the system without affecting the fuel cell lifetime, an architecture called alternative fuel feeding has been developed. It consists in a fuel cell stack divided into two parts, alternatively fed, implemented on a 5-kW system for real scale testing. The operation strategy can be considered close to Dead End Anode (DEA) with specific modifications to avoid water and nitrogen accumulation in the cells. The two half-stacks are connected in series to enable each stack to be alternatively fed. Water and nitrogen accumulated can be shifted from one half-stack to the other one according to the alternative feeding frequency. Thanks to the homogenization of water vapor along the stack, water management was improved. The operating conditions obtained at system scale are close to recirculation without the need of a pump or an ejector. In a first part, a performance comparison with the DEA strategy has been performed. At high temperature and low pressure (80°C, 1.2 bar), performance of alternative fuel feeding was higher, and the system efficiency increased. In a second part, in order to highlight the benefits of the architecture on the fuel cell lifetime, two durability tests, lasting up to 1000h, have been conducted. A test on the 5-kW system has been compared to a reference test performed on a test bench with a shorter stack, conducted with well-controlled operating parameters and flow-through hydrogen strategy. The durability test is based upon the Fuel Cell Dynamic Load Cycle (FC-DLC) protocol but adapted to the system limitations: without OCV steps and a maximum current density of 0.4 A/cm². In situ local measurements with a segmented S++® plate performed all along the tests, showed a more homogeneous distribution of the current density with alternative fuel feeding than in flow-through strategy. Tests performed in this work enabled the understanding of this architecture advantages and drawbacks. Alternative fuel feeding architecture appeared to be a promising solution to ensure the humidification function at the anode side with a simplified fuel cell system.

Keywords: automotive conditions, durability, fuel cell system, proton exchange membrane fuel cell, stack architecture

Procedia PDF Downloads 142
5346 Anisotropic Approach for Discontinuity Preserving in Optical Flow Estimation

Authors: Pushpendra Kumar, Sanjeev Kumar, R. Balasubramanian

Abstract:

Estimation of optical flow from a sequence of images using variational methods is one of the most successful approach. Discontinuity between different motions is one of the challenging problem in flow estimation. In this paper, we design a new anisotropic diffusion operator, which is able to provide smooth flow over a region and efficiently preserve discontinuity in optical flow. This operator is designed on the basis of intensity differences of the pixels and isotropic operator using exponential function. The combination of these are used to control the propagation of flow. Experimental results on the different datasets verify the robustness and accuracy of the algorithm and also validate the effect of anisotropic operator in the discontinuity preserving.

Keywords: optical flow, variational methods, computer vision, anisotropic operator

Procedia PDF Downloads 873
5345 Flow as a Positive Intervention for Post-Traumatic Stress Disorder

Authors: Sonal Khosla

Abstract:

A research is proposed in the present paper to explore the role of flow in coping with traumatic experiences and attaining post-traumatic growth. A grounded theory research is proposed to be carried by analyzing memoirs of people who have been through trauma. A pilot study was carried out on two memoirs of women who were held captive for over ten years and were sexually assaulted repeatedly. The role of flow in their coping experiences was explored by analyzing the books. Some of the flow activities that were used by them were- drawing and daydreaming. Their narratives show the evidence for flow as having cathartic and healing effects on them. Applicability of the findings can take two forms: 1. Flow can be applied as a preventive technique to help the people who are going through trauma, 2. Flow can be adopted into a positive intervention to help people suffering from PTSD.

Keywords: flow, positive intervention, PTSD, PTG

Procedia PDF Downloads 374
5344 A Global Perspective on Neuropsychology: The Multicultural Neuropsychological Scale

Authors: Tünde Tifordiána Simonyi, Tímea Harmath-Tánczos

Abstract:

The primary aim of the current research is to present the significance of a multicultural perspective in clinical neuropsychology and to present the test battery of the Multicultural Neuropsychological Scale (MUNS). The method includes the MUNS screening tool that involves stimuli common to most cultures in the world. The test battery measures general cognitive functioning focusing on five cognitive domains (memory, executive function, language, visual construction, and attention) tested with seven subtests that can be utilized within a wide age range (15-89), and lower and higher education participants. It is a scale that is sensitive to mild cognitive impairments. Our study presents the first results with the Hungarian translation of MUNS on a healthy sample. The education range was 4-25 years of schooling. The Hungarian sample was recruited by snowball sampling. Within the investigated population (N=151) the age curve follows an inverted U-shaped curve regarding cognitive performance with a high load on memory. Age, reading fluency, and years of education significantly influenced test scores. The sample was tested twice within a 14-49 days interval to determine test-retest reliability, which is satisfactory. Besides the findings of the study and the introduction of the test battery, the article also highlights its potential benefits for both research and clinical neuropsychological practice. The importance of adapting, validating and standardizing the test in other languages besides the Hungarian language context is also stressed. This test battery could serve as a helpful tool in mapping general cognitive functions in psychiatric and neurological disorders regardless of the cultural background of the patients.

Keywords: general cognitive functioning, multicultural, MUNS, neuropsychological test battery

Procedia PDF Downloads 109
5343 Obtaining Norms for Arabic Translated Version of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Neuropsychological Battery in Normal Elderly Omanis Attending a Tertiary Hospital in Oman

Authors: Ammar Alobaidy, Lamees Alsawafi, Malak Almawali, Balqees Alabri, Hajer Alhamrashdi

Abstract:

Background: There is scarce data in the literature concerning the use of Arabic version neuron psychological cognitive tests in the geriatric age group of the Omani population. Objectives: Our aim is to obtain norms for normal elderly Omanis assessed by The Consortium to Establish a Registry for Alzheimer's disease (CERAD) neuro psychological battery and to compare these norms with other studies in the literature. Methods: 84 attendants and visitors of in-patients at Sultan Qaboos University Hospital, elder than 55 years, were interviewed. All participants were assessed by Dementia Rating Scale & Geriatric Depression Scale to ensure the integrity of their activities of daily living and the absence of depression, respectively. The performance of all participants in the CERAD battery was rated by a single rater to optimize the inter-rater reliability. Results: The cut-point for average performance in CERAD battery is dependent on the age, sex, and level of education and cannot be set as a single cut-point for all elderly Omanis. Conclusion: This study has shown the effect of age, sex, and level of education on the cognitive performance of normal elderly Omanis. The normative data obtained from this study can be utilized to differentiate between the cognitive decline of normal aging and the cognitive impairment due to various neuro cognitive disorders in the elderly Omanis, and probably culturally similar Arabic speaking communities.

Keywords: CERAD, neuropsychological battery, normal aging, elderly Omanis

Procedia PDF Downloads 370
5342 Carbon Nanotubes Synthesized Using Sugar Cane as a Percursor

Authors: Vanessa Romanovicz, Beatriz A. Berns, Stephen D. Carpenter, Deyse Carpenter

Abstract:

This article deals with the carbon nanotubes (CNT) synthesized from a novel precursor, sugar cane and Anodic Aluminum Oxide (AAO). The objective was to produce CNTs to be used as catalyst supports for Proton Exchange Membranes. The influence of temperature, inert gas flow rate and concentration of the precursor is presented. The CNTs prepared were characterized using TEM, XRD, Raman Spectroscopy, and the surface area determined by BET. The results show that it is possible to form CNT from sugar cane by pyrolysis and the CNTs are the type multi-walled carbon nanotubes. The MWCNTs are short and closed at the two ends with very small surface area of SBET = 3.691m,/g.

Keywords: carbon nanotubes, sugar cane, fuel cell, catalyst support

Procedia PDF Downloads 446
5341 Digital Control Techniques for Power Electronic Devices

Authors: Rakesh Krishna, Abhishek Poddar

Abstract:

The paper discusses the work carried out on the implementation of control techniques like Digital Pulse Width Modulation (PWM) and Digital Pulse Fired control(PFC). These techniques are often used in devices like inverters, battery chargers, DC-to-DC converters can also be implemented on household devices like heaters. The advantage being the control and improved life span of device. In case of batteries using these techniques are known to increase the life span of battery in mobiles and other hand-held devices. 8051 microcontroller is used to implement these methods.Thyristors are used for switching operations.

Keywords: PWM, SVM, PFC, bidirectional inverters, snubber

Procedia PDF Downloads 572
5340 Rapid Processing Techniques Applied to Sintered Nickel Battery Technologies for Utility Scale Applications

Authors: J. D. Marinaccio, I. Mabbett, C. Glover, D. Worsley

Abstract:

Through use of novel modern/rapid processing techniques such as screen printing and Near-Infrared (NIR) radiative curing, process time for the sintering of sintered nickel plaques, applicable to alkaline nickel battery chemistries, has been drastically reduced from in excess of 200 minutes with conventional convection methods to below 2 minutes using NIR curing methods. Steps have also been taken to remove the need for forming gas as a reducing agent by implementing carbon as an in-situ reducing agent, within the ink formulation.

Keywords: batteries, energy, iron, nickel, storage

Procedia PDF Downloads 439
5339 Computational Fluid Dynamics (CFD) Simulation Approach for Developing New Powder Dispensing Device

Authors: Revanth Rallapalli

Abstract:

Manually dispensing solids and powders can be difficult as it requires gradually pour and check the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in development of such devices saving time and money by reducing the number of prototypes and testing. Furthermore, this paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to trocar’s end side is done by rotation of the screw conveyor. Thus, the performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and also at the effective area within a quick turnaround time frame.

Keywords: DDPM-KTGF, gas-solids multiphase flow, screw conveyor, Unsteady

Procedia PDF Downloads 180