Search results for: plant input mapping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6465

Search results for: plant input mapping

6285 Mapping the Intrinsic Vulnerability of the Quaternary Aquifer of the Eastern Mitidja (Northern Algeria)

Authors: Abida Haddouche, Ahmed Chrif Toubal

Abstract:

The Neogene basin of the Eastern Mitidja, object of the study area, represents potential water resources and especially groundwater reserves. This water is an important economic; this resource is highly sensitive which need protection and preservation. Unfortunately, these waters are exposed to various forms of pollution, whether from urban, agricultural, industrial or merely accidental. This pollution is a permanent risk of limiting resource. In this context, the work aims to evaluate the intrinsic vulnerability of the aquifer to protect and preserve the quality of this resource. It will focus on the disposal of water and land managers a cartographic document accessible to locate the areas where the water has a high vulnerability. Vulnerability mapping of the Easter Mitidja quaternary aquifer is performed by applying three methods (DRASTIC, DRIST, and GOD). Comparison and validation results show that the DRASTIC method is the most suitable method for aquifer vulnerability of the study area.

Keywords: Aquifer of Mitidja, DRASTIC method, geographic information system (GIS), vulnerability mapping

Procedia PDF Downloads 362
6284 Effect of Variation of Temperature Distribution on Mechanical Properties of Shield Metal Arc Welded Duplex Stainless Steel

Authors: Arvind Mittal, Rajesh Gupta

Abstract:

Influence of heat input on the micro structure and mechanical properties of shield metal arc welded of duplex stainless steel UNSNO.S-31803 has been investigated. Three heat input combinations designated as low heat (0.675 KJ/mm), medium heat (0.860 KJ/mm) and high heat (1.094 KJ/mm) and weld joints made using these combinations were subjected to micro structural evaluations and tensile and impact testing so as to analyze the effect of thermal arc energy on the micro structure and mechanical properties of these joints. The result of this investigation shows that the joints made using low heat input exhibited higher tensile strength than those welded with medium and high heat input. Heat affected zone of welded joint made with medium heat input has austenitic ferritic grain structure with some patchy austenite provide high toughness. Significant grain coarsening was observed in the heat affected zone (HAZ) of medium and high heat input welded joints, whereas low heat input welded joint shows the fine grain structure in the heat affected zone with small amount of dendritic formation and equiaxed grain structure where inner zone indicates slowly cooled grains in the direction of heat dissipation. This is the main reason for the observable changes of tensile properties of weld joints welded with different arc energy inputs.

Keywords: microstructure, mechanical properties, shield metal arc welded, duplex stainless steel

Procedia PDF Downloads 259
6283 The Effect of Flue Gas Condensation on the Exergy Efficiency and Economic Performance of a Waste-To-Energy Plant

Authors: Francis Chinweuba Eboh, Tobias Richards

Abstract:

In this study, a waste-to-energy combined heat and power plant under construction was modelled and simulated with the Aspen Plus software. The base case process plant was evaluated and compared when integrated with flue gas condensation (FGC) in order to find out the impact of the exergy efficiency and economic feasibility as well as the effect of overall system exergy losses and revenue generated in the investigated plant. The economic evaluations were carried out using the vendor cost data from Aspen process economic analyser. The results indicate that 4 % increase in the exergy efficiency and 29 % reduction in the exergy loss in the flue gas were obtained when the flue gas condensation was incorporated. Furthermore, with the integrated FGC, the net present values (NPV) and income generated in the base process plant were increased by 29 % and 10 % respectively after 20 years of operation.

Keywords: economic feasibility, exergy efficiency, exergy losses, flue gas condensation, waste-to-energy

Procedia PDF Downloads 163
6282 Study of Current the Rice Straw Potential for a Small Power Plant Capacity in the Central Region of Thailand

Authors: Sansanee Sansiribhan, Orrawan Rewthong, Anusorn Rattanathanaophat, Sarun Saensiriphan

Abstract:

The objective of this work was to study potential of rice straw for power plant in the central region of Thailand. Provincial power plant capacity was studied. The results showed that provinces central region had potential for small power plants with a capacity of over 10 MW in 13 provinces, 1-10 MW in 6 provinces and less than 1 MW in 3 provinces.

Keywords: rice straw, power plant, central region, Thailand

Procedia PDF Downloads 303
6281 The Laser Line Detection for Autonomous Mapping Based on Color Segmentation

Authors: Pavel Chmelar, Martin Dobrovolny

Abstract:

Laser projection or laser footprint detection is today widely used in many fields of robotics, measurement, or electronics. The system accuracy strictly depends on precise laser footprint detection on target objects. This article deals with the laser line detection based on the RGB segmentation and the component labeling. As a measurement device was used the developed optical rangefinder. The optical rangefinder is equipped with vertical sweeping of the laser beam and high quality camera. This system was developed mainly for automatic exploration and mapping of unknown spaces. In the first section is presented a new detection algorithm. In the second section are presented measurements results. The measurements were performed in variable light conditions in interiors. The last part of the article present achieved results and their differences between day and night measurements.

Keywords: color segmentation, component labelling, laser line detection, automatic mapping, distance measurement, vector map

Procedia PDF Downloads 405
6280 Bioinsecticidal Activity and Phytochemical Study of the Crude Extract from the Plant Artemisia judaica

Authors: Fatma Acheuk, Idir Bitam, Leila Bendifallah, Malika Ramdani, Fethia Barika

Abstract:

Phytochemical study of the plant Artemisia judaica showed the presence of various groups of natural products: saponins, tannins, coumarins, flavonoids, carbohydrates, and reducer compounds. However, alkaloids are present as traces. The crude ethanol extract of the test plant presented significant insecticidal activity on mosquito larvae in stage I, II and III. The LD50 highlighted the excellent insecticidal effect of the tested extract. Similarly, the LT50 are achieved early with high doses. The results obtained are encouraging and suggest the possibility of using the secondary metabolites of this plant such as bio-insecticide.

Keywords: Atamisia judaica, crud extract, mosquito, insecticidal activity

Procedia PDF Downloads 489
6279 Antiglycemic Activity of Raw Plant Materials as Potential Components of Functional Food

Authors: Ewa Flaczyk, Monika Przeor, Joanna Kobus-Cisowska, Józef Korczak

Abstract:

The aim of this paper was to collect the information concerning the most popular raw plant materials of antidiabetic activity, in a context of functional food developing production. The elaboration discusses morphological elements possible for an application in functional food production of the plants such as: common bean, ginger, Ceylon cinnamon, white mulberry, fenugreek, French lilac, ginseng, jambolão, and bitter melon. An activity of bioactive substances contained in these raw plant materials was presented, pointing their antiglycemic and also hypocholesterolemic, antiarthritic, antirheumatic, antibacterial, and antiviral activity in the studies on humans and animals. Also the genesis of functional food definition was presented.

Keywords: antiglycemic activity, raw plant materials, functional food, food, nutritional sciences

Procedia PDF Downloads 451
6278 Critical Terrain Slope Calculation for Locating Small Hydropower Plants

Authors: C. Vrekos, C. Evagelides, N. Samarinas, G. Arampatzis

Abstract:

As known, the water energy is a renewable and clean source of energy. Energy production from hydropower has been the first, and still is today a renewable source used to generate electricity. The optimal location and sizing of a small hydropower plant is a very important issue in engineering design which encourages investigation. The aim of this paper is to present a formula that can be utilized for locating the position of a small hydropower plant although there is a high dependence on economic, environmental, and social parameters. In this paper, the economic and technical side of the problem is considered. More specifically, there is a critical terrain slope that determines if the plant should be located at the end of the slope or not. Of course, this formula can be used for a first estimate and does not include detailed economic analysis. At the end, a case study is presented for the location of a small hydropower plant in order to demonstrate the validity of the proposed formula.

Keywords: critical terrain slope, economic analysis, hydropower plant locating, renewable energy

Procedia PDF Downloads 181
6277 Using Soil Texture Field Observations as Ordinal Qualitative Variables for Digital Soil Mapping

Authors: Anne C. Richer-De-Forges, Dominique Arrouays, Songchao Chen, Mercedes Roman Dobarco

Abstract:

Most of the digital soil mapping (DSM) products rely on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs. However, many other observations (often qualitative, nominal, or ordinal) could be used as proxies of lab measurements or as input data for ML of PTF predictions. DSM and ML are briefly described with some examples taken from the literature. Then, we explore the potential of an ordinal qualitative variable, i.e., the hand-feel soil texture (HFST) estimating the mineral particle distribution (PSD): % of clay (0-2µm), silt (2-50µm) and sand (50-2000µm) in 15 classes. The PSD can also be measured by lab measurements (LAST) to determine the exact proportion of these particle-sizes. However, due to cost constraints, HFST are much more numerous and spatially dense than LAST. Soil texture (ST) is a very important soil parameter to map as it is controlling many of the soil properties and functions. Therefore, comes an essential question: is it possible to use HFST as a proxy of LAST for calibration and/or validation of DSM predictions of ST? To answer this question, the first step is to compare HFST with LAST on a representative set where both information are available. This comparison was made on ca 17,400 samples representative of a French region (34,000 km2). The accuracy of HFST was assessed, and each HFST class was characterized by a probability distribution function (PDF) of its LAST values. This enables to randomly replace HFST observations by LAST values while respecting the PDF previously calculated and results in a very large increase of observations available for the calibration or validation of PTF and ML predictions. Some preliminary results are shown. First, the comparison between HFST classes and LAST analyses showed that accuracies could be considered very good when compared to other studies. The causes of some inconsistencies were explored and most of them were well explained by other soil characteristics. Then we show some examples applying these relationships and the increase of data to several issues related to DSM. The first issue is: do the PDF functions that were established enable to use HSFT class observations to improve the LAST soil texture prediction? For this objective, we replaced all HFST for topsoil by values from the PDF 100 time replicates). Results were promising for the PTF we tested (a PTF predicting soil water holding capacity). For the question related to the ML prediction of LAST soil texture on the region, we did the same kind of replacement, but we implemented a 10-fold cross-validation using points where we had LAST values. We obtained only preliminary results but they were rather promising. Then we show another example illustrating the potential of using HFST as validation data. As in numerous countries, the HFST observations are very numerous; these promising results pave the way to an important improvement of DSM products in all the countries of the world.

Keywords: digital soil mapping, improvement of digital soil mapping predictions, potential of using hand-feel soil texture, soil texture prediction

Procedia PDF Downloads 199
6276 Preliminary Phytochemical Screening of Eucalyptus camaldulensis Leaves, Stem-Bark, Root, Fruits, and Seeds and Ethanolic Extracts

Authors: I. Sani, F. Bello, Isah M. Fakai, A. Abdulhamid

Abstract:

Phytochemicals are active secondary plant metabolites responsible for most of the claimed medicinal activities of plants. Eucalyptus camaldulensis is one of those plants that possess these phytochemicals and claimed to possess medicinal activities on various ailments. The phytochemicals constituents of various parts of this plant were investigated using standard methods of phytochemicals screening in both aqueous and ethanolic extracts. Qualitative screening revealed that tannins, saponins, glycosides, steroids, and anthraquinones were present in aqueous extract of all the parts of the plant, whereas alkaloids, flavonoids and terpenoids were absent. On the other hand, tannins and steroids were present in the ethanolic extract of all the parts of the plant, while saponins, alkaloids, flavonoids and terpenoids were present only in some parts of the plant. However, glycosides and anthraquinone were absent in all the ethanolic extracts. The quantitative screening revealed large amount of saponins in both aqueous and ethanolic extracts across the various parts of the plant. Whereas small amount of tannins, alkaloids and flavonoids were found only in the ethanolic extract of some parts of the plant. The presence of these phytochemicals in Eucalyptus camaldulensis could therefore justify the applications of the plant in management and curing of various ailments as claimed traditionally.

Keywords: Eucalyptus camaldulensis, phytochemical screening, aqueous extract, ethanolic extract

Procedia PDF Downloads 353
6275 Eucalyptus camaldulensis: Phytochemical Composition of Ethanolic and Aqueous Extracts of the Leaves, Stem-Bark, Root, Fruits, and Seeds

Authors: I. Sani, A. Abdulhamid, F. Bello, Isah M. Fakai

Abstract:

Phytochemicals are active secondary plant metabolites responsible for most of the claimed medicinal activities of plants. Eucalyptus camaldulensis is one of those plants that possess these phytochemicals and claimed to possess medicinal activities on various ailments. The phytochemicals constituents of various parts of this plant were investigated using standard methods of phytochemicals screening in both aqueous and ethanolic extracts. Qualitative screening revealed that tannins, saponins, glycosides, steroids and anthraquinones were present in aqueous extract of all the parts of the plant, whereas alkaloids, flavonoids and terpenoids were absent. On the other hand, tannins and steroids were present in the ethanolic extract of all the parts of the plant, while saponins, alkaloids, flavonoids and terpenoids were present only in some parts of the plant. However, glycosides and anthraquinone were absent in all the ethanolic extracts. The quantitative screening revealed large amount of saponins in both aqueous and ethanolic extracts across the various parts of the plant. Whereas small amount of tannins, alkaloids and flavonoids were found only in the ethanolic extract of some parts of the plant. The presence of these phytochemicals in Eucalyptus camaldulensis could therefore justify the applications of the plant in management and curing of various ailments as claimed traditionally.

Keywords: Eucalyptus camaldulensis, phytochemical Screening, aqueous extract, ethanolic extract

Procedia PDF Downloads 523
6274 Phytochemical Study and Bioinsecticidal Effect of the Crude Extract from the Plant Artemisia Judaica

Authors: Fatma Acheuk, Idir Bitam, Leila Bendifallah, Malika Ramdani, Fethia Barika

Abstract:

Phytochemical study of the plant Artemisia judaica showed the presence of various groups of natural products: saponins, tannins, coumarins, flavonoids, carbohydrates, and reducer compounds. However alkaloids are present as traces. The crude ethanol extract of the test plant presented significant insecticidal activity on mosquito larvae in stage I, II, and III. The LD50 highlighted the excellent insecticidal effect of the tested extract. Similarly, the LT50 are achieved early with high doses. The results obtained are encouraging and suggest the possibility of using the secondary metabolites of this plant such as bio-insecticide.

Keywords: Atamisia judaica, crud extract, mosquito, insecticidal activity

Procedia PDF Downloads 560
6273 The Conservation of the Botanical Collar of Tutankhamun

Authors: Safwat Mohamed Sayed Ali, Hussein Kamal

Abstract:

This paper discusses the conservation procedures of the botanical collar of King Tutankhamun. It dates back to the new Kingdom. This collar was kept in a box but found in bad condition. Many parts of the collar were separated. The collar suffered from dryness and dust, so it needed to be cleaned mechanically and recollected together. Japanese paper was used to collect the separated parts of the collar on a linen thread. The linen thread was dyed with organic dye to match the color of the plant material. The guidance in collecting the different parts of the plant collar is the original photograph captured at the discovery of the tomb. Also, the optical microscope was used in collecting fractured parts. The weak parts of the collar were treated with a suitable consolidation material. Klucel G dissolved in Ethyl Alcohol 0.5% was used in the treatment and gave convenient results. Some investigations were executed in order to identify the plant types used in making the botanical collar. Scanning Electron microscope and optical microscope were used in plant identification.

Keywords: sustainable, consolidation, plant, investigation

Procedia PDF Downloads 54
6272 Research and Application of Multi-Scale Three Dimensional Plant Modeling

Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao

Abstract:

Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.

Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition

Procedia PDF Downloads 258
6271 Optimization of Sintering Process with Deteriorating Quality of Iron Ore Fines

Authors: Chandra Shekhar Verma, Umesh Chandra Mishra

Abstract:

Blast Furnace performance mainly depends on the quality of sinter as a major portion of iron-bearing material occupies by it hence its quality w.r.t. Tumbler Index (TI), Reducibility Index (RI) and Reduction Degradation Index (RDI) are the key performance indicators of sinter plant. Now it became very tough to maintain the desired quality with the increasing alumina (Al₂O₃) content in iron fines and study is focused on it. Alumina is a refractory material and required more heat input to fuse thereby affecting the desired sintering temperature, i.e. 1300°C. It goes in between the grain boundaries of the bond and makes it weaker. Sinter strength decreases with increasing alumina content, and weak sinter generates more fines thereby reduces the net sinter production as well as plant productivity. Presence of impurities beyond the acceptable norm: such as LOI, Al₂O₃, MnO, TiO₂, K₂O, Na₂O, Hydrates (Goethite & Limonite), SiO₂, phosphorous and zinc, has led to greater challenges in the thrust areas such as productivity, quality and cost. The ultimate aim of this study is maintaining the sinter strength even with high Al₂O without hampering the plant productivity. This study includes mineralogy test of iron fines to find out the fraction of different phases present in the ore and phase analysis of product sinter to know the distribution of different phases. Corrections were done focusing majorly on varying Al₂O₃/SiO₂ ratio, basicity: B2 (CaO/SiO₂), B3 (CaO+MgO/SiO₂) and B4 (CaO+MgO/SiO₂+Al₂O₃). The concept of Alumina / Silica ratio, B3 & B4 found to be useful. We used to vary MgO, Al₂O₃/SiO₂, B2, B3 and B4 to get the desired sinter strength even at high alumina (4.2 - 4.5%) in sinter. The study concludes with the establishment of B4, and Al₂O₃/SiO₂ ratio in between 1.53-1.60 and 0.63- 0.70 respectively and have achieved tumbler index (Drum Index) 76 plus with the plant productivity of 1.58-1.6 t/m2/hr. at JSPL, Raigarh. Study shows that despite of high alumina in sinter, its physical quality can be controlled by maintaining the above-mentioned parameters.

Keywords: Basicity-2, Basicity-3, Basicity-4, Sinter

Procedia PDF Downloads 150
6270 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm

Authors: Wilayat Ali, Li Sheng, Waleed Ahmed

Abstract:

The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.

Keywords: SLAM, ROS, navigation, localization and mapping, gazebo, Rviz, Turtlebot2, slam algorithms, 2d indoor environment, cartographer

Procedia PDF Downloads 125
6269 Application and Verification of Regression Model to Landslide Susceptibility Mapping

Authors: Masood Beheshtirad

Abstract:

Identification of regions having potential for landslide occurrence is one of the basic measures in natural resources management. Different landslide hazard mapping models are proposed based on the environmental condition and goals. In this research landslide hazard map using multiple regression model were provided and applicability of this model is investigated in Baghdasht watershed. Dependent variable is landslide inventory map and independent variables consist of information layers as Geology, slope, aspect, distance from river, distance from road, fault and land use. For doing this, existing landslides have been identified and an inventory map made. The landslide hazard map is based on the multiple regression provided. The level of similarity potential hazard classes and figures of this model were compared with the landslide inventory map in the SPSS environments. Results of research showed that there is a significant correlation between the potential hazard classes and figures with area of the landslides. The multiple regression model is suitable for application in the Baghdasht Watershed.

Keywords: landslide, mapping, multiple model, regression

Procedia PDF Downloads 305
6268 Developing Indicators in System Mapping Process Through Science-Based Visual Tools

Authors: Cristian Matti, Valerie Fowles, Eva Enyedi, Piotr Pogorzelski

Abstract:

The system mapping process can be defined as a knowledge service where a team of facilitators, experts and practitioners facilitate a guided conversation, enable the exchange of information and support an iterative curation process. System mapping processes rely on science-based tools to introduce and simplify a variety of components and concepts of socio-technical systems through metaphors while facilitating an interactive dialogue process to enable the design of co-created maps. System maps work then as “artifacts” to provide information and focus the conversation into specific areas around the defined challenge and related decision-making process. Knowledge management facilitates the curation of that data gathered during the system mapping sessions through practices of documentation and subsequent knowledge co-production for which common practices from data science are applied to identify new patterns, hidden insights, recurrent loops and unexpected elements. This study presents empirical evidence on the application of these techniques to explore mechanisms by which visual tools provide guiding principles to portray system components, key variables and types of data through the lens of climate change. In addition, data science facilitates the structuring of elements that allow the analysis of layers of information through affinity and clustering analysis and, therefore, develop simple indicators for supporting the decision-making process. This paper addresses methodological and empirical elements on the horizontal learning process that integrate system mapping through visual tools, interpretation, cognitive transformation and analysis. The process is designed to introduce practitioners to simple iterative and inclusive processes that create actionable knowledge and enable a shared understanding of the system in which they are embedded.

Keywords: indicators, knowledge management, system mapping, visual tools

Procedia PDF Downloads 164
6267 Retrospective Reconstruction of Time Series Data for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modelling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modelling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modelling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.

Keywords: content analysis, factors, integrated waste management system, time series

Procedia PDF Downloads 307
6266 The Role of Structure Input in Pi in the Acquisition of English Relative Clauses by L1 Saudi Arabic Speakers

Authors: Faraj Alhamami

Abstract:

The effects of classroom input through structured input activities have been addressing two main lines of inquiry: (1) measuring the effects of structured input activities as a possible causative factor of PI and (2) comparing structured input practice versus other types of instruction or no-training controls. This line of research, the main purpose of this classroom-based research, was to establish which type of activities is the most effective in processing instruction, whether it is the explicit information component and referential activities only or the explicit information component and affective activities only or a combination of the two. The instruments were: a) grammatical judgment task, b) Picture-cued task, and c) a translation task as pre-tests, post-tests and delayed post-tests seven weeks after the intervention. While testing is ongoing, preliminary results shows that the examination of participants' pre-test performance showed that all five groups - the processing instruction including both activities (RA), Traditional group (TI), Referential group (R), Affective group (A), and Control group - performed at a comparable chance or baseline level across the three outcome measures. However, at the post-test stage, the RA, TI, R, and A groups demonstrated significant improvement compared to the Control group in all tasks. Furthermore, significant difference was observed among PI groups (RA, R, and A) at post-test and delayed post-test on some of the tasks when compared to traditional group. Therefore, the findings suggest that the use of the sole application and/or the combination of the structured input activities has succeeded in helping Saudi learners of English make initial form-meaning connections and acquire RRCs in the short and the long term.

Keywords: input processing, processing instruction, MOGUL, structure input activities

Procedia PDF Downloads 51
6265 Investigating Students' Understanding about Mathematical Concept through Concept Map

Authors: Rizky Oktaviana

Abstract:

The main purpose of studying lies in improving students’ understanding. Teachers usually use written test to measure students’ understanding about learning material especially mathematical learning material. This common method actually has a lack point, such that in mathematics content, written test only show procedural steps to solve mathematical problems. Therefore, teachers unable to see whether students actually understand about mathematical concepts and the relation between concepts or not. One of the best tools to observe students’ understanding about the mathematical concepts is concept map. The goal of this research is to describe junior high school students understanding about mathematical concepts through Concept Maps based on the difference of mathematical ability. There were three steps in this research; the first step was choosing the research subjects by giving mathematical ability test to students. The subjects of this research are three students with difference mathematical ability, high, intermediate and low mathematical ability. The second step was giving concept mapping training to the chosen subjects. The last step was giving concept mapping task about the function to the subjects. Nodes which are the representation of concepts of function were provided in concept mapping task. The subjects had to use the nodes in concept mapping. Based on data analysis, the result of this research shows that subject with high mathematical ability has formal understanding, due to that subject could see the connection between concepts of function and arranged the concepts become concept map with valid hierarchy. Subject with intermediate mathematical ability has relational understanding, because subject could arranged all the given concepts and gave appropriate label between concepts though it did not represent the connection specifically yet. Whereas subject with low mathematical ability has poor understanding about function, it can be seen from the concept map which is only used few of the given concepts because subject could not see the connection between concepts. All subjects have instrumental understanding for the relation between linear function concept, quadratic function concept and domain, co domain, range.

Keywords: concept map, concept mapping, mathematical concepts, understanding

Procedia PDF Downloads 250
6264 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm

Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho

Abstract:

Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.

Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.

Procedia PDF Downloads 230
6263 Nature-based Solutions for Mitigating the Impact of Climate Change on Plants: Utilizing Encapsulated Plant Growth Regulators and Associative Microorganisms

Authors: Raana Babadi Fathipour

Abstract:

Over the past decades, the climatic CO2 concentration and worldwide normal temperature have been expanding, and this drift is anticipated to before long gotten to be more extreme. This situation of climate alter escalate abiotic stretch components (such as dry spell, flooding, saltiness, and bright radiation) that debilitate timberland and related environments as well as trim generation. These variables can contrarily influence plant development and advancement with a ensuing lessening in plant biomass aggregation and surrender, in expansion to expanding plant defenselessness to biotic stresses. As of late, biostimulants have ended up a hotspot as an viable and economical elective to reduce the negative impacts of stresses on plants. In any case, the larger part of biostimulants has destitute solidness beneath natural conditions, which leads to untimely debasement, shortening their organic movement. To unravel these bottlenecks, small scale- and nano-based definitions containing biostimulant atoms and/or microorganisms are picking up consideration as they illustrate a few points of interest over their routine details. In this survey, we center on the embodiment of plant development controllers and plant acquainted microorganisms as a technique to boost their application for plant assurance against abiotic stresses. We moreover address the potential restrictions and challenges confronted for the execution of this innovation, as well as conceivable outcomes with respect to future inquire about.

Keywords: bio stimulants, Seed priming, nano biotechnology, plant growth-promoting, rhizobacteria, plant growth regulators, microencapsulation

Procedia PDF Downloads 44
6262 Process Safety Evaluation of a Nuclear Power Plant through Virtual Process Hazard Analysis (PHA) using the What-If Technique

Authors: Lormaine Anne Branzuela, Elysa Largo, Julie Marisol Pagalilauan, Neil Concibido, Monet Concepcion Detras

Abstract:

Energy is a necessity both for the people and the country. The demand for energy is continually increasing, but the supply is not doing the same. The reopening of the Bataan Nuclear Power Plant (BNPP) in the Philippines has been circulating in the media for the current time. The general public has been hesitant in accepting the inclusion of nuclear energy in the Philippine energy mix due to perceived unsafe conditions of the plant. This study evaluated the possible operations of a nuclear power plant, which is of the same type as the BNPP, considering the safety of the workers, the public, and the environment using a Process Hazard Analysis (PHA) method. What-If Technique was utilized to identify the hazards and consequences on the operations of the plant, together with the level of risk it entails. Through the brainstorming sessions of the PHA team, it was found that the most critical system on the plant is the primary system. Possible leakages on pipes and equipment due to weakened seals and welds and blockages on coolant path due to fouling were the most common scenarios identified, which further caused the most critical scenario – radioactive leak through sump contamination, nuclear meltdown, and equipment damage and explosion which could result to multiple injuries and fatalities, and environmental impacts.

Keywords: process safety management, process hazard analysis, what-If technique, nuclear power plant

Procedia PDF Downloads 191
6261 Availability Analysis of a Power Plant by Computer Simulation

Authors: Mehmet Savsar

Abstract:

Reliability and availability of power stations are extremely important in order to achieve a required level of power generation. In particular, in the hot desert climate of Kuwait, reliable power generation is extremely important because of cooling requirements at temperatures exceeding 50-centigrade degrees. In this paper, a particular power plant, named Sabiya Power Plant, which has 8 steam turbines and 13 gas turbine stations, has been studied in detail; extensive data are collected; and availability of station units are determined. Furthermore, a simulation model is developed and used to analyze the effects of different maintenance policies on availability of these stations. The results show that significant improvements can be achieved in power plant availabilities if appropriate maintenance policies are implemented.

Keywords: power plants, steam turbines, gas turbines, maintenance, availability, simulation

Procedia PDF Downloads 595
6260 Developing a Process and Cost Model for Xanthan Biosynthesis from Bioethanol Production Waste Effluents

Authors: Bojana Ž. Bajić, Damjan G. Vučurović, Siniša N. Dodić, Jovana A. Grahovac, Jelena M. Dodić

Abstract:

Biosynthesis of xanthan, a microbial polysaccharide produced by Xanthomonas campestris, is characterized by the possibility of using non-specific carbohydrate substrates, which means different waste effluents can be used as a basis for the production media. Potential raw material sources for xanthan production come from industries with large amounts of waste effluents that are rich in compounds necessary for microorganism growth and multiplication. Taking into account the amount of waste effluents generated by the bioethanol industry and the fact that it contains a high inorganic and organic load it is clear that they represent a potential environmental pollutants if not properly treated. For this reason, it is necessary to develop new technologies which use wastes and wastewaters of one industry as raw materials for another industry. The result is not only a new product, but also reduction of pollution and environmental protection. Biotechnological production of xanthan, which consists of using biocatalysts to convert the bioethanol waste effluents into a high-value product, presents a possibility for sustainable development. This research uses scientific software developed for the modeling of biotechnological processes in order to design a xanthan production plant from bioethanol production waste effluents as raw material. The model was developed using SuperPro Designer® by using input data such as the composition of raw materials and products, defining unit operations, utility consumptions, etc., while obtaining capital and operating costs and the revenues from products to create a baseline production plant model. Results from this baseline model can help in the development of novel biopolymer production technologies. Additionally, a detailed economic analysis showed that this process for converting waste effluents into a high value product is economically viable. Therefore, the proposed model represents a useful tool for scaling up the process from the laboratory or pilot plant to a working industrial scale plant.

Keywords: biotechnology, process model, xanthan, waste effluents

Procedia PDF Downloads 324
6259 Quantitative Trait Loci Analysis in Multiple Sorghum Mapping Populations Facilitates the Dissection of Genetic Control of Drought Tolerance Related Traits in Sorghum [Sorghum bicolor (Moench)]

Authors: Techale B., Hongxu Dong, Mihrete Getinet, Aregash Gabizew, Andrew H. Paterson, Kassahun Bantte

Abstract:

The genetic architecture of drought tolerance is expected to involve multiple loci that are unlikely to all segregate for alternative alleles in a single bi-parental population. Therefore, the identification of quantitative trait loci (QTL) that are expressed in diverse genetic backgrounds of multiple bi-parental populations provides evidence about both background-specific and common genetic variants. The purpose of this study was to map QTL related to drought tolerance using three connected mapping populations of different genetic backgrounds to gain insight into the genomic landscape of this important trait in elite Ethiopian germplasm. The three bi-parental populations, each with 207 F₂:₃ lines, were evaluated using an alpha lattice design with two replications under two moisture stress environments. Drought tolerance related traits were analyzed separately for each population using composite interval mapping, finding a total of 105 QTLs. All the QTLs identified from individual populations were projected on a combined consensus map, comprising a total of 25 meta QTLs for seven traits. The consensus map allowed us to deduce locations of a larger number of markers than possible in any individual map, providing a reference for genetic studies in different genetic backgrounds. The mQTL identified in this study could be used for marker-assisted breeding programs in sorghum after validation. Only one trait, reduced leaf senescence, showed a striking bias of allele distribution, indicating substantial standing variation among present varieties that might be employed in improving drought tolerance of Ethiopian and other sorghums.

Keywords: Drought tolerance , Mapping populations, Meta QTL, QTL mapping, Sorghum

Procedia PDF Downloads 154
6258 Raman Line Mapping on Melt Spun Polycarbonate/MWNT Fiber-Based Nanocomposites

Authors: Poonam Yadav, Dong Bok Lee

Abstract:

Raman spectroscopy was used for characterization of multi-wall carbon nanotube (MWNT) and Polycarbonate/multi-wall carbon nanotube (PC/MWNT) based fibers with 0.55% and 0.75% of MWNT (PC/MWNT55 and PC/MWNT75). PC/MWNT55 and PC/MWNT75 fibers was prepared by melt spinning device using nanocomposites made by two different route, viz., solvent casting and melt extrusion. Fibers prepared from melt extruded nanocomposites showed smooth and uniform morphology as compared to solvent casting based nanocomposites. The Raman mapping confirmed that the melt extruded based nanocomposites had better dispersion of MWNT in Polycarbonate (PC) than solvent casting carbon nanotube.

Keywords: dispersion, melt extrusion, multi-wall carbon nanotube, mapping

Procedia PDF Downloads 331
6257 Effect of Crude oil Contamination on the Morphological Traits and Protein Content of Avicennia Marina

Authors: Babak Moradi, Hassan Zare-Maivan

Abstract:

A greenhouse investigation has been conducted to study the effect of crude oil on morphology and protein content of Avicennia marina plant. Avicennia marina seeds were sown in different concentrations of the crude oil mixed soil (i.e., 2.5, 5, 7.5, and 10 w/w). Controls and replicates were also set up. Morphological traits were recorded 4 months after plantation. Avicennia marina seedlings could tolerate up to 10% (w/w). Results demonstrated that there was a reduction in plant shoot and root biomass with the increase of crude oil concentration. Plant height, total leaf number and length reduced significantly with increase of crude oil contamination. Investigation revealed that there is a great impact of crude oil contamination on protein content of the roots of the experimental plant. Protein content of roots grown in different concentrations of crude oil were more than those of the control plant. Further, results also showed that protein content was increased with increased concentration of crude oil.

Keywords: Avicennia marina, morphology, oil contamination, protein content

Procedia PDF Downloads 350
6256 Appropriate Legal System for Protection of Plant Innovations in Afghanistan

Authors: Mohammad Reza Fooladi

Abstract:

Because of the importance and effect of plant innovations on economy, industry, and especially agriculture, they have been on the core attention of legislators at the national level, and have been a topic of international documents related to intellectual innovations in the recent decades. For protection of plant innovations, two legal systems (i.e. particular system based on International Convention for protection of new variety of plants, and the patent system) have been considered. Ease of access to the support and the level of support in each of these systems are different. Our attempt in this paper, in addition to describing and analyzing the characteristics of each system, is to suggest the compatible system to the industry and agriculture of Afghanistan. Due to the lack of sufficient industrial infrastructure and academic research, the particular system based on the International Convention on the protection of new variety of plants is suggested. At the same time, appropriate industrial and legal infrastructures, as well as laboratories and research centers should be provided in order that plant innovations under the patent system could also be supported.

Keywords: new varieties of plant, patent, agriculture, Afghanistan

Procedia PDF Downloads 303