Search results for: multiplex networks
2696 Teaching Contemporary Power Distribution and Industrial Networks in Higher Education Vocational Studies
Authors: Rade M. Ciric
Abstract:
The paper shows the development and implementation of the syllabus of the subject 'Distribution and Industrial Networks', attended by the vocational specialist Year 4 students of the Electric Power Engineering study programme at the Higher Education Technical School of Vocational Studies in Novi Sad. The aim of the subject is to equip students with the knowledge necessary for planning, exploitation and management of distributive and industrial electric power networks in an open electricity market environment. The results of the evaluation of educational outcomes on the subject are presented and discussed.Keywords: engineering education, power distribution network, syllabus implementation, outcome evaluation
Procedia PDF Downloads 4012695 Analyzing the Impact of DCF and PCF on WLAN Network Standards 802.11a, 802.11b, and 802.11g
Authors: Amandeep Singh Dhaliwal
Abstract:
Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.Keywords: DCF, IEEE, PCF, WLAN
Procedia PDF Downloads 4242694 Phone Number Spoofing Attack in VoLTE
Authors: Joo-Hyung Oh, Sekwon Kim, Myoungsun Noh, Chaetae Im
Abstract:
The number of service users of 4G VoLTE (voice over LTE) using LTE data networks is rapidly growing. VoLTE based on All-IP network enables clearer and higher-quality voice calls than 3G. It does, however, pose new challenges; a voice call through IP networks makes it vulnerable to security threats such as wiretapping and forged or falsified information. Moreover, in particular, stealing other users’ phone numbers and forging or falsifying call request messages from outgoing voice calls within VoLTE result in considerable losses that include user billing and voice phishing to acquaintances. This paper focuses on the threats of caller phone number spoofing in the VoLTE and countermeasure technology as safety measures for mobile communication networks.Keywords: LTE, 4G, VoLTE, phone number spoofing
Procedia PDF Downloads 5212693 Using Neural Networks for Click Prediction of Sponsored Search
Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov
Abstract:
Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate
Procedia PDF Downloads 5722692 Developing Academic English through Interaction
Authors: John Bankier
Abstract:
Development of academic English occurs not only in communities of practice but also within wider social networks, referred to by Zappa-Hollman and Duff as individual networks of practice. Such networks may exist whether students are developing academic English in English-dominant contexts or in contexts in which English is not a majority language. As yet, little research has examined how newcomers to universities interact with a variety of social ties in such networks to receive academic and emotional support as they develop the academic English necessary to succeed in local and global academia. The one-year ethnographic study described in this presentation followed five Japanese university students enrolled on an academic English program in their home country. We graphically represent participants’ individual networks of practice related to academic English and display the role of interaction in these networks to socialization. Specific examples of academic practices will be linked to specific instances of social interaction. Interaction supportive of the development of academic practices often occurred during unplanned interactions outside the classroom and among small groups of close friends who were connected to each other in more than one way, such as those taking multiple classes together. These interactions occurred in study spaces, in hallways between class periods, at lunchtimes, and online. However, constraints such as differing accommodation arrangements, class scheduling and the hierarchical levelling of English classes by test scores discouraged some participants both from forming strong ties related to English and from interacting with existing ties. The presentation will briefly describe ways in which teachers in all contexts can maximise interaction outside the classroom.Keywords: academic, english, practice, network
Procedia PDF Downloads 2572691 Personalized Social Resource Recommender Systems on Interest-Based Social Networks
Authors: C. L. Huang, J. J. Sia
Abstract:
The interest-based social networks, also known as social bookmark sharing systems, are useful platforms for people to conveniently read and collect internet resources. These platforms also providing function of social networks, and users can share and explore internet resources from the social networks. Providing personalized internet resources to users is an important issue on these platforms. This study uses two types of relationship on the social networks—following and follower and proposes a collaborative recommender system, consisting of two main steps. First, this study calculates the relationship strength between the target user and the target user's followings and followers to find top-N similar neighbors. Second, from the top-N similar neighbors, the articles (internet resources) that may interest the target user are recommended to the target user. In this system, users can efficiently obtain recent, related and diverse internet resources (knowledge) from the interest-based social network. This study collected the experimental dataset from Diigo, which is a famous bookmark sharing system. The experimental results show that the proposed recommendation model is more accurate than two traditional baseline recommendation models but slightly lower than the cosine model in accuracy. However, in the metrics of the diversity and executing time, our proposed model outperforms the cosine model.Keywords: recommender systems, social networks, tagging, bookmark sharing systems, collaborative recommender systems, knowledge management
Procedia PDF Downloads 1722690 The Coauthorship Network Analysis of the Norwegian School of Economics
Authors: Ivan Belik, Kurt Jornsten
Abstract:
We construct the coauthorship network based on the scientific collaboration between the faculty members at the Norwegian School of Economics (NHH) and based on their international academic publication experience. The network structure is based on the NHH faculties’ publications recognized by the ISI Web of Science for the period 1950 – Spring, 2014. The given network covers the publication activities of the NHH faculty members (over six departments) based on the information retrieved from the ISI Web of Science in Spring, 2014. In this paper we analyse the constructed coauthorship network in different aspects of the theory of social networks analysis.Keywords: coauthorship networks, social networks analysis, Norwegian School of Economics, ISI
Procedia PDF Downloads 4312689 Sentiment Analysis in Social Networks Sites Based on a Bibliometrics Analysis: A Comprehensive Analysis and Trends for Future Research Planning
Authors: Jehan Fahim M. Alsulami
Abstract:
Academic research about sentiment analysis in sentiment analysis has obtained significant advancement over recent years and is flourishing from the collection of knowledge provided by various academic disciplines. In the current study, the status and development trend of the field of sentiment analysis in social networks is evaluated through a bibliometric analysis of academic publications. In particular, the distributions of publications and citations, the distribution of subject, predominant journals, authors, countries are analyzed. The collaboration degree is applied to measure scientific connections from different aspects. Moreover, the keyword co-occurrence analysis is used to find out the major research topics and their evolutions throughout the time span. The area of sentiment analysis in social networks has gained growing attention in academia, with computer science and engineering as the top main research subjects. China and the USA provide the most to the area development. Authors prefer to collaborate more with those within the same nation. Among the research topics, newly risen topics such as COVID-19, customer satisfaction are discovered.Keywords: bibliometric analysis, sentiment analysis, social networks, social media
Procedia PDF Downloads 2172688 Performance Analysis of Routing Protocols for WLAN Based Wireless Sensor Networks (WSNs)
Authors: Noman Shabbir, Roheel Nawaz, Muhammad N. Iqbal, Junaid Zafar
Abstract:
This paper focuses on the performance evaluation of routing protocols in WLAN based Wireless Sensor Networks (WSNs). A comparative analysis of routing protocols such as Ad-hoc On-demand Distance Vector Routing System (AODV), Dynamic Source Routing (DSR) and Optimized Link State Routing (OLSR) is been made against different network parameters like network load, end to end delay and throughput in small, medium and large-scale sensor network scenarios to identify the best performing protocol. Simulation results indicate that OLSR gives minimum network load in all three scenarios while AODV gives the best throughput in small scale network but in medium and large scale networks, DSR is better. In terms of delay, OLSR is more efficient in small and medium scale network while AODV is slightly better in large networks.Keywords: WLAN, WSN, AODV, DSR, OLSR
Procedia PDF Downloads 4472687 Matching Law in Autoshaped Choice in Neural Networks
Authors: Giselle Maggie Fer Castañeda, Diego Iván González
Abstract:
The objective of this work was to study the autoshaped choice behavior in the Donahoe, Burgos and Palmer (DBP) neural network model and analyze it under the matching law. Autoshaped choice can be viewed as a form of economic behavior defined as the preference between alternatives according to their relative outcomes. The Donahoe, Burgos and Palmer (DBP) model is a connectionist proposal that unifies operant and Pavlovian conditioning. This model has been used for more than three decades as a neurobehavioral explanation of conditioning phenomena, as well as a generator of predictions suitable for experimental testing with non-human animals and humans. The study consisted of different simulations in which, in each one, a ratio of reinforcement was established for two alternatives, and the responses (i.e., activations) in each of them were measured. Choice studies with animals have demonstrated that the data generally conform closely to the generalized matching law equation, which states that the response ratio equals proportionally to the reinforcement ratio; therefore, it was expected to find similar results with the neural networks of the Donahoe, Burgos and Palmer (DBP) model since these networks have simulated and predicted various conditioning phenomena. The results were analyzed by the generalized matching law equation, and it was observed that under some contingencies, the data from the networks adjusted approximately to what was established by the equation. Implications and limitations are discussed.Keywords: matching law, neural networks, computational models, behavioral sciences
Procedia PDF Downloads 732686 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault
Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola
Abstract:
Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula
Procedia PDF Downloads 782685 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization
Authors: Christoph Linse, Thomas Martinetz
Abstract:
Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets
Procedia PDF Downloads 872684 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner
Authors: Beier Zhu, Rui Zhang, Qi Song
Abstract:
Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization
Procedia PDF Downloads 1932683 The Existence of Field Corn Networks on the Thailand-Burma Border under the Patron-Client Contract Farming System
Authors: Kettawa Boonprakarn, Jedsarid Sangkaphan, Bejapornd Deekhuntod, Nuntharat Suriyo
Abstract:
This study aimed to investigate the existence of field corn networks on the Thailand-Burma border under the patron-client contract farming system. The data of this qualitative study were collected through in-depth interviews with nine key informants. The results of the study revealed that the existence of the field corn networks was associated with the relationship where farmers had to share their crops with protectors in the areas under the influence of the KNU (Karen National Union) and the DKBA (Democratic Karen Buddhist Army) or Burmese soldiers. A Mae Liang, the person who starts a network has a connection with a Thaokae, Luk Rai Hua Chai or the head of a group of farmers, and farmers. They are under the patron-client system with trust and loyalty that enable the head of the group and the farmers in the Burma border side to remain under the same Mae Liang even though the business has been passed down to later generations.Keywords: existence, field-corn networks, patron-client system, contract farming
Procedia PDF Downloads 2702682 Care: A Cluster Based Approach for Reliable and Efficient Routing Protocol in Wireless Sensor Networks
Authors: K. Prasanth, S. Hafeezullah Khan, B. Haribalakrishnan, D. Arun, S. Jayapriya, S. Dhivya, N. Vijayarangan
Abstract:
The main goal of our approach is to find the optimum positions for the sensor nodes, reinforcing the communications in points where certain lack of connectivity is found. Routing is the major problem in sensor network’s data transfer between nodes. We are going to provide an efficient routing technique to make data signal transfer to reach the base station soon without any interruption. Clustering and routing are the two important key factors to be considered in case of WSN. To carry out the communication from the nodes to their cluster head, we propose a parameterizable protocol so that the developer can indicate if the routing has to be sensitive to either the link quality of the nodes or the their battery levels.Keywords: clusters, routing, wireless sensor networks, three phases, sensor networks
Procedia PDF Downloads 5052681 The Attitude of Students towards the Use of the Social Networks in Education
Authors: Abdulmjeid Aljerawi
Abstract:
This study aimed to investigate the students' attitudes towards the use of social networking in education. Due to the nature of the study, and on the basis of its problem, objectives, and questions, the researcher used the descriptive approach. An appropriate questionnaire was prepared and validity and reliability were ensured. The questionnaire was then applied to the study sample of 434 students from King Saud University.Keywords: social networks, education, learning, students
Procedia PDF Downloads 2772680 Emerging Technology for 6G Networks
Authors: Yaseein S. Hussein, Victor P. Gil Jiménez, Abdulmajeed Al-Jumaily
Abstract:
Due to the rapid advancement of technology, there is an increasing demand for wireless connections that are both fast and reliable, with minimal latency. New wireless communication standards are developed every decade, and the year 2030 is expected to see the introduction of 6G. The primary objectives of 6G network and terminal designs are focused on sustainability and environmental friendliness. The International Telecommunication Union-Recommendation division (ITU-R) has established the minimum requirements for 6G, with peak and user data rates of 1 Tbps and 10-100 Gbps, respectively. In this context, Light Fidelity (Li-Fi) technology is the most promising candidate to meet these requirements. This article will explore the various advantages, features, and potential applications of Li-Fi technology, and compare it with 5G networking, to showcase its potential impact among other emerging technologies that aim to enable 6G networks.Keywords: 6G networks, artificial intelligence (AI), Li-Fi technology, Terahertz (THz) communication, visible light communication (VLC)
Procedia PDF Downloads 932679 Wireless Network and Its Application
Authors: Henok Mezemr Besfat, Haftom Gebreslassie Gebregwergs
Abstract:
wireless network is one of the most important mediums of transmission of information from one device to another devices. Wireless communication has a broad range of applications, including mobile communications through cell phones and satellites, Internet of Things (IoT) connecting several devices, wireless sensor networks for traffic management and environmental monitoring, satellite communication for weather forecasting and TV without requiring any cable or wire or other electronic conductors, by using electromagnetic waves like IR, RF, satellite, etc. This paper summarizes different wireless network technologies, applications of different wireless technologies and different types of wireless networks. Generally, wireless technology will further enhance operations and experiences across sectors with continued innovation. This paper suggests different strategies that can improve wireless networks and technologies.Keywords: wireless senser, wireless technology, wireless network, internet of things
Procedia PDF Downloads 512678 Marketing Mixed Factors Affecting on Commercial Transactions Expectations through Social Networks
Authors: Ladaporn Pithuk
Abstract:
This study aims to investigate the marketing mixed factors that affecting on expectations about commercial transactions through social networks. The research method will using quantitative research, data was collected by questionnaires to person have experience access to trading over the internet for 400 sample by purposive sampling method. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and using quality function deployment for hypothesis testing. Finding the most significant interrelationship between marketing mixed factors and commercial transactions expectations through social networks are product and place the relationship of five ties product and place (location) is involved in almost all will make the site a model that meets the needs of the user visit. In terms of price, the promotion, privacy, personalization and providing a process technical. This will make operations more efficient, reduce confusion, duplication, delays in data transmission, including the creation of different elements in products and services.Keywords: commercial transactions expectations, marketing mixed factors, social networks, consumer behavior
Procedia PDF Downloads 2362677 Performance Analysis and Energy Consumption of Routing Protocol in Manet Using Grid Topology
Authors: Vivek Kumar Singh, Tripti Singh
Abstract:
An ad hoc wireless network consists of mobile networks which creates an underlying architecture for communication without the help of traditional fixed-position routers. Ad-hoc On-demand Distance Vector (AODV) is a routing protocol used for Mobile Ad hoc Network (MANET). Nevertheless, the architecture must maintain communication routes although the hosts are mobile and they have limited transmission range. There are different protocols for handling the routing in the mobile environment. Routing protocols used in fixed infrastructure networks cannot be efficiently used for mobile ad-hoc networks, so that MANET requires different protocols. This paper presents the performance analysis of the routing protocols used various parameter-patterns with Two-ray model.Keywords: AODV, packet transmission rate, pause time, ZRP, QualNet 6.1
Procedia PDF Downloads 8272676 End-to-End Control and Management of Multi-AS Virtual Service Networks Using SDN and Autonomic Computing Architecture
Authors: Yong Xue, Daniel A. Menascé
Abstract:
Automated and end-to-end network resource management and provisioning for virtual service networks in a multiple autonomous systems (a.k.a multi-AS) environment is a challenging and open problem. This paper proposes a novel, scalable and interoperable high-level architecture that incorporates a number of emerging enabling technologies including Software Defined Network (SDN), Network Function Virtualization (NFV), Service Oriented Architecture (SOA), and Autonomic Computing. The proposed architecture can be used to not only automate network resource management and provisioning for virtual service networks across multiple autonomous substrate networks, but also provide an adaptive capability for achieving optimal network resource management and maintaining network-level end-to-end network performance as well. The paper argues that this SDN and autonomic computing based architecture lays a solid foundation that can facilitate the development of the future Internet based on the pluralistic paradigm.Keywords: virtual network, software defined network, virtual service network, adaptive resource management, SOA, multi-AS, inter-domain
Procedia PDF Downloads 5312675 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network
Authors: Vinai K. Singh
Abstract:
In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans
Procedia PDF Downloads 1352674 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks
Authors: Anne-Lena Kampen, Øivind Kure
Abstract:
Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN
Procedia PDF Downloads 1522673 Neural Networks with Different Initialization Methods for Depression Detection
Authors: Tianle Yang
Abstract:
As a common mental disorder, depression is a leading cause of various diseases worldwide. Early detection and treatment of depression can dramatically promote remission and prevent relapse. However, conventional ways of depression diagnosis require considerable human effort and cause economic burden, while still being prone to misdiagnosis. On the other hand, recent studies report that physical characteristics are major contributors to the diagnosis of depression, which inspires us to mine the internal relationship by neural networks instead of relying on clinical experiences. In this paper, neural networks are constructed to predict depression from physical characteristics. Two initialization methods are examined - Xaiver and Kaiming initialization. Experimental results show that a 3-layers neural network with Kaiming initialization achieves 83% accuracy.Keywords: depression, neural network, Xavier initialization, Kaiming initialization
Procedia PDF Downloads 1272672 Survey on Arabic Sentiment Analysis in Twitter
Authors: Sarah O. Alhumoud, Mawaheb I. Altuwaijri, Tarfa M. Albuhairi, Wejdan M. Alohaideb
Abstract:
Large-scale data stream analysis has become one of the important business and research priorities lately. Social networks like Twitter and other micro-blogging platforms hold an enormous amount of data that is large in volume, velocity and variety. Extracting valuable information and trends out of these data would aid in a better understanding and decision-making. Multiple analysis techniques are deployed for English content. Moreover, one of the languages that produce a large amount of data over social networks and is least analyzed is the Arabic language. The proposed paper is a survey on the research efforts to analyze the Arabic content in Twitter focusing on the tools and methods used to extract the sentiments for the Arabic content on Twitter.Keywords: big data, social networks, sentiment analysis, twitter
Procedia PDF Downloads 5752671 An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks
Authors: Apidet Booranawong, Wiklom Teerapabkajorndet
Abstract:
An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.Keywords: WSANs, building temperature control, AODV routing protocol, control system error, settling time, delay, delivery ratio
Procedia PDF Downloads 3362670 Integration Network ASI in Lab Automation and Networks Industrial in IFCE
Authors: Jorge Fernandes Teixeira Filho, André Oliveira Alcantara Fontenele, Érick Aragão Ribeiro
Abstract:
The constant emergence of new technologies used in automated processes makes it necessary for teachers and traders to apply new technologies in their classes. This paper presents an application of a new technology that will be employed in a didactic plant, which represents an effluent treatment process located in a laboratory of a federal educational institution. At work were studied in the first place, all components to be placed on automation laboratory in order to determine ways to program, parameterize and organize the plant. New technologies that have been implemented to the process are basically an AS-i network and a Profinet network, a SCADA system, which represented a major innovation in the laboratory. The project makes it possible to carry out in the laboratory various practices of industrial networks and SCADA systems.Keywords: automation, industrial networks, SCADA systems, lab automation
Procedia PDF Downloads 5412669 Detecting Earnings Management via Statistical and Neural Networks Techniques
Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie
Abstract:
Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.Keywords: earnings management, generalized linear regression, neural networks multi-layer perceptron, Tehran stock exchange
Procedia PDF Downloads 4202668 Power Quality Evaluation of Electrical Distribution Networks
Authors: Mohamed Idris S. Abozaed, Suliman Mohamed Elrajoubi
Abstract:
Researches and concerns in power quality gained significant momentum in the field of power electronics systems over the last two decades globally. This sudden increase in the number of concerns over power quality problems is a result of the huge increase in the use of non-linear loads. In this paper, power quality evaluation of some distribution networks at Misurata - Libya has been done using a power quality and energy analyzer (Fluke 437 Series II). The results of this evaluation are used to minimize the problems of power quality. The analysis shows the main power quality problems that exist and the level of awareness of power quality issues with the aim of generating a start point which can be used as guidelines for researchers and end users in the field of power systems.Keywords: power quality disturbances, power quality evaluation, statistical analysis, electrical distribution networks
Procedia PDF Downloads 5322667 Multi-Objective Optimal Threshold Selection for Similarity Functions in Siamese Networks for Semantic Textual Similarity Tasks
Authors: Kriuk Boris, Kriuk Fedor
Abstract:
This paper presents a comparative study of fundamental similarity functions for Siamese networks in semantic textual similarity (STS) tasks. We evaluate various similarity functions using the STS Benchmark dataset, analyzing their performance and stability. Additionally, we introduce a multi-objective approach for optimal threshold selection. Our findings provide insights into the effectiveness of different similarity functions and offer a straightforward method for threshold selection optimization, contributing to the advancement of Siamese network architectures in STS applications.Keywords: siamese networks, semantic textual similarity, similarity functions, STS benchmark dataset, threshold selection
Procedia PDF Downloads 35