Search results for: layout recognition
1832 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 1161831 Makhraj Recognition Using Convolutional Neural Network
Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak
Abstract:
This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow
Procedia PDF Downloads 3351830 Geospatial Data Complexity in Electronic Airport Layout Plan
Authors: Shyam Parhi
Abstract:
Airports GIS program collects Airports data, validate and verify it, and stores it in specific database. Airports GIS allows authorized users to submit changes to airport data. The verified data is used to develop several engineering applications. One of these applications is electronic Airport Layout Plan (eALP) whose primary aim is to move from paper to digital form of ALP. The first phase of development of eALP was completed recently and it was tested for a few pilot program airports across different regions. We conducted gap analysis and noticed that a lot of development work is needed to fine tune at least six mandatory sheets of eALP. It is important to note that significant amount of programming is needed to move from out-of-box ArcGIS to a much customized ArcGIS which will be discussed. The ArcGIS viewer capability to display essential features like runway or taxiway or the perpendicular distance between them will be discussed. An enterprise level workflow which incorporates coordination process among different lines of business will be highlighted.Keywords: geospatial data, geology, geographic information systems, aviation
Procedia PDF Downloads 4161829 The Artificial Intelligence Technologies Used in PhotoMath Application
Authors: Tala Toonsi, Marah Alagha, Lina Alnowaiser, Hala Rajab
Abstract:
This report is about the Photomath app, which is an AI application that uses image recognition technology, specifically optical character recognition (OCR) algorithms. The (OCR) algorithm translates the images into a mathematical equation, and the app automatically provides a step-by-step solution. The application supports decimals, basic arithmetic, fractions, linear equations, and multiple functions such as logarithms. Testing was conducted to examine the usage of this app, and results were collected by surveying ten participants. Later, the results were analyzed. This paper seeks to answer the question: To what level the artificial intelligence features are accurate and the speed of process in this app. It is hoped this study will inform about the efficiency of AI in Photomath to the users.Keywords: photomath, image recognition, app, OCR, artificial intelligence, mathematical equations.
Procedia PDF Downloads 1711828 A Human Activity Recognition System Based on Sensory Data Related to Object Usage
Authors: M. Abdullah, Al-Wadud
Abstract:
Sensor-based activity recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.Keywords: Naïve Bayesian, based classification, activity recognition, sensor data, object-usage model
Procedia PDF Downloads 3211827 Research of Street Aspect Ratio on a Wind Environmental Perspective
Authors: Qi Kan, Xiaoyu Ying
Abstract:
With a rapid urbanization in China, the high-density new urban-center districts have already changed the microclimate in the city. Because of the using characters of building the commercial pedestrian streets which have emerged massively making a large number of pedestrians appear in there, pedestrian comfort in the commercial streets of the new urban-center districts requires more attention. The different street spatial layout will change the wind environment in the street and then influence the pedestrian comfort. Computational fluid dynamics (CFD) models are used to study the correlation between the street aspect ratio and wind environment, under the simulation with relevant weather conditions. The results show that the wind speed in the city streets is inversely proportional to the street aspect ratio. The conclusion will provide an evaluation basis for urban planners and architects at the beginning stage of the design to effectively avoid the potential poor physical environment.Keywords: street spatial layout, wind environment, street aspect ratio, pedestrian comfort
Procedia PDF Downloads 1931826 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains
Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda
Abstract:
In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).Keywords: features extraction, handwritten numeric chains, image processing, neural networks
Procedia PDF Downloads 2651825 Semantic Data Schema Recognition
Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia
Abstract:
The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns
Procedia PDF Downloads 4181824 Speech Recognition Performance by Adults: A Proposal for a Battery for Marathi
Authors: S. B. Rathna Kumar, Pranjali A Ujwane, Panchanan Mohanty
Abstract:
The present study aimed to develop a battery for assessing speech recognition performance by adults in Marathi. A total of four word lists were developed by considering word frequency, word familiarity, words in common use, and phonemic balance. Each word list consists of 25 words (15 monosyllabic words in CVC structure and 10 monosyllabic words in CVCV structure). Equivalence analysis and performance-intensity function testing was carried using the four word lists on a total of 150 native speakers of Marathi belonging to different regions of Maharashtra (Vidarbha, Marathwada, Khandesh and Northern Maharashtra, Pune, and Konkan). The subjects were further equally divided into five groups based on above mentioned regions. It was found that there was no significant difference (p > 0.05) in the speech recognition performance between groups for each word list and between word lists for each group. Hence, the four word lists developed were equally difficult for all the groups and can be used interchangeably. The performance-intensity (PI) function curve showed semi-linear function, and the groups’ mean slope of the linear portions of the curve indicated an average linear slope of 4.64%, 4.73%, 4.68%, and 4.85% increase in word recognition score per dB for list 1, list 2, list 3 and list 4 respectively. Although, there is no data available on speech recognition tests for adults in Marathi, most of the findings of the study are in line with the findings of research reports on other languages. The four word lists, thus developed, were found to have sufficient reliability and validity in assessing speech recognition performance by adults in Marathi.Keywords: speech recognition performance, phonemic balance, equivalence analysis, performance-intensity function testing, reliability, validity
Procedia PDF Downloads 3561823 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms
Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani
Abstract:
Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.Keywords: face recognition, body-worn cameras, deep learning, person identification
Procedia PDF Downloads 1631822 Digital Geomatics Trends for Production and Updating Topographic Map by Using Digital Generalization Procedures
Authors: O. Z. Jasim
Abstract:
An accuracy digital map must satisfy the users for two main requirements, first, map must be visually readable and second, all the map elements must be in a good representation. These two requirements hold especially true for map generalization which aims at simplifying the representation of cartographic data. Different scales of maps are very important for any decision in any maps with different scales such as master plan and all the infrastructures maps in civil engineering. Cartographer cannot project the data onto a piece of paper, but he has to worry about its readability. The map layout of any geodatabase is very important, this layout is help to read, analyze or extract information from the map. There are many principles and guidelines of generalization that can be find in the cartographic literature. A manual reduction method for generalization depends on experience of map maker and therefore produces incompatible results. Digital generalization, rooted from conventional cartography, has become an increasing concern in both Geographic Information System (GIS) and mapping fields. This project is intended to review the state of the art of the new technology and help to understand the needs and plans for the implementation of digital generalization capability as well as increase the knowledge of production topographic maps.Keywords: cartography, digital generalization, mapping, GIS
Procedia PDF Downloads 3041821 Pre-Analysis of Printed Circuit Boards Based on Multispectral Imaging for Vision Based Recognition of Electronics Waste
Authors: Florian Kleber, Martin Kampel
Abstract:
The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show that a higher contrast is achieved in the near infrared compared to ultraviolet and visible light.Keywords: electronics waste, multispectral imaging, printed circuit boards, rare-earth elements
Procedia PDF Downloads 4151820 A Prototype of an Information and Communication Technology Based Intervention Tool for Children with Dyslexia
Authors: Rajlakshmi Guha, Sajjad Ansari, Shazia Nasreen, Hirak Banerjee, Jiaul Paik
Abstract:
Dyslexia is a neurocognitive disorder, affecting around fifteen percent of the Indian population. The symptoms include difficulty in reading alphabet, words, and sentences. This can be difficult at the phonemic or recognition level and may further affect lexical structures. Therapeutic intervention of dyslexic children post assessment is generally done by special educators and psychologists through one on one interaction. Considering the large number of children affected and the scarcity of experts, access to care is limited in India. Moreover, unavailability of resources and timely communication with caregivers add on to the problem of proper intervention. With the development of Educational Technology and its use in India, access to information and care has been improved in such a large and diverse country. In this context, this paper proposes an ICT enabled home-based intervention program for dyslexic children which would support the child, and provide an interactive interface between expert, parents, and students. The paper discusses the details of the database design and system layout of the program. Along with, it also highlights the development of different technical aids required to build out personalized android applications for the Indian dyslexic population. These technical aids include speech database creation for children, automatic speech recognition system, serious game development, and color coded fonts. The paper also emphasizes the games developed to assist the dyslexic child on cognitive training primarily for attention, working memory, and spatial reasoning. In addition, it talks about the specific elements of the interactive intervention tool that makes it effective for home based intervention of dyslexia.Keywords: Android applications, cognitive training, dyslexia, intervention
Procedia PDF Downloads 2901819 Roll Forming Process and Die Design for a Large Size Square Tube
Authors: Jinn-Jong Sheu, Cang-Fu Liang, Cheng-Hsien Yu
Abstract:
This paper proposed the cold roll forming process and the die design methods for a 400mm by 400 mm square tube with 16 mm in thickness. The tubular blank made by cold roll forming is 508mm in diameter. The square tube roll forming process was designed considering the layout of rolls and the compression ratio distribution for each stand. The final tube corner radius and the edge straightness in the front end of the tube are to be controlled according to the tube specification. A five-stand forming design using four rolls at each stand was proposed to establish the base reference of square tube roll forming quality. Different numbers of pass and roll designs were proposed and compared to the base design in order to find the feasibility of increase pass number to improve the square tube quality. The proposed roll forming processes were simulated using FEM analysis. The thickness variations of the corner and the edge areas were examined. The maximum loads and the torques of each stand were calculated to study the power consumption of the roll forming machine. The simulation results showed the square tube thickness variations and concavity of the edge are acceptable with the JIS tube specifications for the base design. But the maximum loads and torques are very high. By changing the layout and the number of the rolls were able to obtain better tube geometry and decrease the maximum load and torque of each stand. This paper had shown the feasibility of designing the roll forming process and the layout of dies using FEM simulation. The obtained information is helpful to the roll forming machine design for a large size square tube making.Keywords: cold roll forming, FEM analysis, roll forming die design, tube roll forming
Procedia PDF Downloads 3111818 The Combination of the Mel Frequency Cepstral Coefficients, Perceptual Linear Prediction, Jitter and Shimmer Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech
Authors: Brahim Fares Zaidi
Abstract:
Our work aims to improve our Automatic Recognition System for Dysarthria Speech based on the Hidden Models of Markov and the Hidden Markov Model Toolkit to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients and Perceptual Linear Prediction and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.Keywords: ARSDS, HTK, HMM, MFCC, PLP
Procedia PDF Downloads 1081817 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition
Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie
Abstract:
In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks
Procedia PDF Downloads 1111816 Distant Speech Recognition Using Laser Doppler Vibrometer
Authors: Yunbin Deng
Abstract:
Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR
Procedia PDF Downloads 1791815 Interactive Shadow Play Animation System
Authors: Bo Wan, Xiu Wen, Lingling An, Xiaoling Ding
Abstract:
The paper describes a Chinese shadow play animation system based on Kinect. Users, without any professional training, can personally manipulate the shadow characters to finish a shadow play performance by their body actions and get a shadow play video through giving the record command to our system if they want. In our system, Kinect is responsible for capturing human movement and voice commands data. Gesture recognition module is used to control the change of the shadow play scenes. After packaging the data from Kinect and the recognition result from gesture recognition module, VRPN transmits them to the server-side. At last, the server-side uses the information to control the motion of shadow characters and video recording. This system not only achieves human-computer interaction, but also realizes the interaction between people. It brings an entertaining experience to users and easy to operate for all ages. Even more important is that the application background of Chinese shadow play embodies the protection of the art of shadow play animation.Keywords: hadow play animation, Kinect, gesture recognition, VRPN, HCI
Procedia PDF Downloads 4011814 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition
Procedia PDF Downloads 1561813 Evolution of the Environmental Justice Concept
Authors: Zahra Bakhtiari
Abstract:
This article explores the development and evolution of the concept of environmental justice, which has shifted from being dominated by white and middle-class individuals to a civil struggle by marginalized communities against environmental injustices. Environmental justice aims to achieve equity in decision-making and policy-making related to the environment. The concept of justice in this context includes four fundamental aspects: distribution, procedure, recognition, and capabilities. Recent scholars have attempted to broaden the concept of justice to include dimensions of participation, recognition, and capabilities. Focusing on all four dimensions of environmental justice is crucial for effective planning and policy-making to address environmental issues. Ignoring any of these aspects can lead to the failure of efforts and the waste of resources.Keywords: environmental justice, distribution, procedure, recognition, capabilities
Procedia PDF Downloads 921812 A Coupling Study of Public Service Facilities and Land Price Based on Big Data Perspective in Wuxi City
Authors: Sisi Xia, Dezhuan Tao, Junyan Yang, Weiting Xiong
Abstract:
Under the background of Chinese urbanization changing from incremental development to stock development, the completion of urban public service facilities is essential to urban spatial quality. As public services facilities is a huge and complicated system, clarifying the various types of internal rules associated with the land market price is key to optimizing spatial layout. This paper takes Wuxi City as a representative sample location and establishes the digital analysis platform using urban price and several high-precision big data acquisition methods. On this basis, it analyzes the coupling relationship between different public service categories and land price, summarizing the coupling patterns of urban public facilities distribution and urban land price fluctuations. Finally, the internal mechanism within each of the two elements is explored, providing the reference of the optimum layout of urban planning and public service facilities.Keywords: public service facilities, land price, urban spatial morphology, big data
Procedia PDF Downloads 2151811 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge
Authors: T. Alghamdi, G. Alaghband
Abstract:
In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.
Procedia PDF Downloads 1531810 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System
Authors: Qian Liu, Steve Furber
Abstract:
To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system
Procedia PDF Downloads 4721809 Pattern Recognition Search: An Advancement Over Interpolation Search
Authors: Shahpar Yilmaz, Yasir Nadeem, Syed A. Mehdi
Abstract:
Searching for a record in a dataset is always a frequent task for any data structure-related application. Hence, a fast and efficient algorithm for the approach has its importance in yielding the quickest results and enhancing the overall productivity of the company. Interpolation search is one such technique used to search through a sorted set of elements. This paper proposes a new algorithm, an advancement over interpolation search for the application of search over a sorted array. Pattern Recognition Search or PR Search (PRS), like interpolation search, is a pattern-based divide and conquer algorithm whose objective is to reduce the sample size in order to quicken the process and it does so by treating the array as a perfect arithmetic progression series and thereby deducing the key element’s position. We look to highlight some of the key drawbacks of interpolation search, which are accounted for in the Pattern Recognition Search.Keywords: array, complexity, index, sorting, space, time
Procedia PDF Downloads 2421808 Pattern Recognition Based on Simulation of Chemical Senses (SCS)
Authors: Nermeen El Kashef, Yasser Fouad, Khaled Mahar
Abstract:
No AI-complete system can model the human brain or behavior, without looking at the totality of the whole situation and incorporating a combination of senses. This paper proposes a Pattern Recognition model based on Simulation of Chemical Senses (SCS) for separation and classification of sign language. The model based on human taste controlling strategy. The main idea of the introduced model is motivated by the facts that the tongue cluster input substance into its basic tastes first, and then the brain recognizes its flavor. To implement this strategy, two level architecture is proposed (this is inspired from taste system). The separation-level of the architecture focuses on hand posture cluster, while the classification-level of the architecture to recognizes the sign language. The efficiency of proposed model is demonstrated experimentally by recognizing American Sign Language (ASL) data set. The recognition accuracy obtained for numbers of ASL is 92.9 percent.Keywords: artificial intelligence, biocybernetics, gustatory system, sign language recognition, taste sense
Procedia PDF Downloads 2941807 The Technological Problem of Simulation of the Logistics Center
Authors: Juraj Camaj, Anna Dolinayova, Jana Lalinska, Miroslav Bariak
Abstract:
Planning of infrastructure and processes in logistic center within the frame of various kinds of logistic hubs and technological activities in them represent quite complex problem. The main goal is to design appropriate layout, which enables to realize expected operation on the desired levels. The simulation software represents progressive contemporary experimental technique, which can support complex processes of infrastructure planning and all of activities on it. It means that simulation experiments, reflecting various planned infrastructure variants, investigate and verify their eligibilities in relation with corresponding expected operation. The inducted approach enables to make qualified decisions about infrastructure investments or measures, which derive benefit from simulation-based verifications. The paper represents simulation software for simulation infrastructural layout and technological activities in marshalling yard, intermodal terminal, warehouse and combination between them as the parts of logistic center.Keywords: marshalling yard, intermodal terminal, warehouse, transport technology, simulation
Procedia PDF Downloads 5211806 Design of the Ice Rink of the Future
Authors: Carine Muster, Prina Howald Erika
Abstract:
Today's ice rinks are important energy consumers for the production and maintenance of ice. At the same time, users demand that the other rooms should be tempered or heated. The building complex must equally provide cooled and heated zones, which does not translate as carbon-zero ice rinks. The study provides an analysis of how the civil engineering sector can significantly impact minimizing greenhouse gas emissions and optimizing synergies across an entire ice rink complex. The analysis focused on three distinct aspects: the layout, including the volumetric layout of the premises present in an ice rink; the materials chosen that can potentially use the most ecological structural approach; and the construction methods based on innovative solutions to reduce carbon footprint. The first aspect shows that the organization of the interior volumes and defining the shape of the rink play a significant role. Its layout makes the use and operation of the premises as efficient as possible, thanks to the differentiation between heated and cooled volumes while optimising heat loss between the different rooms. The sprayed concrete method, which is still little known, proves that it is possible to achieve the strength of traditional concrete for the structural aspect of the load-bearing and non-load-bearing walls of the ice rink by using materials excavated from the construction site and providing a more ecological and sustainable solution. The installation of an empty sanitary space underneath the ice floor, making it independent of the rest of the structure, provides a natural insulating layer, preventing the transfer of cold to the rest of the structure and reducing energy losses. The addition of active pipes as part of the foundation of the ice floor, coupled with a suitable system, gives warmth in the winter and storage in the summer; this is all possible thanks to the natural heat in the ground. In conclusion, this study provides construction recommendations for future ice rinks with a significantly reduced energy demand, using some simple preliminary design concepts. By optimizing the layout, materials, and construction methods of ice rinks, the civil engineering sector can play a key role in reducing greenhouse gas emissions and promoting sustainability.Keywords: climate change, energy optimization, green building, sustainability
Procedia PDF Downloads 671805 Physical Verification Flow on Multiple Foundries
Authors: Rohaya Abdul Wahab, Raja Mohd Fuad Tengku Aziz, Nazaliza Othman, Sharifah Saleh, Nabihah Razali, Muhammad Al Baqir Zinal Abidin, Md Hanif Md Nasir
Abstract:
This paper will discuss how we optimize our physical verification flow in our IC Design Department having various rule decks from multiple foundries. Our ultimate goal is to achieve faster time to tape-out and avoid schedule delay. Currently the physical verification runtimes and memory usage have drastically increased with the increasing number of design rules, design complexity and the size of the chips to be verified. To manage design violations, we use a number of solutions to reduce the amount of violations needed to be checked by physical verification engineers. The most important functions in physical verifications are DRC (design rule check), LVS (layout vs. schematic) and XRC (extraction). Since we have a multiple number of foundries for our design tape-outs, we need a flow that improve the overall turnaround time and ease of use of the physical verification process. The demand for fast turnaround time is even more critical since the physical design is the last stage before sending the layout to the foundries.Keywords: physical verification, DRC, LVS, XRC, flow, foundry, runset
Procedia PDF Downloads 6541804 Image Processing techniques for Surveillance in Outdoor Environment
Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.
Abstract:
This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management
Procedia PDF Downloads 261803 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents
Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei
Abstract:
With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.Keywords: document processing, framework, formal definition, machine learning
Procedia PDF Downloads 214