Search results for: k nearest neighbour
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 289

Search results for: k nearest neighbour

109 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 135
108 Beliefs on Reproduction of Women in Fish Port Community: An Explorative Study on the Beliefs on Conception, Childbirth, and Maternal Care of Women in Navotas Fish Port Community

Authors: Marie Kristel A. Gabawa

Abstract:

The accessibility of health programs, specifically family planning programs and maternal and child health care (FP/MCH), are generally low in urban poor communities. Moreover, most of FP/MCH programs are directed toward medical terms that are usually not included in ideation of the body of urban poor dwellers. This study aims to explore the beliefs on reproduction that will encompass, but not limited to, beliefs on conception, pregnancy, and maternal and child health care. The site of study will be the 2 barangays of North Bay Boulevard South 1 (NBBS1) and North Bay Boulevard South 2 (NBBS2). These 2 barangays are the nearest residential community within the Navotas Fish Port Complex (NFPC). Data gathered will be analyzed using grounded-theory method of analysis, with the theories of cultural materialism and equity feminism as foundation. Survey questionnaires, key informant interviews, and focus group discussions will be utilized in gathering data. Further, the presentation of data will be recommended to health program initiators and use the data gathered as a tool to customize FP/MCH programs to the perception and beliefs of women residing in NBBS1and NBBS2, and to aid any misinformation for FP/MCH techniques.

Keywords: beliefs on reproduction, fish port community, family planning, maternal and child health care, Navotas

Procedia PDF Downloads 259
107 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance

Authors: Loai AbdAllah, Mahmoud Kaiyal

Abstract:

Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods.

Keywords: missing values, incomplete data, distance, incomplete diabetes data

Procedia PDF Downloads 225
106 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 235
105 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction

Authors: Isaac Mugume

Abstract:

Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.

Keywords: bias correction, climatic projections, numerical models, representative concentration pathways

Procedia PDF Downloads 119
104 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 277
103 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Microbiological and Physicochemical Characterization

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the highest crude oil & condensate producer in Nigeria has its operational base and an oil terminal, the Qua Iboe terminal (QIT) located at Ibeno, Nigeria. Other oil companies like Network Exploration and Production Nigeria Ltd, Frontier Oil Ltd; Shell Petroleum Development Company Ltd; Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of the Italian ENI E&P operate onshore, on the continental shelf and in deep offshore of the Atlantic Ocean, respectively with the coastal waters of Ibeno, Nigeria as the nearest shoreline. This study was designed to delineate the oil-polluted sites in Ibeno, Nigeria using microbiological and physico-chemical characterization of soils, sediments and ground and surface water samples from the study area. Results obtained revealed that there have been significant recent hydrocarbon inputs into this environment as observed from the high counts of hydrocarbonoclastic microorganisms in excess of 1% at all the stations sampled. Moreover, high concentrations of THC, BTEX and heavy metals contents in all the samples analyzed corroborate the high recent crude oil input into the study area. The results also showed that the pollution of the different environmental media sampled were of varying degrees, following the trend: Ground water > surface water > sediments > soils.

Keywords: microbiological characterization, oil-polluted sites, physico-chemical analyses, total hydrocarbon content

Procedia PDF Downloads 416
102 Arboretum: Community Mixed Reality Nature Environment

Authors: Radek Richtr, Petr Paus

Abstract:

The connection to the primal environment, living and growing nature is disappearing for most of the residents in urban core areas nowadays. Most of the residents perceive scattered green mass like more technical objects than sentient living organisms. The Arboretum is a type of application from the 'serious games' genre -it is a research experiment masked as a gaming environment. In used virtual and augmented reality environments, every city district is represented by central objects; Pillars created as a result of resident’s consensus. Every player can furthermore plant and grow virtual organic seeds everywhere he wants. Seeds sprout, and their form is determined by both players’ choice and nearest pillar. Every house, private rooms, and even workspace get their new living virtual avatar-connected 'residents' growing from player-planted seeds. Every room or workspace is transformed into (calming) nature scene, reflecting in some way both players and community spirit and together create a vicinity environment. The conceptual design phase of the project is crucial and allows for the identification of the fundamental problems through abstraction. The project that centers on wide community usage needs a clear and accessible interface. Simultaneously the conceptual design allows early sharing of project ideas and creating public concern. The paper discusses the current conceptual model of an Arboretum project (which is part of a whole widespread project) and its validation.

Keywords: augmented reality, conceptual design, mixed reality, social engineering

Procedia PDF Downloads 230
101 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing

Procedia PDF Downloads 178
100 Catalytic Thermodynamics of Nanocluster Adsorbates from Informational Statistical Mechanics

Authors: Forrest Kaatz, Adhemar Bultheel

Abstract:

We use an informational statistical mechanics approach to study the catalytic thermodynamics of platinum and palladium cuboctahedral nanoclusters. Nanoclusters and their adatoms are viewed as chemical graphs with a nearest neighbor adjacency matrix. We use the Morse potential to determine bond energies between cluster atoms in a coordination type calculation. We use adsorbate energies calculated from density functional theory (DFT) to study the adatom effects on the thermodynamic quantities, which are derived from a Hamiltonian. Oxygen radical and molecular adsorbates are studied on platinum clusters and hydrogen on palladium clusters. We calculate the entropy, free energy, and total energy as the coverage of adsorbates increases from bridge and hollow sites on the surface. Thermodynamic behavior versus adatom coverage is related to the structural distribution of adatoms on the nanocluster surfaces. The thermodynamic functions are characterized using a simple adsorption model, with linear trends as the coverage of adatoms increases. The data exhibits size effects for the measured thermodynamic properties with cluster diameters between 2 and 5 nm. Entropy and enthalpy calculations of Pt-O2 compare well with previous theoretical data for Pt(111)-O2, and our Pd-H results show similar trends as experimental measurements for Pd-H2 nanoclusters. Our methods are general and may be applied to wide variety of nanocluster adsorbate systems.

Keywords: catalytic thermodynamics, palladium nanocluster absorbates, platinum nanocluster absorbates, statistical mechanics

Procedia PDF Downloads 166
99 Ambisyllabic Conditioning in English: Evidence from the Accent of Nigerian Speakers of English

Authors: Nkereke Mfon Essien

Abstract:

In an ambisyllabic environment, one consonant sound simultaneously assumes both the coda and onset positions of a word due to its structural proclivity to affect two phonological processes or repair two ill-formed sequences in those syllable positions at the same time. This study sets out to examine the structural conditions that trigger this not-so-common phonological privilege for consonant sounds in the English language and Nigerian English and if such constraints could have any correspondence in the language studied. Data for the study were obtained from a native speaker of English who was the control and twenty (20) educated Nigerian speakers of English from the three ethnic/linguistic groups in Nigeria. Preliminary findings from the data show that ambisyllabicity in English is triggered mainly by stress, a condition which causes a consonant in a stressed syllable to become glottalised and simultaneously devoices the nearest voiced consonant in the next syllable. For example, in the word coupler,/'kʌplɜr/ is realized as ['kʌˀpl̥ɜr]. In some Nigerian English, preliminary findings show that ambisyllabicity is triggered by a sequence of intervocalic short, high central vowels and a coda nasal. Since the short vowel may not occur in an open syllable, the nasal serves to close the impermissible open syllable. However, since the Nigerian English foot structure does not permit a CVC.V syllable, the same coda nasal simultaneously repairs the impermissible syllable foot to (CV.CV) by applying the Maximal Onset Principle since this is a preliminary investigation, a conclusion would not suffice yet.

Keywords: ambisyllabicity, nasal, coda, stress, phonological process, syllable, foot

Procedia PDF Downloads 18
98 The Impact of Coffee Consumption to Body Mass Index and Body Composition

Authors: A.L. Tamm, N. Šott, J. Jürimäe, E. Lätt, A. Orav, Ü. Parm

Abstract:

Coffee is one of the most frequently consumed beverages in the world but still its effects on human organism are not completely understood. Coffee has also been used as a method for weight loss, but its effectiveness has not been proved. There is also not similar comprehension in classifying overweight in choosing between body mass index (BMI) and fat percentage (fat%). The aim of the study was to determine associations between coffee consumption and body composition. Secondly, to detect which measure (BMI or fat%) is more accurate to use describing overweight. Altogether 103 persons enrolled the study and divided into three groups: coffee non-consumers (n=39), average coffee drinkers, who consumed 1 to 4 cups (1 cup = ca 200ml) of coffee per day (n=40) and excessive coffee consumers, who drank at least five cups of coffee per day (n=24). Body mass (medical electronic scale, A&D Instruments, Abingdon, UK) and height (Martin metal anthropometer to the nearest 0.1 cm) were measured and BMI calculated (kg/m2). Participants´ body composition was detected with dual energy X-ray absorptiometry (DXA, Hologic) and general data (history of chronic diseases included) and information about coffee consumption, and physical activity level was collected with questionnaires. Results of the study showed that excessive coffee consumption was associated with increased fat-free mass. It could be foremost due to greater physical activity level in school time or greater (not significant) male proportion in excessive coffee consumers group. For estimating the overweight the fat% in comparison to BMI recommended, as it gives more accurate results evaluating chronical disease risks. In conclusion coffee consumption probably does not affect body composition and for estimating the body composition fat% seems to be more accurate compared with BMI.

Keywords: body composition, body fat percentage, body mass index, coffee consumption

Procedia PDF Downloads 420
97 Improving the Global Competitiveness of SMEs by Logistics Transportation Management: Case Study Chicken Meat Supply Chain

Authors: P. Vanichkobchinda

Abstract:

The Logistics Transportation techniques, Open Vehicle Routing (OVR) is an approach toward transportation cost reduction, especially for long distance pickup and delivery nodes. The outstanding characteristic of OVR is that the route starting node and ending node are not necessary the same as in typical vehicle routing problems. This advantage enables the routing to flow continuously and the vehicle does not always return to its home base. This research aims to develop a heuristic for the open vehicle routing problem with pickup and delivery under time window and loading capacity constraints to minimize the total distance. The proposed heuristic is developed based on the Insertion method, which is a simple method and suitable for the rapid calculation that allows insertion of the new additional transportation requirements along the original paths. According to the heuristic analysis, cost comparisons between the proposed heuristic and companies are using method, nearest neighbor method show that the insertion heuristic. Moreover, the proposed heuristic gave superior solutions in all types of test problems. In conclusion, the proposed heuristic can effectively and efficiently solve the open vehicle routing. The research indicates that the improvement of new transport's calculation and the open vehicle routing with "Insertion Heuristic" represent a better outcome with 34.3 percent in average. in cost savings. Moreover, the proposed heuristic gave superior solutions in all types of test problems. In conclusion, the proposed heuristic can effectively and efficiently solve the open vehicle routing.

Keywords: business competitiveness, cost reduction, SMEs, logistics transportation, VRP

Procedia PDF Downloads 685
96 Contribution to the Study of Reproduction of Water Birds (Case of Marsh Bouessdra, North East Algeria)

Authors: Wahiba Boudraa, Khalil Draidi, Badis Bakhouch, Farah Chettibi, Meriem Aberkane, Zihad Bouslama, Moussa Houhamdi

Abstract:

The Gulf of Annaba, located at the extreme north eastern Algerian; our site of study is a marsh administratively it is part of the wilaya of Annaba, municipality of El-Bouni; extends on a surface from 55 hectare, the maximum depth is of less 2m. A scheme of work was adopted for an evaluation and characterization of the reproduction of the water nicheurs birds in the marsh of Boussedra. Some important parameters described by the scientific literature; According to standardized methods, variables were the object of a regular follow-up during the period of reproduction. These parameters were taken into account: the installation date of the nests, the vegetable support; blossoming of eggs, causes of the failure of the blossomings (predation or abandonment), characteristics of the nests (composition, internal diameter, external diameter, depth and heightening), measurements of the distances nest-nest nearest, Depth of water, the measurement of eggs, size of laying, size of laying. The follow-up in the marsh was carried out between March 2013 until the month of July 2014 at a rate of two outputs per weeks, one located and noted the nests to control them each week. The study on the reproduction of the water birds enables us to note that this site plays a very important part in the wintering and the reproduction of certain species important. This study opens broad prospects for study of several phenomena related to the ecology of the water birds, and the conservation of the wetlands.

Keywords: Algeria, Boussedra, nests, reproduction, water birds

Procedia PDF Downloads 257
95 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection

Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew

Abstract:

The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.

Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.

Procedia PDF Downloads 47
94 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 326
93 Composition and Distribution of Seabed Marine Litter Along Algerian Coast (Western Mediterranean)

Authors: Ahmed Inal, Samir Rouidi, Samir Bachouche

Abstract:

The present study is focused on the distribution and composition of seafloor marine litter associated to trawlable fishing areas along Algerian coast. The sampling was done with a GOC73 bottom trawl during four (04) demersal resource assessment cruises, respectively, in 2016, 2019, 2021 and 2022, carried out on board BELKACEM GRINE R/V. A total of 254 fishing hauls were sampled for the assessment of marine litter. Hauls were performed between 22 and 600 m of depth, the duration was between 30 and 60 min. All sampling was conducted during daylight. After the haul, marine litter was sorted and split from the catch. Then, according to the basis of the MEDITS protocol, litters were sorted into six different categories (plastic, rubber, metal, wood, glass and natural fiber). Thereafter, all marine litter were counted and weighed separately to the nearest 0.5 g. The results shows that the maximums of marine litter densities in the seafloor of the trawling fishing areas along Algerian coast are, respectively, 1996 item/km2 in 2016, 5164 item/km2 in 2019, 2173 item/km2 in 2021 and 7319 item/km2 in 2022. Thus, the plastic is the most abundant litter, it represent, respectively, 46% of marine litter in 2016, 67% in 2019, 69% in 2021 and 74% in 2022. Regarding the weight of the marine litter, it varies between 0.00 and 103 kg in 2016, between 0.04 and 81 kg in 2019, between 0.00 and 68 Kg in 2021 and between 0.00 and 318 kg in 2022. Thus, the maximum rate of marine litter compared to the total catch approximate, respectively, 66% in 2016, 90% in 2019, 65% in 2021 and 91% in 2022. In fact, the average loss in catch is estimated, respectively, at 7.4% in 2016, 8.4% in 2019, 5.7% in 2021 and 6.4% in 2022. However, the bathymetric and geographical variability had a significant impact on both density and weight of marine litter. Marine litter monitoring program is necessary for offering more solution proposals.

Keywords: composition, distribution, seabed, marine litter, algerian coast

Procedia PDF Downloads 68
92 Phylogenetic Inferences based on Morphoanatomical Characters in Plectranthus esculentus N. E. Br. (Lamiaceae) from Nigeria

Authors: Otuwose E. Agyeno, Adeniyi A. Jayeola, Bashir A. Ajala

Abstract:

P. esculentus is indigenous to Nigeria yet no wild relation has been encountered or reported. This has made it difficult to establish proper lineages between the varieties and landraces under cultivation. The present work is the first to determine the apormophy of 135 morphoanatomical characters in organs of 46 accessions drawn from 23 populations of this species based on dicta. The character states were coded in accession x character-state matrices and only 83 were informative and utilised for neighbour joining clustering based on euclidean values, and heuristic search in parsimony analysis using PAST ver. 3.15 software. Compatibility and evolutionary trends between accessions were then explored from values and diagrams produced. The low consistency indices (CI) recorded support monophyly and low homoplasy in this taxon. Agglomerative schedules based on character type and source data sets divided the accessions into mainly 3 clades, each of complexes of accessions. Solenostemon rotundifolius (Poir) J.K Morton was the outgroup (OG) used, and it occurred within the largest clades except when the characters were combined in a data set. The OG showed better compatibility with accessions of populations of landrace Isci, and varieties Riyum and Long’at. Otherwise, its aerial parts are more consistent with those of accessions of variety Bebot. The highly polytomous clades produced due to anatomical data set may be an indication of how stable such characters are in this species. Strict consensus trees with more than 60 nodes outputted showed that the basal nodes were strongly supported by 3 to 17 characters across the data sets, suggesting that populations of this species are more alike. The OG was clearly the first diverging lineage and closely related to accessions of landrace Gwe and variety Bebot morphologically, but different from them anatomically. It was also distantly related to landrace Fina and variety Long’at in terms of root, stem and leaf structural attributes. There were at least 5 other clades with each comprising of complexes of accessions from different localities and terrains within the study area. Spherical stem in cross section, size of vascular bundles at the stem corners as well as the alternate and whorl phyllotaxy are attributes which may have facilitated each other’s evolution in all accessions of the landrace Gwe, and they may be innovative since such states are not characteristic of the larger Lamiaceae, and Plectranthus L’Her in particular. In conclusion, this study has provided valuable information about infraspecific diversity in this taxon. It supports recognition of the varietal statuses accorded to populations of P. esculentus, as well as the hypothesis that the wild gene might have been distributed on the Jos Plateau. However, molecular characterisation of accessions of populations of this species would resolve this problem better.

Keywords: clustering, lineage, morphoanatomical characters, Nigeria, phylogenetics, Plectranthus esculentus, population

Procedia PDF Downloads 135
91 Self-Help Adaptation to Flooding in Low-Income Settlements in Chiang Mai, Thailand

Authors: Nachawit Tikul

Abstract:

This study aimed to determine low-income housing adaptations for flooding, which causes living problems and housing damage, and the results from improvement. Three low-income settlements in Chiang Mai which experienced different flood types, i.e. flash floods in Samukeepattana, drainage floods in Bansanku, and river floods in Kampangam, were chosen for the study. Almost all of the residents improved their houses to protect the property from flood damage by changing building materials to flood damage resistant materials for walls, floors, and other parts of the structure that were below the base of annual flood elevation. They could only build some parts of their own homes, so hiring skilled workers or contractors was still important. Building materials which have no need for any special tools and are easy to access and use for construction, as well as low cost, are selected for construction. The residents in the three slums faced living problems for only a short time and were able to cope with them. This may be due to the location of the three slums near the city where assistance is readily available. But the housing and the existence in the slums can endure only the regular floods and residence still have problems in unusual floods, which have been experienced 1-2 times during the past 10 years. The residents accept the need for evacuations and prepare for them. When faced with extreme floods, residence have evacuated to the nearest safe place such as schools and public building, and come back to repair the houses after the flood. These are the distinguishing characteristics of low-income living which can withstand serious situations due to the simple lifestyle. Therefore, preparation of living areas for use during severe floods and encouraging production of affordable flood resistant materials should be areas of concern when formulating disaster assistance policies for low income people.

Keywords: flooding, low-income settlement, housing, adaptation

Procedia PDF Downloads 238
90 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria

Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov

Abstract:

This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.

Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model

Procedia PDF Downloads 62
89 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 76
88 Maternity Care Model during Natural Disaster or Humanitarian Emegerncy Setting in Rural Pakistan

Authors: Humaira Maheen, Elizabeth Hoban, Catherine Bennette

Abstract:

Background: Globally, role of Community Health Workers (CHW) as front line disaster health work force is underutilized. Developing countries which are at risk of natural disasters or humanitarian emergencies should lay down effective strategies especially to ensure adequate access to maternity care during crisis situation by using CHW as they are local, trained, and most of them possess a good relationship with the community. The Minimum Initial Service Package (MISP) is a set of universal guidelines that addresses women’s reproductive health needs during the first phase of an emergency. According to the MISP, pregnant women should have access to a skilled birth attendant and adequate transportation arrangements so they can access a maternity care facility. Pakistan is one of the few countries which has been severely affected by a number of natural disaster as well as humanitarian emergencies in last decade. Pakistan has a young and structured National Disaster Management System in place, where District Authorities play a vital role in disaster management. The District Health Department develops the contingency health plan for an emergency situation and implements it under the existing district health human resources (health workers and medical staff at the health facility) and infrastructure (health care facilities). Methods: A mixed methods study was conducted in rural villages of Sindh adjacent to the river Indus, and included in-depth interviews with 15 women who gave birth during the floods, structured interviews with 668 women who were pregnant during 2010-2014, and in-depth interviews with 25 community health workers (CHW) and 30 key informants. Results: Women said that giving birth in the relief camps during the floods was one of the most challenging times of their life. The district health department didn’t make transportation arrangement for labouring women from relief camp to the nearest health care facility. As a result 91.2% women gave birth in temporary shelters with the help of a traditional birth attendant (Dai) with no clean physical space available to birth. Of the 332 women who were pregnant at the time of the floods, 26 had adverse birth outcomes; 10 had miscarriages, 14 had stillbirths and there were four neonatal deaths. Conclusion: The district health department was not able to provide access to adequate maternity care during according to the international standard during the floods in 2011. We propose a model where CHWs will be used as frontline maternity care providers during any emergency or disaster situations in Pakistan. A separate "birthing station" should be mandatory in all district relief camps, managed by CHWs. Community midwives (CMW) would and the Lady Health Workers (LHW) would provide antenatal and postnatal care alongside, vaccination for pregnant women, neonates and children under five. There must be an ambulance facility for emergency obstetric cases and all district health facilities should have at least two medical staff identified and trained for emergency obstetric management. The District Health Department must provide clean birthing kits and regular and emergency contraceptives in the relief camps. Methods: A mixed methods study was conducted in rural villages of Sindh adjacent to the river Indus, and included in-depth interviews with 15 women who gave birth during the floods, structured interviews with 668 women who were pregnant during 2010-2014, and in-depth interviews with 25 community health workers (CHW) and 30 key informants. Results: Women said that giving birth in the relief camps during the floods was one of the most challenging times of their life. Nearly 91.2% women gave birth in temporary shelters with the help of a traditional birth attendant (Dai) with no clean physical space available to birth, and the health camp was mostly accessed by men and always overcrowded. There was no obstetric trained medical staff in the health camps or transportation provided to take women with complications to the nearest health facility. The rate of adverse outcome following disaster was 22.2% (95% CI: 8.62% – 42.2%) amongst 27 women who did not evacuate as compare to 7.91% (95% CI: 5.03% – 11.8%) among 278 women who lived in relief camp study participants. There were 27 women who evacuated on pre-flood warning and had 0% rate of adverse outcome. Conclusion: We propose a model where CHWs will be used as frontline maternity care providers during any emergency or disaster situations in Pakistan. A separate "birthing station" should be mandatory in all district relief camps, managed by CHWs. Community midwives (CMW) would and the Lady Health Workers (LHW) would provide antenatal and postnatal care alongside, vaccination for pregnant women, neonates and children under five. There must be an ambulance facility for emergency obstetric cases and all district health facilities should have at least two medical staff identified and trained for emergency obstetric management. The District Health Department must provide clean birthing kits and regular and emergency contraceptives in the relief camps.

Keywords: natural disaster, maternity care model, rural, Pakistan, community health workers

Procedia PDF Downloads 262
87 Evaluation of the Urban Landscape Structures and Dynamics of Hawassa City, Using Satellite Images and Spatial Metrics Approaches, Ethiopia

Authors: Berhanu Terfa, Nengcheng C.

Abstract:

The study deals with the analysis of urban expansion and land transformation of Hawass City using remote sensing data and landscape metrics during last three decades (1987–2017). Remote sensing data from Various multi-temporal satellite images viz., TM (1987), TM (1995), ETM+ (2005) and OLI (2017) were used to examine the urban expansion, growth types, and spatial isolation within the urban landscape to develop an understanding the trends of built-up growth in Hawassa City, Ethiopia. Landscape metrics and built-up density were employed to analyze the pattern, process and overall growth status. The area under investigation was divided into concentric circles with a consecutive circle of 1 km incremental radius from the central pixel (Central Business District) for analysis. The result exhibited that the built-up area had increased by 541.32% between 1987 and 2017and an extension growth types (more than 67 %) was observed. The major growth took place in north-west direction followed by north direction in haphazard manner during 1987–1995 period, whereas predominant built-up development was observed in south and southwest direction during 1995–2017 period. Land scape metrics result revealed that the of urban patches density, total edge and edge density increased, while mean nearest neighbors’ distance decreased showing the tendency of sprawl.

Keywords: landscape metrics, spatial patterns, remote sensing, multi-temporal, urban sprawl

Procedia PDF Downloads 286
86 Automated Parking System

Authors: N. Arunraj, C. P. V. Paul, D. M. D. Jayawardena, W. N. D. Fernando

Abstract:

Traffic congestion with increased numbers of vehicles is already a serious issue for many countries. The absence of sufficient parking spaces adds to the issue. Motorists are forced to wait in long queues to park their vehicles. This adds to the inconvenience faced by a motorist, kept waiting for a slot allocation, manually done along with the parking payment calculation. In Sri Lanka, nowadays, parking systems use barcode technology to identify the vehicles at both the entrance and the exit points. Customer management is handled by the use of man power. A parking space is, generally permanently sub divided according to the vehicle type. Here, again, is an issue. Parking spaces are not utilized to the maximum. The current arrangement leaves room for unutilized parking spaces. Accordingly, there is a need to manage the parking space dynamically. As a vehicle enters the parking area, available space has to be assigned for the vehicle according to the vehicle type. The system, Automated Parking System (APS), provides an automated solution using RFID Technology to identify the vehicles. Simultaneously, an algorithm manages the space allocation dynamically. With this system, there is no permanent parking slot allocation for a vehicle type. A desktop application manages the customer. A Web application is used to manage the external users with their reservations. The system also has an android application to view the nearest parking area from the current location. APS is built using java and php. It uses LED panels to guide the user inside the parking area to find the allocated parking slot accurately. The system ensures efficient performance, saving precious time for a customer. Compared with the current parking systems, APS interacts with users and increases customer satisfaction as well.

Keywords: RFID, android, web based system, barcode, algorithm, LED panels

Procedia PDF Downloads 599
85 The Curse of Natural Resources: An Empirical Analysis Applied to the Case of Copper Mining in Zambia

Authors: Chomba Kalunga

Abstract:

Many developing countries have a rich endowment of natural resources. Yet, amidst that wealth, living standards remain poor. At the same time, international markets have been surged with an increase in copper prices in the last twenty years. This is a presentation of the findings on the causal economic impact of Zambia’s copper mines, a country located in sub-Saharan Africa endowed with vast copper deposits on living standards using household data from 1996 to 2010, exploiting an episode where the copper prices on the international market were rising. Using an Instrumental Variable approach and controlling for constituency-level and microeconomic factors, the results show a significant impact of copper production on living standards. After splitting the constituencies close to and far away from the nearest mine, the results document that constituencies close to the mines benefited significantly from the increase in copper production, compared to their counterparts through increased levels of employment. Finally, the results are not consistent with the natural resource curse hypothesis; findings show a positive causal relationship between the presence of natural resources and socioeconomic outcomes in less developed countries, particularly for constituencies close to the mines in Zambia. Some key policy implications follow from the findings. The finding that increased copper production led to an increase in employment suggests that, in Zambias’ context, policies that promote local employment may be more beneficial to residents. Meaning that it is government policies that can help improve the living standards were government needs to work towards making this impact more substantial.

Keywords: copper prices, local development, mining, natural resources

Procedia PDF Downloads 210
84 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys

Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze

Abstract:

At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.

Keywords: internal friction, shear modulus, gamma-irradiation, SiGe alloys

Procedia PDF Downloads 143
83 Manganese and Other Geothermal Minerals Exposure to Residents in Ketenger Village, Banyumas, Indonesia

Authors: Rita Yuniatun, Dewi Fadlilah Firdausi, Anida Hanifah, Putrisuvi Nurjannah Zalqis, Erza Nur Afrilia, Akrima Fajrin Nurimani, Andrew Luis Krishna

Abstract:

Manganese (Mn) is one of the potential contaminants minerals geothermal water. Preliminary studies conducted in Ketenger village, the nearest village with Baturaden hot spring, showed that the concentration of Mn in water supply has exceeded the reference value. Mineral contamination problem in Ketenger village is not only Mn, but also other potential geothermal minerals, such as chromium (Cr), iron (Fe), sulfide (S2-), nickel (Ni), cobalt (Co), and zinc (Zn). It becomes a concern because generally the residents still use ground water as the water source for their daily needs, including drinking and cooking. Therefore, this study aimed to determine the distribution of mineral contamination in drinking water and food and to estimate the health risks possibility from the exposure. Four minerals (Mn, Fe, S2-, and Cr6+) were analyzed in drinking water, carbohydrate sources, vegetables, fishes, and fruits. The test results indicate that Mn concentration in drinking water is 0.35 mg/L, has exceeded the maximum contaminant level (MCL) according to the US EPA (MCL = 0.005 mg/L), whereas other minerals still comply with the standards. In addition, we found that the average of Mn concentration in the carbohydrate sources is quite high (1.87 mg/Kg). Measurement results in Chronic Daily Intake (CDI) and the Risk Quotient (RQ) found that exposure to manganese and other geothermal minerals in drinking water and food are safe from the non-carcinogenic effects in each age group (RQ<1). So, geothermal mineral concentrations in drinking water and food has no effect on non-carcinogenic risk in Ketenger’s residents because of CDI is also influenced by other parameters such as the duration of exposure and the rate of consumption. However, it was found that intake of essential minerals (Mn and Fe) are deficient in every age group. So that, the addition of Mn and Fe intake is recommended.

Keywords: CDI, contaminant, geothermal minerals, manganese, RQ

Procedia PDF Downloads 267
82 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 54
81 Agroecological and Socioeconomic Determinants of Conserving Diversity On-Farm: The Case of Wheat Genetic Resources in Ethiopia

Authors: Bedilu Tafesse

Abstract:

Conservation of crop genetic resources presents a challenge of identifying specific determinants driving maintenance of diversity at farm and agroecosystems. The objectives of this study were to identify socioeconomic, market and agroecological determinants of farmers’ maintenance of wheat diversity at the household level and derive implications for policies in designing on-farm conservation programs. We assess wheat diversity at farm level using household survey data. A household decision making model is conceptualized using microeconomic theory to assess and identify factors influencing on-farm rice diversity. The model is then tested econometrically by using various factors affecting farmers’ variety choice and diversity decisions. The findings show that household-specific socioeconomic, agroecological and market factors are important in determining on-farm wheat diversity. The significant variables in explaining richness and evenness of wheat diversity include distance to the nearest market, subsistence ratio, modern variety sold, land types and adult labour working in agriculture. The statistical signs of the factors determining wheat diversity are consistent in explaining the richness, dominance and evenness among rice varieties. Finally, the study implies that the cost-effective means of promoting and sustaining on-farm conservation programmes is to target them in market isolated geographic locations of high crop diversity where farm households have more heterogeneity of agroecological conditions and more active family adult labour working on-farm.

Keywords: diversity indices, dominance, evenness, on-farm conservation, wheat diversity, richness

Procedia PDF Downloads 308
80 Public Culture Intervention in the Sustainable Renewal of Vernacular Heritage, Taking the Villages Surrounding the Erlitou Site in China as an Example

Authors: Gong Zhang

Abstract:

The villages surrounding protected areas of the Sites are a unique vernacular heritage due to their geographical location, long history, and the combination of nature and humanity. With the construction of more and more heritage sites, the villages around them are faced with the conflict between conservation and development. How to carry out sustainable micro-renewal while preserving the authenticity of the vernacular heritage is of great importance for the co-growth of the village residents and the site. This paper focuses on the process of revitalization of the villages nearby the Erlitou Site Park in China, aiming to study how sustainable village regeneration and conservation can be carried out through the activation of public culture. Firstly, through field research and literature review, this paper studies the vernacular morphology and architecture types of more than ten historical villages around the Erlitou site and investigates the traditional vernacular culture and the daily public activities of the local villagers. Secondly, taking the nearest village to the site area, Ranzhuang Village, as an example, the paper studies the role of public cultural activity interventions on the three different stages of vernacular heritage renewal: master planning, architecture group, and acupuncture-style micro-renewal of individual buildings, aiming to summarise its impact on villagers' lives and vernacular heritage. This paper concludes that a living regeneration with a moderate public cultural activity intervention can promote the symbiosis between the heritage site and the life of the villagers and increase the vitality of the village. This study aims to use the example of village regeneration in Henan, China, as a sustainable reference for the co-development of heritage sites and villages in other parts of the world.

Keywords: Erlitou site, public culture intervention, sustainable, vernacular heritage

Procedia PDF Downloads 246